[AK4456]
AK4456
115dB 768kHz 32-bit 6ch Premium DAC
1. General Description
The AK4456 is a 32-bit 6ch Premium DAC, which achieves industry’s best low distortion characteristics by a
newly developed low distortion technology. It corresponds to a 768kHz PCM input and an 11.2MHz DSD
input at maximum, suitable for play backing high resolution audio sources that are becoming widespread in
network audios, USB-DACs and Car Audio Systems. In addition, “OSR-Doubler” technology is newly
adopted, making the AK4456 capable of supporting wide range signals and achieving low out-of-band noise
while realizing low power consumption. Moreover, the AK4456 has five types of 32-bit digital filters,
realizing simple and flexible sound making in wide range of applications.
Application: AV Receivers, CD/SACD Players, Network Audios, USB DACs, USB Headphones, Sound
Plate/Bars, Car Audios, Automotive External Amplifiers, Measuring Instruments and Control
Systems.
2. Features
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
DR, S/N: 115dB
THD+N: -107dB
256x Over sampling (OSR - Doubler)
Sampling Rate: 8kHz 768kHz
32Bit 8x Digital Filter
- Ripple: 0.0032dB, Attenuation: 80dB (Sharp Roll-Off Filter Setting)
- Five Types of High Quality Sound Filter Option
- Sharp Roll-Off Filter
- Slow Roll-Off Filter
- Short Delay Sharp Roll-Off Filter (GD=5.8/fs)
- Short Delay Slow Roll-Off Filter (GD=4.8/fs)
- Super Slow Roll-Off Filter
High Tolerance to Clock Jitter
Low Distortion Differential Output
DSD data input
Daisy Chain
Digital De-emphasis for 32, 44.1, 48kHz sampling
Soft Mute
Digital Attenuator (255 levels and 0.5dB step)
I/F Format:
- 24/32bit MSB justified
- 16/20/24/32bit
- LSB justified
- I2S
- DSD
- TDM
3-wire Serial and I2C μP I/F
Master Clock:
- 30kHz ~ 32kHz: 1152fs
- 30kHz ~ 54kHz: 512fs or 768fs
- 30kHz ~ 108kHz: 256fs or 384fs
- 108kHz ~ 216kHz: 128fs or 192fs
~ 384kHz: 64fs or 128fs
~ 768kHz: 64fs
015006886-E-02
2019/11
-1-
[AK4456]
(16) Digital Input Level: CMOS
(17) Power Supply:
- TVDD= 1.7 3.6V
- AVDD=3.0 5.5V
(18) Supporting 105°C Temperature (Exposed pad is connected to ground)
(19) Package: 48-pin QFN
015006886-E-02
2019/11
-2-
[AK4456]
3. Table of Contents
1.
2.
3.
4.
General Description ................................................................................................................................... 1
Features ...................................................................................................................................................... 1
Table of Contents ....................................................................................................................................... 3
Block Diagram and Functions ................................................................................................................... 5
■ Block Diagram.......................................................................................................................................... 5
■ Functions .................................................................................................................................................. 6
5. Pin Configurations and Functions .............................................................................................................. 7
■ Ordering Guide ......................................................................................................................................... 7
■ Pin Configurations .................................................................................................................................... 7
■ Pin Functions ............................................................................................................................................ 8
■ Handling of Unused Pin ........................................................................................................................... 9
6. Absolute Maximum Ratings .................................................................................................................... 10
7. Recommended Operation Conditions ...................................................................................................... 10
8. Electrical Characteristics ......................................................................................................................... 11
■ Analog Characteristics............................................................................................................................ 11
■ Sharp Roll-Off Filter Characteristics ...................................................................................................... 13
■ Slow Roll-Off Filter Characteristics ....................................................................................................... 15
■ Short Delay Sharp Roll-Off Filter Characteristics.................................................................................. 17
■ Short Delay Slow Roll-Off Filter Characteristics................................................................................... 19
■ DSD Mode Characteristics ..................................................................................................................... 21
■ DC Characteristics .................................................................................................................................. 21
■ Switching Characteristics ....................................................................................................................... 22
■ Timing Diagram ..................................................................................................................................... 26
9. Functional Descriptions ........................................................................................................................... 30
■ D/A Conversion Mode ........................................................................................................................... 30
■ System Clock .......................................................................................................................................... 30
■ Audio Interface Format .......................................................................................................................... 34
■ D/A Conversion Mode Switching Timing.............................................................................................. 47
■ Digital Filter (PCM mode) ..................................................................................................................... 48
■ De-emphasis Filter (PCM mode) ............................................................................................................ 48
■ Output Volume (PCM mode, DSD mode) ............................................................................................. 49
■ Out of Band Noise Reduction Filter (PCM mode, DSD mode) ............................................................. 50
■ LR Channel Output Signal Select (PCM mode, DSD mode) ................................................................. 57
■ Sound Quality Adjustment (PCM mode, DSD mode)............................................................................ 59
■ DSD Full Scale (FS) Signal Detection Function .................................................................................... 60
■ Soft Mute Operation (PCM mode, DSD mode) ..................................................................................... 61
■ Error Detection ....................................................................................................................................... 62
■ System Reset .......................................................................................................................................... 62
■ Power Down Function ............................................................................................................................ 63
■ Power Off and Reset Functions .............................................................................................................. 64
■ Synchronization Function (PCM Mode) ................................................................................................ 67
■ Parallel Mode.......................................................................................................................................... 68
■ Serial Control Interface .......................................................................................................................... 68
■ Function List........................................................................................................................................... 73
■ Register Map .......................................................................................................................................... 74
■ Register Definitions ................................................................................................................................ 75
10.
Recommended External Circuits.......................................................................................................... 83
■ Typical Connection Diagram.................................................................................................................. 83
015006886-E-02
2019/11
-3-
[AK4456]
11.
Package ................................................................................................................................................ 87
■ Outline Dimensions ................................................................................................................................ 87
■ Material & Lead finish ........................................................................................................................... 87
■ Marking .................................................................................................................................................. 88
12.
Revision History .................................................................................................................................. 88
IMPORTANT NOTICE ................................................................................................................................ 89
015006886-E-02
2019/11
-4-
[AK4456]
4. Block Diagram and Functions
■ Block Diagram
LDOE
TVDD
VDD18
DVSS
PDN
AVDD AVSS
LDO
Bias
BICK/DCLK
DATT
Soft Mute
LRCK/DSDL1
8X
Interpolator
SCF
AOUTL1P
AOUTL1N
SDTI1/DSDR1
SDTI2/DSDL2
SDTI3/DSDR2/TDMO1
PCM
Data
Interface
De-empha
sis
DSDL3/TDMO2
Modulator
DATT
Soft Mute
DSD Filter
Vref
VREFH1
VREFL1
Noise
Rejection
Filter
SCF
AOUTR1P
AOUTR1N
DATT
Soft Mute
8X
Interpolator
SCF
AOUTL2P
AOUTL2N
DSD
Data
Interface
Modulator
DATT
Soft Mute
DSD Filter
Vref
VREFH2
VREFL2
Noise
Rejection
Filter
DSDR3
SCF
AOUTR2P
AOUTR2N
DATT
Soft Mute
8X
Interpolator
SCF
AOUTL3P
AOUTL3N
Modulator
DATT
Soft Mute
DSD Filter
DZF/SMUTE
Vref
VREFH3
VREFL3
Noise
Rejection
Filter
CAD1/DCHAIN
SCF
AOUTR3P
AOUTR3N
I2C
CAD0_I2C/CSN/DIF
Control
Register
SCL/CCLK/TDM1
Clock
Divider
SDA/CDTI/TDM0
PS/CAD0_SPI
MCLK
Figure 1. Block Diagram
015006886-E-02
2019/11
-5-
[AK4456]
■ Functions
Block
Functions
This block executes serial/parallel conversion of SDTI input 32bit data by
PCM Data Interface
synchronizing with LRCK and BICK.
1-bit data that is input from DSDL1-3 and DSDR1-3 pins is received by
DSD Data Interface
synchronizing with DCLK.
DATT、Soft Mute
Apply DATT and Soft Mute process to input data.
De-emphasis
Apply De-emphasis process to input data.
8x Interpolator
FIR filters that over sample 1fs rate data to 8fs rate.
Output multi-bit data to SCF. This block consists of a third-order digital delta-sigma
ΔΣ Modulator
modulator.
Noise Rejection Filter Attenuate out of band noise to prevent degradation of analog characteristics.
A primary switched capacitor filter that converts a multi-bit output of delta-sigma
SCF
modulator to an analog signal.
LDO
Generate power for internal digital circuit (1.8V typ.).
Control Register
Clock Divider
Keep register settings for each mode.
Master clock Input.
In PCM mode, master clock is divided automatically by fs rate auto detection
function. In DSD mode, the master clock frequency is set by DCKS.
015006886-E-02
2019/11
-6-
[AK4456]
5. Pin Configurations and Functions
■ Ordering Guide
40 +105C (Exposed pad is connected to ground)
40 +85C (Exposed pad is open)
48-pin QFN (0.5mm pitch)
Evaluation Board for AK4456
AK4456VN
AKD4456
AOUTR3N
VREFL3
VREFH3
AOUTL3N
AOUTL3P
AVDD
AVSS
AOUTR2P
AOUTR2N
VREFH2
VREFL2
AOUTL2N
36
35
34
33
32
31
30
29
28
27
26
25
■ Pin Configurations
AOUTR3P
37
24
AOUTL2P
TST3
38
23
AOUTR1P
TST4
39
22
AOUTR1N
TST5
40
21
VREFH1
TST6
41
20
VREFL1
TST7
42
19
AOUTL1N
TST8
43
18
AOUTL1P
LDOE
44
17
I2C
TVDD
45
16
CAD0_SPI/PS
DVSS
46
15
CAD0_I2C/CSN/DIF
VDD18
47
14
SCL/CCLK/TDM1
PDN
48
13
SDA/CDTI/TDM0
Top View
1
2
3
4
5
6
7
8
9
10
11
12
MCLK
BICK/DCLK
LRCK/DSDL1
SDTI1/DSDR1
SDTI2/DSDL2
SDTI3/DSDR2/TDMO1
DSDL3/TDMO2
DSDR3
TST1
TST2
DZF/SMUTE
CAD1/DCHAIN
Back TAB:Note
Note 1. The exposed pad at back face of the package must be open or connected to the ground of the board.
015006886-E-02
2019/11
-7-
[AK4456]
■ Pin Functions
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Pin Name
MCLK
BICK
DCLK
LRCK
DSDL1
SDTI1
DSDR1
SDTI2
DSDL2
SDTI3
DSDR2
TDMO1
DSDL3
TDMO2
DSDR3
TST1
TST2
DZF
I/O
I
I
I
I
I
I
I
I
I
I
I
O
I
O
I
O
SMUTE
I
CAD1
DCHAIN
SDA
CDTI
TDM0
SCL
CCLK
TDM1
CAD0_I2C
CSN
I
I
I/O
I
I
I
I
I
I
I
DIF
I
PS
I
CAD0_SPI
I
17
I2C
I
18
19
20
21
AOUTL1P
AOUTL1N
VREFL1
VREFH1
O
O
-
16
Function
PD State
External Master Clock Input Pin
Hi-Z
Audio Serial Data Clock Pin in PCM mode
Hi-z
DSD Clock Pin in DSD mode
Input Channel Clock Pin in PCM mode
Hi-Z
Audio Serial Data Input in DSD mode
Audio Serial Data Input in PCM mode
Hi-Z
Audio Serial Data Input in DSD mode
Audio Serial Data Input in PCM mode
Hi-Z
Audio Serial Data Input in DSD mode
Audio Serial Data Input in PCM mode
100kΩ
Audio Serial Data Input in DSD mode
Pull down
Audio Serial Data Output in Daisy Chain mode
Audio Serial Data Input in DSD mode
100kΩ
Pull down
Audio Serial Data Output in Daisy Chain mode
Audio Serial Data Input in DSD mode
Hi-Z
This pin must be connected to DVSS
Hi-Z
This pin must be connected to DVSS
Hi-Z
Zero Input Detect in I2C Bus or 3-wire serial control mode
Soft Mute Pin in Parallel control mode.
100kΩ
Pull
down
When this pin is changed to “H”, soft mute cycle is initiated.
When it is returning to “L”, the output mute is released.
Chip Address 0 Pin in I2C Bus or 3-wire serial control mode
Hi-Z
Daisy Chain Mode select pin in Parallel control mode.
Control Data Input Pin in I2C Bus serial control mode
Control Data Input Pin in 3-wire serial control mode
Hi-Z
TDM Mode select pin in Parallel control mode.
Control Data Clock Pin in I2C Bus serial control mode
Control Data Clock Pin in 3-wire serial control mode
Hi-Z
TDM Mode select pin in Parallel control mode.
Chip Address 0 Pin in I2C Bus serial control mode
Chip Select Pin in 3-wire serial control mode
Hi-Z
Audio Data Format Select in Parallel control mode.
“L”: 32-bit MSB, “H”: 32-bit I2S
(I2C pin = “H”)
Control Mode Select Pin
“L”: I2C Bus serial control mode, “H”: Parallel control mode.
Hi-Z
(I2C pin = “L”)
Chip Address 0 Pin in 3-wire serial control mode
Control Mode Select Pin
“L”: 3-wire serial control mode
Hi-Z
“H”: I2C Bus serial control mode or Parallel control mode.
Lch Positive Analog Output 1 Pin
Hi-Z
Lch Negative Analog Output 1 Pin
Hi-Z
Negative Voltage Reference Input Pin, AVSS
Hi-Z
Positive Voltage Reference Input Pin, AVDD
Hi-Z
015006886-E-02
2019/11
-8-
[AK4456]
No.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Pin Name
AOUTR1N
AOUTR1P
AOUTL2P
AOUTL2N
VREFL2
VREFH2
AOUTR2N
AOUTR2P
AVSS
AVDD
AOUTL3P
AOUTL3N
VREFH3
VREFL3
AOUTR3N
AOUTR3P
TST3
TST4
TST5
TST6
TST7
TST8
I/O
O
O
O
O
O
O
O
O
O
O
-
Function
PD State
Rch Negative Analog Output 1 Pin
Hi-Z
Rch Positive Analog Output 1 Pin
Hi-Z
Lch Positive Analog Output 2 Pin
Hi-Z
Lch Negative Analog Output 2 Pin
Hi-Z
Negative Voltage Reference Input Pin, AVSS
Hi-Z
Positive Voltage Reference Input Pin, AVDD
Hi-Z
Rch Negative Analog Output 2 Pin
Hi-Z
Rch Positive Analog Output 2 Pin
Hi-Z
Analog Ground Pin
-
Analog Power Supply Pin, 3.0V5.5V
-
Lch Positive Analog Output 3 Pin
Hi-Z
Lch Positive Analog Output 3 Pin
Hi-Z
Positive Voltage Reference Input Pin, AVDD
Hi-Z
Negative Voltage Reference Input Pin, AVSS
Hi-Z
Rch Negative Analog Output 3 Pin
Hi-Z
Rch Positive Analog Output 3Pin
Hi-Z
This pin must be connected to AVSS.
Hi-Z
This pin must be connected to AVSS.
Hi-Z
This pin must be connected to AVSS.
Hi-Z
This pin must be connected to AVSS.
Hi-Z
This pin must be connected to AVSS.
Hi-Z
This pin must be connected to AVSS.
Hi-Z
Internal LDO Enable Pin.
44 LDOE
I
Hi-Z
“L”: Disable, “H”: Enable
45 TVDD
Digital Power Supply Pin, 3.0V3.6V
-
Digital Ground Pin
46 DVSS
-
LDO Output Pin
O
(Note 4)
This pin should be connected to DVSS via 1.0µF.
47 VDD18
I
1.8V Power Input Pin (LDOE pin = “L”)
Power-Down & Reset Pin
48 PDN
I
When this pin is “L”, the AK4456 is powered-down and the
Hi-Z
control registers are reset to default state.
Note 2. All input pins except internal pull-up/down pins must not be allowed to float.
Note 3. PCM mode and DSD mode are controlled by registers. Daisy Chain mode is controlled by both
registers and pins.
Note 4. This pin outputs DVSS when the LDOE pin = “H” and Hi-z when the LDOE pin = “L”.
■ Handling of Unused Pin
The unused I/O pins must be connected appropriately.
Classification Pin Name
Setting
Analog
AOUTL1P/N, AOUTR1P/N
AOUTL2P/N, AOUTR2P/N
AOUTL3P/N, AOUTR3P/N
These pins must be open.
Digital
DZF, DSDL3
SDTI1-3, DSDR3
This pin must be open.
These pins must be connected to DVSS
015006886-E-02
2019/11
-9-
[AK4456]
6. Absolute Maximum Ratings
(AVSS =DVSS =0V; Note 5)
Parameter
Symbol
Min.
0.3
Analog
AVDD
Power Supplies:
0.3
Digital I/O
TVDD
Digital Core
VDD18
0.3
|AVSS DVSS|
GND
Input Current, Any Pin Except Supplies
IIN
Digital Input Voltage
VIND
0.3
Ambient Temperature (Power applied)
When the back tab is connected to VSS
Ta
40
When the back tab is open
Ta
40
Storage Temperature
Tstg
65
Note 5. All voltages with respect to ground.
Note 6. AVSS and DVSS must be connected to the same analog ground plane.
Max.
6.0
4.0
2.5
0.3
10
TVDD+0.3
Unit
V
V
V
V
mA
V
105
85
150
C
C
C
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operation Conditions
(AVSS =DVSS =0V; Note 5)
Parameter
Symbol
Min
Typ.
Max.
Unit
Analog
AVDD
3.0
5.0
5.5
V
(LDOE pin= “L”) (Note 7)
Power Supplies
I/O buffer
TVDD
VDD18
1.8
3.6
V
Digital
VDD18
1.7
1.8
1.98
V
(LDOE pin = “H”)(Note 8)
I/O buffer
TVDD
3.0
3.3
3.6
V
“H” voltage reference “L”
VREFH1-3
AVDD0.5
AVDD
V
Voltage Reference
voltage reference
VREFL1-3
AVSS
V
Note 7. When the LDOE pin = “L” VDD18 must be powered up either at the same time or after TVDD is
powered up. The power up sequence between AVDD and TVDD or AVDD and VDD18 is not critical.
Note 8. When LDOE pin = “H”, the internal LDO supplies 1.8V (typ). The power up sequences between
AVDD and TVDD, AVDD and VDD18 are not critical.
* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.
015006886-E-02
2019/11
- 10 -
[AK4456]
8. Electrical Characteristics
■ Analog Characteristics
(1) AVDD = 5.0V
(Ta=25C: TVDD=3.3V, AVDD=5.0V: AVSS= DVSS=0V: VREFH1/2/3=AVDD, VREFL1/2/3= AVSS:
fs=44.1kHz: BICK=64fs: Signal Frequency=1kHz: 24-bit Input Data: RL 2k: measurement bandwidth =
20Hz ~ 20kHz: External Circuit: (Figure 83), unless otherwise specified.)
Parameter
Unit
Min.
Typ.
Max.
Resolution
32
bit
Dynamic Characteristics
(Note 9)
0dBFS
fs=44.1kHz
-107
-100
dB
THD+N
-52
dB
BW=20kHz
60dBFS
0dBFS
fs=96kHz
-104
dB
-48
dB
BW=40kHz
60dBFS
0dBFS
fs=192kHz
-104
dB
-48
dB
BW=40kHz
60dBFS
-44
dB
BW=80kHz
60dBFS
Dynamic Range (60dBFS with A-weighted)
(Note 10)
110
115
dB
S/N (A-weighted)
(Note 11)
110
115
dB
Interchannel Isolation (1kHz)
100
110
dB
DC Accuracy
Interchannel Gain Mismatch
0
0.3
dB
Gain Drift
(Note 12)
20
ppm/C
Output Voltage
(Note 13)
2.65
2.8
2.95
Vpp
2
k
Load Resistance
(Note 14)
30
pF
Load Capacitance
(Note 14)
Power Supplies
Power Supply Current
Normal operation (PDN pin = “H”)
AVDD
TVDD (fs = 44.1kHz)
TVDD (fs = 96kHz)
TVDD (fs = 192kHz)
Power down (PDN pin = “L”)
AVDD+TVDD
-
24
6
10
16
32
8
13
21
mA
mA
mA
mA
-
1
100
A
(Note 15)
015006886-E-02
2019/11
- 11 -
[AK4456]
(2) AVDD = 3.3V
(Ta=25°C: TVDD=3.3V, AVDD=3.3V: AVSS= DVSS=0V: VREFH1/2/3=AVDD, VREFL1/2/3= AVSS:
fs=44.1kHz: BICK=64fs: Signal Frequency=1kHz: 24-bit Input Data: RL 2k: measurement bandwidth =
20Hz ~ 20kHz: External Circuit: (Figure 83), unless otherwise specified.)
Parameter
Unit
Min.
Typ.
Max.
Resolution
32
bit
Dynamic Characteristics
(Note 9)
0dBFS
fs=44.1kHz
-93
-86
dB
THD+N
BW=20kHz
-48
dB
60dBFS
0dBFS
fs=96kHz
-92
dB
BW=40kHz
-45
dB
60dBFS
0dBFS
fs=192kHz
-92
dB
BW=40kHz
60dBFS
-45
dB
BW=80kHz
-41
dB
60dBFS
Dynamic Range(60dBFS with A-weighted)
(Note 10)
106
111
dB
S/N (A-weighted)
(Note 11)
106
111
dB
Inter channel Isolation (1kHz)
100
110
dB
DC Accuracy
Inter channel Gain Mismatch
0
0.3
dB
Gain Drift
(Note 12)
20
ppm/°C
Output Voltage
(Note 13)
Vpp
1.66
1.85
2.04
Load Resistance
(Note 14)
2
k
Load Capacitance
(Note 14)
30
pF
Power Supplies
Power Supply Current
Normal operation
(PDN pin = “H”)
AVDD
TVDD (fs = 44.1kHz)
TVDD (fs = 96kHz)
TVDD (fs = 192kHz)
-
18
6
10
16
mA
mA
mA
mA
Power down (PDN pin = “L”)
(Note 15)
AVDD+TVDD
1
100
A
Note 9. Measured by Audio Precision, System Two. Averaging mode.
Note 10. Figure 83 External LPF Circuit Example 1. 100dB for 16-bit data.
Note 11. Figure 83 External LPF Circuit Example 1. S/N does not depend on input data size.
Note 12. The voltage on (VREFH1/2/3 VREFL1/2/3) is held +5V externally.
Note 13. The full scale voltage when applying a 1kHz sine wave (0dB) in PCM mode, or when applying a
1kHz sine wave (25~75% duty) in DSD mode. Output voltage scales with the voltage of
(VREFH1/2/3 VREFL1/2/3).
DAC1: AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFH1 VREFL1)/5
DAC2: AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFH2 VREFL2)/5
DAC3: AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFH3 VREFL3)/5
Note 14. Regarding Load Resistance, AC load is 2k (min) with a DC cut capacitor (Figure 83). DC load is 3.5
k (min) without a DC cut capacitor (Figure 83). The load resistance value is with respect to ground.
Analog characteristics are sensitive to capacitive load that is connected to the output pin. Therefore
the capacitive load must be minimized.
Note 15. In the power down mode. All other digital input pins including clock pins (MCLK, BICK and LRCK)
are held DVSS.
015006886-E-02
2019/11
- 12 -
[AK4456]
■ Sharp Roll-Off Filter Characteristics
Sharp Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF,
SLOW bit = “0”, SD bit=“0”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
20.0
Pass band
(Note 16)
3.0dB
21.5
PB
Pass band Ripple
PR
-0.0032
0.0032
Stop band
(Note 16)
SB
24.1
Stop band Attenuation
(Note 18)
SA
80
Group Delay
(Note 17)
26.8
GD
Frequency Response (Note 18) 0.07dB
0
20.0
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-0.2
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Sharp Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF, SLOW bit = “0”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
43.5
kHz
Pass band
(Note 16)
3.0dB
46.8
PB
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band
(Note 16)
SB
52.5
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
26.8
GD
1/fs
Frequency Response (Note 18) 0.07dB
0
43.5
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-0.3
0.1
dB
Sharp Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF, SLOW bit = “0”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
87.0
kHz
Pass band
(Note 16)
3.0dB
93.6
PB
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band
(Note 16)
SB
105
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
26.8
GD
1/fs
Frequency Response (Note 18) 0.07dB
0
87.0
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-1
0.1
dB
Note 16. The pass band and stop band frequencies scale with fs. For example, PB=0.4535×fs, SB=0.546×fs.
Note 17. The calculating delay time which occurred by digital filtering. This time is from setting the
16/20/24/32bit data of both channels to input register to the output of analog signal.
Note 18. The output level is assumed as 0dB when inputting a 1kHz 0dB sine wave.
*Digital filter characteristics are based on simulation results.
015006886-E-02
2019/11
- 13 -
[AK4456]
Figure 2. Sharp Roll-off Filter Frequency Response
Figure 3. Sharp Roll-off Filter Passband Ripple
015006886-E-02
2019/11
- 14 -
[AK4456]
■ Slow Roll-Off Filter Characteristics
Slow Roll-Off Filter Characteristics (fs = 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = “1”, SD bit=“0”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
8.1
Pass band
(Note 19)
3.0dB
18.2
PB
Pass band Ripple
PR
-0.043
0.043
Stop band
(Note 19)
SB
39.2
Stop band Attenuation
(Note 18)
SA
73
Group Delay
(Note 17)
6.3
GD
Frequency Response (Note 18)
0.05dB
0
8.1
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-5
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Slow Roll-Off Filter Characteristics (fs = 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
17.7
kHz
Pass band
(Note 19)
3.0dB
39.5
PB
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band
(Note 19)
kHz
SB
85.3
Stop band Attenuation
(Note 18)
SA
73
dB
Group Delay
(Note 17)
6.3
GD
1/fs
Frequency Response (Note 18)
0.05dB
PB
0
17.7
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-5
0.1
dB
Slow Roll-Off Filter Characteristics (fs = 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“0”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
35.5
kHz
Pass band
(Note 19)
3.0dB
79.0
PB
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band
(Note 19)
SB
171
kHz
Stop band Attenuation
(Note 18)
SA
73
dB
Group Delay
(Note 17)
6.3
GD
1/fs
Frequency Response (Note 18)
0.05dB
PB
0
35.5
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-5
0.1
dB
Note 19. The pass band and stop band frequencies scale with fs. For example, PB=0.185×fs, SB=0.888×fs.
015006886-E-02
2019/11
- 15 -
[AK4456]
Figure 4. Slow Roll-off Filter Frequency Response
Figure 5. Slow Roll-off Filter Passband Ripple
015006886-E-02
2019/11
- 16 -
[AK4456]
■ Short Delay Sharp Roll-Off Filter Characteristics
Short Delay Sharp Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = “0”, SD bit=“1”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
20.0
Pass band
(Note 16)
3.0dB
21.5
PB
Pass band Ripple
PR
-0.0031
0.0031
Stop band
(Note 16)
SB
24.1
Stop band Attenuation
(Note 18)
SA
80
Group Delay
(Note 17)
5.8
GD
Frequency Response (Note 18)
0.07dB
0
20.0
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-0.2
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Short Delay Sharp Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = “0”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
43.5
kHz
Pass band
(Note 16)
3.0dB
46.8
PB
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band
(Note 16)
SB
52.5
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
5.8
GD
1/fs
Frequency Response (Note 18)
0.07dB
0
43.5
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-0.3
0.1
dB
Short Delay Sharp Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = “0”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
87.0
kHz
Pass band
(Note 16)
3.0dB
93.6
PB
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band
(Note 16)
SB
105
kHz
Stop band Attenuation
(Note 18)
SA
80
dB
Group Delay
(Note 17)
5.8
GD
1/fs
Frequency Response (Note 18) 0.07dB
0
87.0
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-1
0.1
dB
015006886-E-02
2019/11
- 17 -
[AK4456]
Figure 6. Short delay Sharp Roll-off Filter Frequency Response
Figure 7. Short delay Sharp Roll-off Filter Passband Ripple
015006886-E-02
2019/11
- 18 -
[AK4456]
■ Short Delay Slow Roll-Off Filter Characteristics
Short Delay Slow Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = “1”, SD bit=“1”)
Parameter
Symbol
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
11.1
Pass band
(Note 20)
3.0dB
19.4
PB
Pass band Ripple
PR
-0.05
0.05
Stop band
(Note 20)
SB
38.1
Stop band Attenuation
(Note 18)
SA
82
Group Delay
(Note 17)
4.8
GD
Frequency Response (Note 18) 0.05dB
0
11.1
Digital Filter + SCF
(Note 18)
Frequency Response: 0 20.0kHz
-5
0.1
Unit
kHz
kHz
dB
kHz
dB
1/fs
kHz
dB
Short Delay Slow Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
24.2
kHz
Pass band
(Note 20)
3.0dB
42.1
PB
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band
(Note 20)
SB
83.0
kHz
Stop band Attenuation
(Note 18)
SA
82
dB
Group Delay
(Note 17)
4.8
GD
1/fs
Frequency Response (Note 18) 0.05dB
0
24.2
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 40.0kHz
-5
0.1
dB
Short Delay Slow Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = “1”,
SD bit=“1”)
Parameter
Symbol
Unit
Min.
Typ.
Max.
Digital Filter
0.05dB
PB
0
48.4
kHz
Pass band
(Note 20)
3.0dB
84.3
PB
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band
(Note 20)
SB
165.9
kHz
Stop band Attenuation
(Note 18)
SA
82
dB
Group Delay
(Note 17)
4.8
GD
1/fs
Frequency Response (Note 18) 0.05dB
0
48.4
kHz
Digital Filter + SCF
(Note 18)
Frequency Response: 0 80.0kHz
-5
0.1
dB
Note 20. The pass band and stop band frequencies scale with fs. For example, PB=0.252×fs, SB=0.864×fs.
015006886-E-02
2019/11
- 19 -
[AK4456]
Figure 8. Short Delay Slow Roll-off Filter Frequency Response
Figure 9. Short Delay Slow Roll-off Filter Passband Ripple
015006886-E-02
2019/11
- 20 -
[AK4456]
■ DSD Mode Characteristics
(1) DSDF bit= “0”
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; fs=44.1kHz; D/P bit=“1”, DSDF bit=“0”)
Parameter
Min.
Typ.
Max.
Unit
Digital Filter Response
DSDSEL[1:0]
20kHz
-0.8
“00”
50kHz
-5.5
dB
Frequency
100kHz
-19.9
Response
40kHz
-0.8
(Note 21)
“01”
200kHz
-5.5
dB
400kHz
-19.9
80kHz
-0.8
“10”
400kHz
-5.5
dB
800kHz
-19.9
(2) DSDF bit= “1”
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; fs=44.1kHz; D/P bit=“1”, DSDF bit=“1”)
Parameter
Min.
Typ.
Max.
Unit
Digital Filter Response
DSDSEL[1:0]
20kHz
-0.2
“00”
100kHz
-6.3
dB
Frequency
200kHz
-23.7
Response
40kHz
-0.2
(Note 21)
“01”
200kHz
-6.3
dB
400kHz
-23.7
80kHz
-0.2
“10”
400kHz
-6.3
dB
800kHz
-23.7
Note 21. In DSD mode, the signal level is ranging from 25% to 75%. Peak levels of DSD signal above this duty
are not recommended by SACD format book (Scarlet Book).
Note 22. The output level is assumed as 0dB when applying a 1kHz sine wave in 25~ 75% duty.
*Digital filter characteristics are based on simulation results.
■ DC Characteristics
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V)
Parameter
Symbol
TVDD=1.7 3.0V
VIH
High-Level Input Voltage
VIL
Low-Level Input Voltage
TVDD=3.0V 3.6V
VIH
High-Level Input Voltage
VIL
Low-Level Input Voltage
High-Level Output Voltage
(TDMO0/1, DZF pins: Iout=-100µA)
VOH
Low-Level Output Voltage
(except SDA pin : Iout= 100µA)
VOL
(SDA pin, 2.0V TVDD 3.6V: Iout= 3mA)
VOL
VOL
(SDA pin, 1.7V TVDD 2.0V: Iout= 3mA)
Input Leakage Current
Iin
015006886-E-02
Min.
Typ.
Max.
Unit
80%TVDD
-
-
20%TVDD
V
V
70%TVDD
-
-
30%TVDD
V
V
TVDD0.5
-
-
V
-
-
0.5
0.4
20%TVDD
10
V
V
V
A
-
2019/11
- 21 -
[AK4456]
■ Switching Characteristics
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V, CL=20pF)
Min.
Parameter
Symbol
Master Clock Timing
Frequency
fCLK
2.048
Duty Cycle
dCLK
40
Minimum Pulse Width
tCLKH
9.155
tCLKL
9.155
LRCK Frequency
(Note 23)
Normal Mode (TDM1-0 bits = “00”)
Normal Speed Mode
fsn
8
Double Speed Mode
fsd
54
Quad Speed Mode
fsq
108
Oct speed mode
fso
Hex speed mode
fsh
Duty Cycle
Duty
45
TDM128 mode (TDM1-0 bits = “01”)
Normal Speed Mode
fsn
8
Double Speed Mode
fsd
54
Quad Speed Mode
fsq
108
High time
tLRH
1/128fs
Low time
tLRL
1/128fs
TDM256 mode (TDM1-0 bits = “10”)
Normal Speed Mode High time
fsn
8
Double Speed Mode
fsd
54
High time
tLRH
1/256fs
Low time
tLRL
1/256fs
TDM512 mode (TDM1-0 bits = “11”)
Normal Speed Mode
fsn
8
High time
tLRH
1/512fs
Low time
tLRL
1/512fs
PCM Audio Interface Timing
Normal Mode (TDM1-0 bits = “00”)
BICK Period
Normal Speed Mode
tBCK
1/256fsn
Double Speed Mode
tBCK
1/128fsd
Quad Speed Mode
tBCK
1/64fsq
Oct speed mode
tBCK
1/64fso
Hex speed mode
tBCK
1/64fsh
BICK Pulse Width Low
tBCKL
9
BICK Pulse Width High
tBCKH
9
BICK “” to LRCK Edge (Note 24)
tBLR
5
tLRB
5
LRCK Edge to BICK “” (Note 24)
tSDH
5
SDTI1/2/3 Hold Time
tSDS
5
SDTI1/2/3 Setup Time
015006886-E-02
Typ.
Max.
Unit
49.152
60
MHz
%
ns
ns
54
108
216
kHz
kHz
kHz
kHz
kHz
%
384
768
55
54
108
216
kHz
kHz
kHz
nsec
ns
54
108
kHz
kHz
nsec
nsec
54
kHz
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
2019/11
- 22 -
[AK4456]
Parameter
TDM128 mode (TDM1-0 bits = “01”)
BICK Period
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
BICK Pulse Width Low
BICK Pulse Width High
BICK “” to LRCK Edge
(Note 24)
LRCK Edge to BICK “”
(Note 24)
SDTI1/2 Hold Time
SDTI1/2 Setup Time
TDM256 mode (TDM1-0 bits = “10”)
BICK Period
Normal Speed Mode
Double Speed Mode
(Note 25)
BICK Pulse Width Low
BICK Pulse Width High
BICK “” to LRCK Edge
(Note 24)
LRCK Edge to BICK “”
(Note 24)
TDMO1/2 Setup time BICK “”
TDMO1/2 Hold time BICK “” (Note 27)
SDTI1/2 Hold Time
SDTI1/2 Setup Time
TDM512 mode (TDM1-0 bits = “11”)
BICK Period
Normal Speed Mode
(Note 26)
BICK Pulse Width Low
BICK Pulse Width High
BICK “” to LRCK Edge
(Note 24)
LRCK Edge to BICK “”
(Note 24)
TDMO1 Setup time BICK “”
TDMO1 Hold time BICK “” (Note 27)
SDTI1 Hold Time
SDTI1 Setup Time
Symbol
Min.
tBCK
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tSDH
tSDS
1/128fsn
1/128fsd
1/128fsq
14
14
14
14
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tBSS
tBSH
tSDH
tSDS
1/256fsn
1/256fsd
14
14
14
14
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
tBCK
tBCKL
tBCKH
tBLR
tLRB
tBSS
tBSH
tSDH
tSDS
1/512fsn
14
14
14
14
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
015006886-E-02
Typ.
Max.
Unit
2019/11
- 23 -
[AK4456]
Parameter
DSD Audio Interface Timing
(64 mode, DSDSEL 1-0 bits = “00”)
DCLK Period
DCLK Pulse Width Low
DCLK Pulse Width High
DCLK Edge to DSDL/R
(Note 28)
Symbol
Min.
tDCK
tDCKL
tDCKH
tDDD
144
144
20
Typ.
Max.
Unit
20
nsec
nsec
nsec
nsec
1/64fs
(128 mode, DSDSEL 1-0 bits = “01”)
DCLK Period
1/128fs
tDCK
nsec
72
DCLK Pulse Width Low
tDCKL
nsec
72
tDCKH
nsec
DCLK Pulse Width High
tDDD
10
nsec
10
DCLK Edge to DSDL/R
(Note 28)
(256 mode, DSDSEL 1-0 bits = “10”)
DCLK Period
1/256fs
tDCK
nsec
DCLK Pulse Width Low
36
tDCKL
nsec
36
tDCKH
nsec
DCLK Pulse Width High
tDDD
5
nsec
5
DCLK Edge to DSDL/R (Note 28)
Note 23. When the 1152fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK4456 should be
reset by the PDN pin or RSTN bit.
Note 24. BICK rising edge must not occur at the same time as LRCK edge.
Note 25. fsd (max) = 96kHz when TVDD < 3.0V in Daisy Chain mode.
Note 26. fsd (max) = 48kHz when TVDD < 3.0V in Daisy Chain mode.
Note 27. tBSH (min) = 4 nsec when TVDD < 2.6V and the LDOE pin = “L”.
Note 28. DSD data transmitting device must meet this time.
tDDD is defined from a falling edge of DCLK “↓” to a DSDL/R edge when DCKB bit = “0” and it
is defined from a rising edge of DCLK “↑” to a DSDL/R edge when DCKB bit = “1”.
015006886-E-02
2019/11
- 24 -
[AK4456]
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.62 1.98V / 3.0 3.6V)
Min.
Typ. Max. Unit
Parameter
Symbol
Control Interface Timing (3-wire Serial mode):
CCLK Period
200
nsec
tCCK
CCLK Pulse Width Low
80
nsec
tCCKL
Pulse Width High
80
nsec
tCCKH
CDTI Setup Time
40
nsec
tCDS
CDTI Hold Time
40
nsec
tCDH
CSN “H” Time
150
nsec
tCSW
50
nsec
CSN “” to CCLK “”
tCSS
50
nsec
tCSH
CCLK “” to CSN “”
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
fSCL
400
kHz
Bus Free Time Between Transmissions
tBUF
1.3
sec
Start Condition Hold Time (prior to first clock pulse)
tHD:STA
0.6
sec
Clock Low Time
tLOW
1.3
sec
Clock High Time
tHIGH
0.6
sec
Setup Time for Repeated Start Condition
tSU:STA
0.6
sec
SDA Hold Time from SCL Falling
(Note 29)
tHD:DAT
0
sec
SDA Setup Time from SCL Rising
tSU:DAT
0.1
sec
Rise Time of Both SDA and SCL Lines
tR
1.0
sec
Fall Time of Both SDA and SCL Lines
tF
0.3
sec
Setup Time for Stop Condition
tSU:STO
0.6
nsec
Pulse Width of Spike Noise Suppressed by Input Filter
tSP
0
50
pF
Capacitive load on bus
Cb
400
Power-down & Reset Timing
(Note 30)
PDN Accept Pulse Width
tAPD
150
nsec
PDN Reject Pulse Width
tRPD
30
nsec
Note 29. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 30.The AK4456 can be reset by setting the PDN pin to “L” upon power-up. The PDN pin must held “L”
for more than 150ns for a certain reset. The AK4456 is not reset by the “L” pulse less than 30ns.
Note 31. I2C is a trademark of NXP B.V.
015006886-E-02
2019/11
- 25 -
[AK4456]
■ Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
dCLK=tCLKH x fCLK, tCLKL x fCLK
1/fs
VIH
LRCK
VIL
tLRH
tLRL
Duty=tLRH x fs, tLRL x fs
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 10. Clock Timing
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSS
tBSH
TDMO
50%TVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 11. Audio Interface Timing (PCM Mode)
015006886-E-02
2019/11
- 26 -
[AK4456]
tDCK
tDCKL
tDCKH
VIH
DCLK
VIL
tDDD
VIH
DSDL1-3
DSDR1-3
VIL
tDDD
VIH
DSDL1-3
DSDR1-3
VIL
Figure 12. Audio Serial Interface Timing (DSD Normal Mode, DCKB bit = “0”)
tDCK
tDCKL
tDCKH
VIH
DCLK
VIL
tDDD
tDDD
VIH
DSDL1-3
DSDR1-3
VIL
tDDD
tDDD
VIH
DSDL1-3
DSDR1-3
VIL
Figure 13. Audio Serial Interface Timing (DSD Phase Modulation Mode, DCKB bit = “0”)
015006886-E-02
2019/11
- 27 -
[AK4456]
VIH
CSN
VIL
tCSS
tCCKL tCCKH
VIH
CCLK
VIL
tCDS
CDTI
C1
tCDH
C0
R/W
VIH
A4
VIL
Figure 14. WRITE Command Input Timing (3-wire Serial Mode)
tCSW
VIH
CSN
VIL
tCSH
VIH
CCLK
CDTI
VIL
D3
D2
D1
D0
VIH
VIL
Figure 15. WRITE Data Input Timing (3-wire Serial Mode)
015006886-E-02
2019/11
- 28 -
[AK4456]
VIH
SDA
VIL
tLOW
tBUF
tR
tHIGH
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
tSU:DAT
tSU:STA
tSU:STO
Start
Stop
Start
Figure 16. I2C Bus mode Timing
tAPD
tRPD
PDN
VIL
VIH
CSN
VIL
tCSS
tAPD tCCKH
VIH
CCLK
VIL
tCDS
CDTI
C1
tCDH
C0
R/W
A4
VIH
VIL
Figure 17. Power-down & Reset Timing
015006886-E-02
2019/11
- 29 -
[AK4456]
9. Functional Descriptions
■ D/A Conversion Mode
The AK4456 can perform D/A conversion for either PCM data or DSD data. The DP bit controls PCM/DSD
mode. When DSD mode, DSD data can be input from DCLK, DSDL and DSDR pins. When PCM mode, PCM
data can be input from BICK, LRCK and SDTI pins. When PCM/DSD mode is changed by DP bit, the
AK4456 should be reset by RSTN bit. It takes about 2/fs to 3/fs to change the mode. Only PCM data is
supported in parallel mode.
DP bit
Interface
0
PCM
1
DSD
Table 1. PCM/DSD Mode Control
■ System Clock
[1] PCM Mode
The external clocks, which are required to operate the AK4456, are MCLK, BICK and LRCK. MCLK should
be synchronized with LRCK but the phase is not critical. The MCLK is used to operate the digital interpolation
filter and the delta - sigma modulator.
There are two methods to set MCLK frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the
sampling speed is set by the DFS0, DFS1 (Table 2) bits. The frequency of MCLK at each sampling speed is set
automatically. When reset is released (PDN pin = “↑”), the AK4456 is in Manual Setting Mode. In Auto
Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 5) and the internal
master clock attains the appropriate frequency (Table 6, Table 7), so it is not necessary to set DFS bits.
015006886-E-02
2019/11
- 30 -
[AK4456]
1. Manual Setting Mode (ACKS bit = “0”)
MCLK frequency is detected automatically and the sampling rate is set by DFS2-0 bits (Table 2). The MCLK
frequency corresponding to each sampling speed should be provided externally (Table 3, Table 4).
The AK4456 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When DFS2-0 bits are
changed, the AK4456 should be reset by RSTN bit.
DFS2
0
0
DFS1
0
0
DFS0
0
1
0
1
0
0
1
1
1
1
1
0
0
1
1
Sampling Rate (fs)
Normal Speed Mode
8kHz 54kHz
Double Speed Mode
54kHz 108kHz
Quad Speed Mode
120kHz 216kHz
1
Reserved
(*)
0
Oct Speed Mode
384kHz
1
Hex Speed Mode
768kHz
0
Reserved
(* Shift to 384kHz)
1
Reserved
(* Shift to 768kHz)
Table 2. Sampling Speed (Manual Setting Mode)
LRCK
MCLK(MHz)
Fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
16fs
32fs
48fs
64fs
96fs
128fs
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
22.5792
N/A
N/A
N/A
N/A
N/A
24.5760
N/A
12.288
18.432 24.576 36.864
49.152
12.288 24.576
36.864 49.152
N/A
N/A
Table 3. System Clock Example (Manual Setting Mode)
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
(default)
Sampling
Speed
Normal
Double
Quad
Quad
Oct
Hex
MCLK(MHz)
192fs
N/A
N/A
N/A
N/A
N/A
33.8688
36.8640
N/A
N/A
256fs
384fs
512fs
768fs
1024fs
1152fs
8.1920
12.2880 16.3840 24.5760 36.8640 36.8640
11.2896 16.9344 22.5792 33.8688
N/A
N/A
12.2880 18.4320 24.5760 36.8640
N/A
N/A
22.5792 33.8688 45.1584
N/A
N/A
N/A
24.5760 36.8640
49.152
N/A
N/A
N/A
45.1584
N/A
N/A
N/A
N/A
N/A
49.152
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Table 4. System Clock Example (Manual Setting Mode)
015006886-E-02
Sampling
Speed
Normal
Double
Quad
Quad
Oct
Hex
2019/11
- 31 -
[AK4456]
2. Auto Setting Mode (ACKS bit = “1”)
MCLK frequency and the sampling speed are detected automatically (Table 5) and DFS2-0 bits are ignored.
The MCLK frequency corresponding to each sampling speed should be provided externally (Table 6, Table 7).
MCLK
Sampling Speed
1152fs
Normal (fs32kHz)
512fs/256fs 768fs/384fs
Normal
256fs
384fs
Double
128fs
192fs
Quad
64fs
96fs
Oct
32fs
48fs
Hex
Table 5. Sampling Speed (Auto Setting Mode)
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
LRCK
fs
32.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384kHz
768kHz
MCLK (MHz)
32fs
48fs
64fs
96fs
128fs
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
22.5792
N/A
N/A
N/A
N/A
24.5760
N/A
N/A
24.576
36.864
N/A
24.576
36.864
N/A
N/A
N/A
Table 6. System Clock Example (Auto Setting Mode)
MCLK(MHz)
192fs
256fs
384fs
512fs
768fs
1152fs
N/A
(8.1920*) (12.2880*) 16.3840 24.5760
36.8640
N/A
(11.2896*) (16.9344*) 22.5792 33.8688
N/A
N/A
(12.2880*) (18.4320*) 24.5760 36.8640
N/A
N/A
22.5792
33.8688
N/A
N/A
N/A
N/A
24.5760
36.8640
N/A
N/A
N/A
33.8688
N/A
N/A
N/A
N/A
N/A
36.8640
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Table 7. System Clock Example (Auto Setting Mode)
Sampling
Speed
Normal
Double
Quad
Quad
Oct
Hex
Sampling
Speed
Normal
(Double*)
Double
Quad
Quad
Oct
Hex
MCLK= 256fs/384fs supports sampling rate of 8kHz~96kHz (Table 8). However, when the sampling rate is
8kHz~48kHz, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs.
ACKS bit
MCLK
DR,S/N
0
256fs/384fs/512fs/768fs
115dB
1
256fs/384fs
112dB
1
512fs/768fs
115dB
Table 8. Relationship of DR, S/N and MCLK frequency (fs = 44.1kHz)
015006886-E-02
2019/11
- 32 -
[AK4456]
[2] DSD mode (Serial Control mode only)
The AK4456 is capable to playback DSD data. The external clocks, which are required to operate the AK4456,
are MCLK and DCLK. MCLK should be synchronized with DCLK but the phase is not critical. The frequency
of MCLK is set by DCKS bit. (Table 9)
After exiting reset (PDN pin = “L” → “H”, RSTN bit= “0” → “1”) upon power-up, the AK4456 is in
power-down state until MCLK and DCLK are input.
DCKS bit
0
1
MCLK Frequency DCLK Frequency
512fs
64fs/128fs/256fs
768fs
64fs/128fs/256fs
Table 9. System Clock (DSD Mode)
(default)
The AK4456 supports 64fs, 128fs and 256fs data stream (fs= 32kHz, 44.1kHz, 48kHz). DSDSEL1-0 bits
control this setting. (Table 10)
DSDSEL1
DSDSEL0
0
0
1
1
0
1
0
1
DSD data stream
fs=32kHz
fs=44.1kHz
2.048MHz
2.8224MHz
4.096MHz
5.6448MHz
8.192MHz
11.2896MHz
Reserved
Reserved
Table 10. DSD Data Stream Select
fs=48kHz
3.072MHz
6.144MHz
12.288MHz
Reserved
(default)
DSDD bit selects DSD playback mode (Table 11). When DSDD bit= “1”, the output volume control is not
available and the cut off filter value is fixed to 100kHz.
DSDD bit
Mode
0
Full function
(default)
1
Volume pass
Table 11. DSD Playback Mode Select
The cut off filter characteristic in DSD mode can be selected by DSDF bit. (Table 12)
DSDF bit
Cut Off Filter
0
50kHz
(default)
1
100kHz
Table 12. DSD Filter Select
015006886-E-02
2019/11
- 33 -
[AK4456]
■ Audio Interface Format
The AK4456 supports both PCM and DSD formats for digital input signal. Mode settings are available by the
pins (TDM1-0 pins, DIF pin and DCHAIN pin) and registers (TDM1-0 bits, DIF2-0 bits, SDS2-0 bits and
DCHAIN bit). The RSTN bit should be toggled in case these format setting bits are changed during operation.
[1] PCM Mode
Normal Mode (TDM1-0 bits=“00”)
Six channels audio data is shifted in via the SDTI1-3 pins using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. Eight data formats are supported and selected by the DIF2-0 bits as shown in Table 13. In all
formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. Mode 2
can be used in 16-bit and 20-bit MSB justified and Mode 6 can be used in 16-bit, 20-bit and 24-bit MSB
justified formats by zeroing the unused LSBs.
TDM128 Mode (TDM1-0 bits=“01”)
Six channels audio data is shifted in via the SDTI1-2 pins using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. The data input to the SDTI3 pins are ignored. BICK is fixed to 128fs. Six data formats are
supported and selected by the DIF2-0 bits as shown in Table 13. In all formats the serial data is MSB first, 2's
compliment format and is latched on the rising edge of BICK.
TDM256 Mode (TDM1-0 bits=“10”)
Sixteen channels audio data is shifted in via the SDTI1-2 pins using BICK and LRCK inputs. Data is selected
by SDS2-0 bits. The data input to the SDTI3 pins are ignored. BICK is fixed to 256fs. Six data formats are
supported and selected by the DIF2-0 bits as shown in Table 13. In all formats the serial data is MSB first, 2's
compliment format and is latched on the rising edge of BICK.
TDM512 Mode (TDM1-0 bits=“11”)
Sixteen channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. The data input to the SDTI2-3 pins are ignored. BICK is fixed to 512fs. Six data formats are
supported and selected by the DIF2-0 bits as shown in Table 13. In all formats the serial data is MSB first, 2's
compliment format and is latched on the rising edge of BICK.
015006886-E-02
2019/11
- 34 -
[AK4456]
Mode
0
1
2
3
4
5
6
7
Normal
(Note 32)
TDM128
TDM256
TDM512
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
TDM1
TDM0
0
0
0
1
1
0
1
1
DIF2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DIF1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DIF0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SDTI Format
LRCK BICK
16-bit LSB justified
H/L
32fs
20-bit LSB justified
H/L
40fs
24-bit MSB justified
H/L
48fs
2
24-bit I S compatible
L/H
48fs
24-bit LSB justified
H/L
48fs
32-bit LSB justified
H/L
64fs
32-bit MSB justified
H/L
64fs
32-bit I2S compatible
L/H
64fs
N/A
128fs
N/A
128fs
24-bit MSB justified
128fs
24-bit I2S compatible
128fs
24-bit LSB justified
128fs
32-bit LSB justified
128fs
32-bit MSB justified
128fs
32-bit I2S compatible
128fs
N/A
256fs
N/A
256fs
24-bit MSB justified
256fs
24-bit I2S compatible
256fs
24-bit LSB justified
256fs
32-bit LSB justified
256fs
32-bit MSB justified
256fs
32-bit I2S compatible
256fs
N/A
512fs
N/A
512fs
24-bit MSB justified
512fs
24-bit I2S compatible
512fs
24-bit LSB justified
512fs
32-bit LSB justified
512fs
32-bit MSB justified
512fs
32-bit I2S compatible
512fs
(Shaded settings are not available)
Table 13. Audio Interface Format
Note 32. BICK that is input to each channel must be longer than the bit length of setting format.
015006886-E-02
2019/11
- 35 -
[AK4456]
LRCK
0
1
10
11
12
13
14
15
0
1
10
11
12
13
14
15
0
1
BICK
(32fs)
SDTI1-3
Mode 0
15
14
6
5
1
0
4
14
3
15
2
16
1
17
0
31
15
14
0
6
5
4
14
1
3
15
2
16
1
17
0
31
15
14
0
1
BICK
(64fs)
SDTI1-3
Mode 0
Don’t care
15
14
0
Don’t care
15
14
0
15:MSB, 0:LSB
Lch Data
Rch Data
Figure 18. Mode 0 Timing
LRCK
0
1
8
9
10
11
12
31
0
1
8
9
10
11
12
31
0
1
0
1
BICK
(64fs)
SDTI1-3
Mode 1
Don’t care
19
0
Don’t care
19
0
Don’t care
19
0
19
0
19:MSB, 0:LSB
SDTI1-3
Mode 4
Don’t care
23
22
21
20
23
22
20
21
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 19. Mode 1/4 Timing
LRCK
0
1
2
22
23
24
30
31
0
1
2
22
23
24
30
31
BICK
(64fs)
SDTI1-3
23
22
1
0
Don’t care
23
22
1
0
Don’t care
23
22
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 20. Mode 2 Timing
015006886-E-02
2019/11
- 36 -
[AK4456]
LRCK
0
1
2
3
23
24
25
31
0
1
2
3
23
24
25
31
0
1
BICK
(64fs)
SDTI1-3
23
0
1
22
Don’t care
23
22
0
1
23
Don’t care
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 21. Mode 3 Timing
LRCK
0
1
2
22
23
24
30
31
0
1
2
22
23
24
30
31
0
1
BICK
(64fs)
SDTI1-3
Mode 5,6
31
30
1
0
31
30
0
1
31
30
32:MSB, 0:LSB
Lch Data
Rch Data
Figure 22. Mode 5/6 Timing
LRCK
0
1
2
3
23
24
25
31
0
1
0
31
2
3
23
24
25
31
0
1
0
31
BICK
(64fs)
SDTI1-3
31
30
1
30
1
30
32:MSB, 0:LSB
Lch Data
Rch Data
Figure 23. Mode 7 Timing
015006886-E-02
2019/11
- 37 -
[AK4456]
128 BICK
LRCK
BICK(128fs)
SDTI1-2
Mode8
23 22
SDTI1-2
Mode11,12
31 30
0
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0 31 30
2
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
Figure 24. Mode 8/11/12 Timing
128 BICK
LRCK
BICK(128fs)
SDTI1-2
Mode9
SDTI1-2
Mode13
0
23 22
0
23 22
31 30
0
23 22
0 31 30
23 22
0 31 30
L1
R1
32 BICK
32 BICK
23
0
0 31 30
2
0 31 30
L2
R2
32 BICK
32 BICK
Figure 25. Mode 9/13 Timing
128 BICK
LRCK
BICK(128fs)
SDTI1-2
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 26. Mode 10 Timing
015006886-E-02
2019/11
- 38 -
[AK4456]
256 BICK
LRCK
BICK (256fs)
SDTI1
Mode14
SDTI1
Mode17,18
23 22
0
31 30
23 22
0
23 22
0 31 30
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0 31 30
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
23
Figure 27. Mode 14/17/18 Timing
256 BICK
LRCK
BICK (256fs)
SDTI1
Mode15
SDTI1
Mode19
23
0
23
31 30
0
23
0 31 30
0
23
0 31 30
0
23
0 31 30
0
23
0 31 30
0
0 31 30
0
0 31 30
0
0 31 30
23
0 31
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
Figure 28. Mode 15/19 Timing
256 BICK
LRCK
BICK(256fs)
SDTI1
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
23
Figure 29. Mode 16 Timing
015006886-E-02
2019/11
- 39 -
[AK4456]
512BICK
LRCK
BICK(512fs)
SDTI1
Mode8
SDTI1
Mode11,12
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
0
23 22
0
23 22
23
0
2
31 22
0 31 22
0 31 22
R1
L1
0 31 22
0 31 22
R2
L2
0 31 22
0 31 22
R3
L3
0 31 22
31
0
R4
L4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 30. Mode 20/23/24 Timing
512BICK
LRCK
BICK(512fs)
SDTI1
Mode21
SDTI1
Mode25
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23
0
2
31 22
0 31 22
0 31 22
R1
L1
0 31 22
0 31 22
R2
L2
0 31 22
0 31 22
R3
L3
0 31 22
31
0
R4
L4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 31. Mode 21/25 Timing
512BICK
LRCK
BICK(512fs)
SDTI1
Mode22
23 22
L1
0
23 22
2
R1
0
23 22
L2
0
23 22
R2
0
23 22
L3
0
23 22
R3
0
23 22
L4
0
23 22
23
0
R4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 32. Mode 22 Timing
015006886-E-02
2019/11
- 40 -
[AK4456]
[1]-1. Data Select
One data cycle of SDTI1-3 for each format are defined as below. SDS2-0 bits control playback channel of each
DAC.
LRCK
SDTI1
L1
R1
SDTI2
L2
R2
SDTI3
L3
R3
Figure 33. Data Slot in Normal Mode
128 BICK
LRCK
SDTI1
L1
R1
L2
R2
SDTI2
L3
R3
L4
R4
Figure 34. Data Slot in TDM128 Mode
256 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
SDTI2
L5
R5
L6
R6
L7
R7
L8
R8
Figure 35. Data Slot in TDM256 Mode
512 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
L7
R7
L8
R8
Figure 36. Data Slot in TDM512 Mode
015006886-E-02
2019/11
- 41 -
[AK4456]
*
0
1
0
1
DAC1
Lch Rch
L1
R1
L1
R1
L2
R2
L3
R3
L4
R4
DAC2
Lch Rch
L2
R2
L2
R2
L3
R3
L4
R4
L1
R1
DAC3
Lch Rch
L3 R3
L3 R3
L4 R4
L1 R1
L2 R2
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
L1
L2
L3
L4
L5
L6
L7
L8
R1
R2
R3
R4
R5
R6
R7
R8
L2
L3
L4
L5
L6
L7
L8
L1
R2
R3
R4
R5
R6
R7
R8
R1
L3
L4
L5
L6
L7
L8
L1
L2
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
L1
L2
L3
L4
L5
L6
L7
L8
R1
R2
R3
R4
R5
R6
R7
R8
L2
L3
L4
L5
L6
L7
L8
L1
R2
L3 R3
R3
L4 R4
R4
L5 R5
R5
L6 R6
R6
L7 R7
R7
L8 R8
R8
L1 R1
R1
L2 R2
(*: Do not care)
SDS2
SDS1
SDS0
*
*
*
*
*
*
0
0
1
1
TDM256
0
0
0
0
1
1
1
1
TDM512
0
0
0
0
1
1
1
1
Normal
TDM128
R3
R4
R5
R6
R7
R8
R1
R2
Table 14. Data Select
015006886-E-02
2019/11
- 42 -
[AK4456]
[1]-2. Daisy Chain
AK4456 is available for Daisy Chain structure. Set DCHAIN bit to “1” or DCHAIN pin to “H” to enable Daisy
Chain mode. Daisy Chain supports TDM512/256 mode.
(1)TDM512 mode
Figure 37 shows example of TDM512 mode Daisy Chain structure (TDM1-0 bits= “11” ). 16ch data is input to
the second AK4456’s SDTI1 pin from a DSP. Connect the second AK4456’s TDMO1 pin to the first
AK4456’s SDTI1 pin. TDMO1 is 6ch shifted data of SDTI1. At TDM512 mode, TDMO2 outputs "L".
Figure 38 shows data I/O example of TDM512 mode. SDTI1 (L6-8, R6-8) data is the input for the DAC of the
second AK4456, and the second AK4456 outputs the data from TDMO1 by shifting 6ch. The first AK4456
accepts SDTI1 (L3-5, R3-5) data as input data of DAC. DIF2-0 bits setting of both first AK4456 and the
second AK4456 must be the same.
TDMO1
TDMO2
SDTI1
SDTI2
TDMO1
TDMO2
SDTI1
SDTI2
Second
AK4456
First
AK4456
DSP
DVSS
Figure 37. Daisy Chain (TDM512 Mode)
512 BICK
LRCK
SDTI1(DSP)
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
L7
R7
L8
R8
Second AK4456
TDMO1(Second)
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
First AK4456
Figure 38. Daisy Chain (TDM512 Mode)
015006886-E-02
2019/11
- 43 -
[AK4456]
When the total number of connected channel is more than sixteen, exceeded channel data that are over 16ch are
output from the last data of a 16ch signal output from the DSP in the same order (Figure 39, Figure 40).
TDMO1
TDMO2
SDTI1
SDTI2
TDMO1
TDMO2
TDMO1
SDTI1
TDMO2
SDTI2
Second
AK4456
First
AK4456
SDTI1
SDTI2
Third
AK4456
DSP
DVSS
Figure 39. Daisy Chain for Three Devices (TDM512 Mode)
512 BICK
LRCK
SDTI1(DSP)
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
L7
R7
L8
R8
Third AK4456
TDMO1(Third)
L6
R6
L7
R7
L8
R8
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
Second AK4456
TDMO1(Second)
L8
R8
L1
R1
L2
R2
First AK4456
Figure 40. Daisy Chain for Three Devices (TDM512 Mode)
015006886-E-02
2019/11
- 44 -
[AK4456]
(2)TDM256 mode
Figure 41 shows example of TDM256 mode Daisy Chain structure (TDM1-0 bits= “10” ). 16ch data is input to
the second AK4456’s SDTI1/2 pin from a DSP. Connect the second AK4456’s TDMO1/2 pin to the first
AK4456’s SDTI1/2 pin. TDMO1/2 are 4ch shifted data of SDTI1/2.
Figure 42 shows data I/O example of TDM256 mode. SDTI1 (L3-4, R3-4) and SDTI2 (L8, R8) data is the
input for the DAC of the second AK4456, and the second AK4456 outputs the data from TDMO1 by shifting
4ch and TDMO2 by shifting 2ch. The first AK4456 accepts SDTI1 (L1-2, R1-2) and SDTI2 (L7, R7) data as
input data of DAC. DIF2-0 bits setting of both first AK4456 and the second AK4456 must be the same.
TDMO1
TDMO2
SDTI1
SDTI2
TDMO1
TDMO2
SDTI1
SDTI2
Second
AK4456
First
AK4456
DSP
Figure 41. Daisy Chain (TDM128/256 Mode)
256 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
Second AK4456
L1
TDMO1
R1
L2
R2
First AK4456
SDTI2
L5
R5
L6
R6
L7
R7
L8
R8
Second AK4456
TDMO2
L5
R5
L6
R6
L7
R7
First AK4456
Figure 42. Daisy Chain (TDM256 Mode)
Note 33. When the total number of connected channel is more than sixteen, exceeded channel data that are over
16ch are output from the last data of a 16ch signal output from the DSP in the same order.
015006886-E-02
2019/11
- 45 -
[AK4456]
[2] DSD Mode
6ch Data is shifted in via the DSDL1-3 and DSDR1-3 pins using DCLK inputs. DSD data is supported by both
Normal mode (Figure 43) and Phase Modulation mode (Figure 44). Input data is clocked in on a rising or
falling edge of DCLK that is set by DCKB bit.
The frequency of DCLK is variable at 64fs, 128fs and 256fs by setting DSDSEL1-0 bits.
DCLK
(DCKB bit=”0”)
DSDL,DSDR
D0
D1
D2
D3
Figure 43. DSD Mode Timing (Normal Mode)
DCLK
(DCKB bit=”0”)
DSDL,DSDR
D0
D1
D1
D2
D2
D3
Figure 44. DSD Mode Timing (Phase Modulation Mode)
015006886-E-02
2019/11
- 46 -
[AK4456]
■ D/A Conversion Mode Switching Timing
RSTN bit
5/fs
D/A Mode
PCM Mode
DSD Mode
0
D/A Data
PCM Data
DSD Data
Figure 45. D/A Mode Switching Timing (PCM to DSD)
RSTN bit
D/A Mode
DSD Mode
PCM Mode
5/fs
D/A Data
DSD Data
PCM Data
Figure 46. D/A Mode Switching Timing (DSD to PCM)
Note 34. The signal range is defined as 25% ~ 75% duty ratios in DSD mode. DSD signal must not go beyond
this duty range at the SACD format book (Scarlet Book).
015006886-E-02
2019/11
- 47 -
[AK4456]
■ Digital Filter (PCM mode)
Four digital filters are available for playback, providing a choice of different sound colors. These digital filters
are selected by SD bit, SLOW bit and SSLOW bit.
SSLOW
0
0
0
0
1
SD bit
0
0
1
1
*
SLOW bit
Mode
0
Sharp roll-off filter
1
Slow roll-off filter
0
Short delay Sharp roll-off filter
1
Short delay Slow roll-off filter
*
Super Slow Roll-off Mode
Table 15. Digital Filter Setting (*: don’t care)
(default)
The slowest frequency characteristics setting is when SSLOW bit = “1”.
■ De-emphasis Filter (PCM mode)
A digital de-emphasis filter is available for 32kHz, 44.1kHz or 48kHz sampling rates (tc = 50/15µs) and is
enabled or disabled with DEM11-10/DEM21-20/DEM31-30 bits (DEM bits).
DEM11-10/DEM21-20/DEM31-30 bits control de-emphasis mode of DAC1/2/3, respectively. D The slowest
frequency characteristics setting is when SSLOW bit = “1”.
DEM11/ DEM10/
DEM21/ DEM20/
Mode
DEM31/ DEM30/
0
0
44.1kHz
0
1
OFF
(default)
1
0
48kHz
1
1
32kHz
Table 16. De-emphasis Control
015006886-E-02
2019/11
- 48 -
[AK4456]
■ Output Volume (PCM mode, DSD mode)
The AK4456 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each
DAC1-3 can be set by ATT7-0 bits (register 0A-11H), respectively (Table 17). Input data is attenuated from
0dB to -127dB including Mute. The transition between set values is a soft transition, thus no switching noise is
occurred.
ATT7-0bits
Attenuation Level
(register 0A-11H)
FFH
+0dB
(default)
FEH
-0.5dB
FDH
-1.0dB
:
:
:
:
02H
-126.5dB
01H
-127.0dB
00H
MUTE (-∞)
Table 17. Attenuation level of Digital Attenuator
Transition time between set values of ATL/R7-0 bits can be selected by the ATS1-0 bits (Table 18). The
transition between set values is a soft transition in Mode0/1/2/3 eliminating switching noise in the transition.
The register settings are maintained when switching the mode between PCM and DSD modes.
Mode
ATS1
ATS0
ATT speed
(default)
0
0
0
4080/fs
1
0
1
2040/fs
2
1
0
510/fs
3
1
1
255/fs
Table 18. Transition Time between Set Values of ATT7-0 bits
The transition between set values is a soft transition of 4080 levels in mode 0. It takes 4080/fs (92.5ms
@fs=44.1kHz) from FFH to 00H. If the PDN pin goes to “L”, ATT7-0 bits are initialized to FFH.
If the digital volume is changed during reset, the volume will be changed to the setting value after releasing the
reset. If the volume is changed in 5/fs after releasing a reset, the volume is changed immediately without soft
transition.
In DSD mode, the digital volume is set to MUTE by setting ATT7-0 bits = “02H” or “01H”.
015006886-E-02
2019/11
- 49 -
[AK4456]
■ Out of Band Noise Reduction Filter (PCM mode, DSD mode)
The AK4456 has an out of band noise reduction filter that can change frequency response. This FIR filter
attenuates out of band noise and may reduce degradation of the analog characteristics caused by a switching
regulator, etc. Best performance should be achieved by clean linear regulated AVDD/VREF power supplies
and the default setting of the FIR2-0 bits. These conditions are included in the Analog Characteristics specs.
FIR2-0 bits set the frequency for noise attenuation. The filter characteristics will differ in DSD direct mode
compared with other modes (Table 19).
FIR2-0 FIR filter
bits
Mode
000
0
001
1
010
2
011
3
100
4
101
5
110
6
111
7
FIR filter
Except DSD direct mode
DSD direct mode
1/4*[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 1/2*[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
1/4*[1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1] 1/2*[0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
1/4*[1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1] 1/2*[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]
1/4*[1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1] 1/2*[0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0]
1/4*[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1] 1/2*[0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0]
1/4*[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1] 1/2*[0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0]
1/4*[1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1] 1/2*[0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0]
1/4*[1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1] 1/2*[0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0]
Table 19. FIR Filter Setting
015006886-E-02
(default)
2019/11
- 50 -
[AK4456]
Figure 47. Mode0 FIR Filter (Except DSD direct mode)
Figure 48. Mode1 FIR Filter (Except DSD direct mode)
015006886-E-02
2019/11
- 51 -
[AK4456]
Figure 49. Mode2 FIR Filter (Except DSD direct mode)
Figure 50. Mode3 FIR Filter (Except DSD direct mode)
Figure 51. Mode4 FIR Filter (Except DSD direct mode)
015006886-E-02
2019/11
- 52 -
[AK4456]
Figure 52. Mode5 FIR Filter (Except DSD direct mode)
Figure 53. Mode6 FIR Filter (Except DSD direct mode)
Figure 54. Mode7 FIR Filter (Except DSD direct mode)
015006886-E-02
2019/11
- 53 -
[AK4456]
Figure 55. Mode0 FIR Filter (DSD Direct Mode)
Figure 56. Mode1 FIR Filter (DSD Direct Mode)
Figure 57. Mode2 FIR Filter (DSD Direct Mode)
015006886-E-02
2019/11
- 54 -
[AK4456]
Figure 58. Mode3 FIR Filter (DSD Direct Mode)
Figure 59. Mode4 FIR Filter (DSD Direct Mode)
Figure 60. Mode5 FIR Filter (DSD Direct Mode)
015006886-E-02
2019/11
- 55 -
[AK4456]
Figure 61. Mode6 FIR Filter (DSD Direct Mode)
Figure 62. Mode7 FIR Filter (Except DSD Direct Mode)
015006886-E-02
2019/11
- 56 -
[AK4456]
■ Zero Detection (PCM mode, DSD mode)
When zero detection function is enabled, the DZF pin goes to “H” if the input data at each channel is
continuously zeros for 8192 LRCK cycles. Zero detection channels (AOUTL1-3N/P and AOUTR1-3N/P pins)
can be selected by 07H/08H registers (L1-3 bits, R1-3 bits). The DZF pin immediately returns to “L” if the
input data of each channel is not zero. If the RSTN bit is “0”, the DZF pins of both channels go to “H”. The
DZF pin of both channels go to “L” after 4 ~ 5/fs when RSTN bit returns to “1”. The DZFB bit can invert the
polarity of the DZF pin. If all channels are disabled, the DZF pin outputs “Not zero”. Zero detection function is
disabled when DSDD bit = “1”.
DZFB bit
Data
DZF pin
Not zero
L
0
Zero detect
H
Not zero
H
1
Zero detect
L
Not zero: One of the zero detection channels set by L1-3 bits and R1-3 bits does not detect zero.
Zero detect: All zero detection channels set by L1-3 bits and R1-3 bits detect zero.
Table 20. DZF Pin Function
■ LR Channel Output Signal Select (PCM mode, DSD mode)
Input and output signal combination of AOUTL1-3 and AOUTR1-3 pins can be set by MONO1-3 bits and
SELLR1-3 bits. The output signal phase of DAC is controlled by INVL1-3 and INVR1-3 bits. With these
settings, sixteen patterns of signal combinations are available for DAC1-3. These settings are available for any
audio format.
MONO1 bit
SELLR1 bit
0
0
0
1
1
0
1
1
INVL1 bit
INVR1 bit
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
Table 21 Output Select for DAC1
015006886-E-02
L1ch Out
R1ch Out
L1ch In
L1ch In Invert
L1ch In
L1ch In Invert
R1ch In
R1ch In Invert
R1ch In
R1ch In Invert
L1ch In
L1ch In Invert
L1ch In
L1ch In Invert
R1ch In
R1ch In Invert
R1ch In
R1ch In Invert
R1ch In
R1ch In
R1ch In Invert
R1ch In Invert
L1ch In
L1ch In
L1ch In Invert
L1ch In Invert
L1ch In
L1ch In
L1ch In Invert
L1ch In Invert
R1ch In
R1ch In
R1ch In Invert
R1ch In Invert
2019/11
- 57 -
[AK4456]
MONO2 bit
SELLR2 bit
0
0
0
1
1
0
1
1
MONO3 bit
SELLR3 bit
0
0
0
1
1
0
1
1
INVL2 bit
INVR2 bit
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
Table 22 Output Select for DAC2
INVL3 bit
INVR3 bit
L2ch Out
R2ch Out
L2ch In
L2ch In Invert
L2ch In
L2ch In Invert
R2ch In
R2ch In Invert
R2ch In
R2ch In Invert
L2ch In
L2ch In Invert
L2ch In
L2ch In Invert
R2ch In
R2ch In Invert
R2ch In
R2ch In Invert
R2ch In
R2ch In
R2ch In Invert
R2ch In Invert
L2ch In
L2ch In
L2ch In Invert
L2ch In Invert
L2ch In
L2ch In
L2ch In Invert
L2ch In Invert
R2ch In
R2ch In
R2ch In Invert
R2ch In Invert
L3
R3
(AOUTL3N, AOUTL3P pins)
(AOUTR3N, AOUTR3P pins)
0
0
L3
1
0
L3 Invert
0
1
L3
1
1
L3 Invert
0
0
R3
1
0
R3 Invert
0
1
R3
1
1
R3 Invert
0
0
L3
1
0
L3 Invert
0
1
L3
1
1
L3 Invert
0
0
R3
1
0
R3 Invert
0
1
R3
1
1
R3 Invert
Table 23. Output Select for DAC3
015006886-E-02
R3
R3
R3 Invert
R3 Invert
L3
L3
L3 Invert
L3 Invert
L3
L3
L3 Invert
L3 Invert
R3
R3
R3 Invert
R3 Invert
2019/11
- 58 -
[AK4456]
■ Sound Quality Adjustment (PCM mode, DSD mode)
The sound quality of the AK4456 can be controlled by SC1-0 bits. The analog characteristics are guaranteed
when Setting 1. However, they are not guaranteed in Setting 2 and 3.
SC1
0
0
1
1
SC0
0
1
0
1
Sound Mode
Analog internal current, normal (Setting1)
Analog internal current, maximum (Setting2)
Analog internal current, minimum (Setting3)
Reserved
Table 24. Sound Quality Select Mode
015006886-E-02
(default)
2019/11
- 59 -
[AK4456]
■ DSD Full Scale (FS) Signal Detection Function
The AK4456 has a full scale signal detection function for each channel in DSD mode. When the input data of
each channel (DSDL1/2/3, DSDR1/2/3) is continuously “0” (-FS) or “1” (+FS) for 2048 cycles, the AK4456
detects a full scale signal and outputs “1” on the DML1/2/3 and DMR1/2/3 bits. The output data is muted if a
full scale signal is detected. When DSDD bit = “0”, the output data is changed in soft transition, and the output
data is changed without soft transition when DSDD bit = “1”. A recovering condition to normal operation
mode from full scale detection status is selected by DMC bit if DDM bit = “1”.
When DMC bit = “0”, the AK4456 will return to normal operation automatically by inputting a normal signal.
When DMC bit = “1”, the AK4456 will return to normal operation mode by writing “1” to DMRE bit.
DSDD bit
Mode
Status after Detection
0
Normal path
DSD Mute
(default)
1
Volume pass
PD
Table 25. DSD Mode and The Device Status after Full Scale Detection (DDM bit= “0”)
2048fs
DSD Error
(DDR or DDLbit)
DSD Data
DSD Data
DSD Data (FS or -FS )
DSD Data
AOUT
Figure 63. Analog Output Waveform when DSD FS is Detected (DSDD bit= “1”)
2048fs
DSD Error
(DDR or DDLbit)
DSD Data
DSD Data
DSD Data (FS or -FS )
DSD Data
AOUT
Figure 64. Analog Output Waveform when DSD FS is Detected (DSDD bit= “0”)
015006886-E-02
2019/11
- 60 -
[AK4456]
■ Soft Mute Operation (PCM mode, DSD mode)
The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H” or set SMUTE bit
to “1”, the output signal is attenuated by during ATT_DATA ATT transition time from the current ATT
level. When the SMUTE pin is returned to “L” or the SMUTE bit is returned to “0”, the mute is cancelled and
the output attenuation gradually changes to the ATT level during ATT_DATA ATT transition time. If the
soft mute is cancelled before attenuating , the attenuation is discontinued and returned to ATT level by the
same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.
SMUTE pin or
SMUTE bit
(1)
(1)
ATT_Level
(3)
Attenuation
-
GD
(2)
GD
(2)
AOUT
DZF pin
(4)
8192/fs
Notes:
(1) ATT_DATA ATT transition time. For example, this time is 4080LRCK cycles (1020/fs) at
ATT_DATA=255 in Normal Speed Mode.
(2) The analog output corresponding to the digital input has group delay (GD).
(3) If the soft mute is cancelled before attenuating after starting the operation, the attenuation is
discontinued and returned to ATT level by the same cycle.
(4) When the input data for a zero detection channel is continuously zeros for 8192 LRCK cycles, the DZF
pin goes to “H”. The DZF pin immediately returns to “L” if input data are not zero.
Figure 65. Soft Mute Function
015006886-E-02
2019/11
- 61 -
[AK4456]
■ Error Detection
Three types of error can be detected in I2C mode when the LDOE pin = “H” (Table 26). When the error is
detected, all circuits are powered-down and the analog outputs become floating (Hi-Z) state. In I2C mode, the
AK4456 does not generate acknowledge (ACK) in error status. Once the error is detected the AK4456 does not
return to normal operation automatically even if the error condition is removed so restart the AK4456 by the
PDN pin.
No
Error
Error Condition
1
Internal Reference Voltage Error
Internal reference voltage is not powered up.
2
LDO Over Voltage Detection
LDO voltage > 2.2 ~ 2.5V
3
LDO Over Current Detection
LDO current < 40 ~ 110mA
Table 26. Error Detection
■ System Reset
The AK4456 should be reset once by bringing the PDN pin = “L” upon power-up. In PCM (DSD) mode, the
AK4456 exits this system reset (power-down mode) by MCLK and LRCK (DCLK) after the PDN pin = “H”.
The AK4456 detects a rising edge of MCLK first, and then the analog block exits power-down mode by a
rising edge of LRCK (DCLK). The digital block exits power-down mode after the internal counter counts
MCLK for 4/fs.
015006886-E-02
2019/11
- 62 -
[AK4456]
■ Power Down Function
The AK4456 is placed in power-down mode by bringing the PDN pin “L” and the analog outputs become
floating (Hi-Z) state. Power-up and power-down timings are shown in Figure 66.
Power
PDN pin
(1)
VDD18 pin
(2)
Internal PDN
Internal
State
Normal Operation (register write and DAC input are available)
DAC In
(Digital)
“0”data
“0”data
GD
(4)
DAC Out
(Analog)
Clock In
Reset
(3)
(5)
GD
(5)
(4)
Don’t care
MCLK,LRCK,BICK
(7)
DZF
External
Mute
(6)
Mute ON
Mute ON
Notes:
(1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 150ns.
(2) After PDN pin = “H”, the internal LDO power-up if the LDOE pin = “H”. The internal circuits will be
powered up after shutdown switch is ON in the end of a counter by the internal oscillator
(10ms(max)). If the LDOE pin = “L”, the shutdown switch is activated after the AK4456 is powered
up. The internal circuits will be powered up in 1msec (max) after the activation of the shutdown
switch.
During this period, digital output and digital in/output pins may output an instantaneous pulse (max.
1us). Therefore, referring the output of digital pins and data transmission with a device on the same
3-wire serial/I2C bus as the AK4456 should be avoided in this period to prevent system errors.
(3) The analog output corresponding to digital input has group delay (GD).
(4) Analog outputs are floating (Hi-Z) in power down mode.
(5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input.
(6) Mute the analog output externally if click noise (5) adversely affect system performance
The timing example is shown in this figure.
(7) The DZF pin is “L” in the internal power-down mode.
Figure 66. Power down/up Sequence Example
015006886-E-02
2019/11
- 63 -
[AK4456]
■ Power Off and Reset Functions
RSTN
PW1/2/3
1
1
1
1
1
0
0
0
0
0
000
100
010
001
111
000
100
010
001
111
Analog Output
DAC1
DAC2
DAC3
OFF/OFF/OFF
Hold
Off
Hi-Z
Hi-Z
Hi-Z
ON/OFF/OFF
Hold
On
normal
Hi-Z
Hi-Z
OFF/ON/OFF
Hold
On
Hi-Z
normal
Hi-Z
OFF/OFF/ON
Hold
On
Hi-Z
Hi-Z
normal
ON/ON/ON
Hold
On
normal
normal
normal
OFF /OFF/OFF
Hold
Off
Hi-Z
Hi-Z
Hi-Z
ON/OFF/OFF
Hold
Off
VREFH/2
Hi-Z
Hi-Z
OFF/ON/OFF
Hold
Off
Hi-Z
VREFH/2
Hi-Z
OFF/OFF/ON
Hold
Off
Hi-Z
Hi-Z
VREFH/2
ON/ON/ON
Hold
Off
VREFH/2 VREFH/2 VREFH/2
Table 27. Power Off and Reset Function
DAC1/2/3
Register Digital
(1) Power OFF Function 1 (PW1-3 bits)
All DAC1-3 can be powered down immediately by setting PW1-3 bits to “000”. In this time, all circuits except
registers are powered down and the analog output goes to floating state (Hi-z). Figure 67 shows a timing
example of power-on and power-down.
PW1-3 bit
Internal
State
Normal Operation
Power-off
D/A In
(Digital)
“0” data
GD
D/A Out
(Analog)
(1)
GD
(3)
Clock In
(2)
(3)
(1)
Don’t care
MCLK, BICK, LRCK
DZF
External
MUTE
Normal Operation
(5)
(4)
Mute ON
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Small pop noise occurs at the edges(“ ”) of the internal timing of PW1-3 bits. This noise is output
even if “0” data is input.
(4) Mute the analog output externally if click noise (3) adversely affect system performance.
(5) The DZF pin outputs “L”, in power down mode (PW1-3 bits = “000”).
Figure 67. Power-off/on Sequence Example 1
015006886-E-02
2019/11
- 64 -
[AK4456]
(2) Reset Function (RSTN bit)
The DAC can be reset by setting RSTN bit to “0” but the internal registers are not initialized. In this time, the
corresponding analog outputs go to VREFH/2 and the DZF pin outputs “H” if clocks (MCLK, BICK and
LRCK) are input. Figure 68 shows an example of reset sequence by RSTN bit.
RSTN bit
3~4/fs (6)
2~3/fs (5)
Internal
RSTN bit
Internal
State
Normal Operation
D/A In
(Digital)
“0” data
(1)
D/A Out
(Analog)
Normal Operation
Digital Block Power-down
GD
GD
(3)
Clock In
(2)
(3)
(1)
Don’t care
BICK
2/fs(4)
DZF
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Small pop noise occurs at the edges(“ ”) of the internal timing of RSTN bit. This noise is output
even if “0” data is input.
(4) The DZF pin goes to “H” on the falling edge of RSTN bit and goes to “L” in 2/fs after a rising edge of
the internal RSTN.
(5) There is a delay, 3~4/fs from RSTN bit “0” to the internal RSTN bit “0”, and 2~3/fs from RSTN bit “1”
to the internal RSTN bit “1”.
Figure 68. Reset Sequence Example 1
Note: When using both reset (RSTN bit = “0”) and DAC power-off bits (PW1-3 bits), power-off bits should be
set to “0” before RSTN bit.
015006886-E-02
2019/11
- 65 -
[AK4456]
(3) Reset Function (MCLK Stop)
When the MCLK stops for more than 10us during operation (PDN pin = “H”), the AK4456 is placed in reset
state and the analog output goes to floating state (Hi-Z). When the MCLK is restarted, reset state is released
and the AK4456 returns to normal operation mode. Zero detection function is disabled while the MCLK is
stopped. Figure 69 shows a reset sequence by stopping the MCLK.
PDN pin
RSTN bit
(1)
Internal
State
Power-down
D/A In
(Digital)
Power-down
Normal Operation
(2)
GD
(4)
Hi-Z
(2)
(4)
(4)
Clock In
MCLK Stop
MCLK
External
MUTE
Normal Operation
(3)
GD
D/A Out
(Analog)
Digital Circuit Power-down
(5)
(5)
(5)
Notes:
(1) After the AK4456 is powered-up, the PDN pin should be “L” for 150ns.
(2) The analog output corresponding to digital input has group delay (GD).
(3) The digital data input can be stopped. Click noise after MCLK is input again can be reduced by
inputting “0” data during this period.
(4) Click noise occurs within 3 ~ 4LRCK from the riding edge (“↑”) of the PDN pin or MCLK inputs. This
noise is output even if “0” data is input.
(5) Mute the analog output externally if click noise (4) adversely affect system performance.
Figure 69. Reset Sequence Example 2
015006886-E-02
2019/11
- 66 -
[AK4456]
■ Synchronization Function (PCM Mode)
● Synchronization Function (Analog Output Phase Synchronization)
This function synchronizes analog output phase by suppressing the phase difference of the AK4456 and other
AKM devices with synchronization function to within 3/256fs. Analog output phase synchronization function
becomes valid when input data at all channels are continuously “0” for 8192 times if SYNCE bit is set to “1”
during operation in PCM mode or when RSTN bit is set to “0”.
Example) In the case of using the AK4456 with the AK4452 (Figure 70)
The AK4452 and the AK4456 have synchronization function. The output phase difference between the
AK4452’s output (AOUT1LP/N_2, AOUT1RP/N_2) and the AK4456’s output (AOUT1-3LP/N_6,
AOUT1-3RP/N_6) will be within 3/256fs.
DSP
AK4452
MCLK
LRCK
MCLK
LRCK
AOUT1LP/N
AOUT1RP/N
AOUT1LP/N_2
AOUT1RP/N_2
AK4456
MCLK
LRCK
AOUT1LP/N
AOUT1RP/N
AOUT1LP/N_8
AOUT1RP/N_8
AOUT3LP/N
AOUT3RP/N
AOUT3LP/N_8
AOUT3RP/N_8
Figure 70. System Example of Clock Synchronization Function
015006886-E-02
2019/11
- 67 -
[AK4456]
■ Parallel Mode
Parallel mode is available by setting the I2C pin = “H”, and the PS pin = “H”. Audio interface format of the
parallel mode is controlled by TDM1-0 pins and DIF pin (Table 28). Daisy Chain mode is also available by
setting the DCHAIN pin = “H”. In parallel mode, the clock setting mode is always in auto setting mode (ACKS
mode is enabled and fixed internally) and reset is released (RSTN bit = “1”).
Zero detection function is not available in parallel mode. All functions controlled exclusively by Serial mode
are only available in their default register settings.
TDM1 pin
0
0
0
0
1
1
1
1
TDM0 pin
DIF pin
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
Table 28. Parallel Mode
Mode
Mode 6 (Table 13)
Mode 7 (Table 13)
Mode 12 (Table 13)
Mode 13 (Table 13)
Mode 18 (Table 13)
Mode 19 (Table 13)
Mode 24 (Table 13)
Mode 25 (Table 13)
■ Serial Control Interface
The AK4456’s functions are controlled through registers. The registers may be written by two types of control
modes. The internal registers are controlled in 3-wire serial control mode when the I2C pin = “L”, and in I2C
bus control mode when the I2C pin = “H” and the PS pin = “L”.
015006886-E-02
2019/11
- 68 -
[AK4456]
(1) 3-wire Serial Control Mode (I2C pin = “L”)
The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The
data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only),
Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in
on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is
latched after a low-to-high transition of CSN. The clock speed of CCLK is 5MHz (max).
The internal registers are initialized by setting the PDN pin = “L”. In serial mode, an internal timing
circuit is reset by setting RSTN bit = “0” but register values are not initialized.
CSN
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CCLK
CDTI
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
C1-C0: Chip Address (C1= CAD1 pin, C0= CAD0 pin)
R/W:
Read/Write (Fixed to “1”, Write only)
A4-A0: Register Address
D7-D0: Control Data
Figure 71. 3-wire Serial Control I/F Timing
* The AK4456 does not support read commands in 3wire serial control mode.
* When the AK4456 is in power down mode (PDN pin = “L”) writing into the control registers is
prohibited.
* The control data cannot be written when the CCLK rising edge is 15 times or less or 17 times or more
during CSN is “L”.
015006886-E-02
2019/11
- 69 -
[AK4456]
(2) I2C-bus Control Mode (I2C pin = “H”)
The AK4456 supports the fast-mode I2C-bus (max: 400kHz, Ver1.0).
1. WRITE Operations
Figure 72 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a START
condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition
(Figure 78). After the START condition, a slave address is sent. This address is 7 bits long followed by the
eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as
“00100”. The next bits are CAD1-0 (device address bits). This bits identifies the specific device on the bus.
The hard-wired input pins (CAD1-0 pins) set these device address bit (Figure 73). If the slave address matches
that of the AK4456, the AK4456 generates an acknowledge and the operation is executed. The master must
generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock
pulse (Figure 79). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write
operation is to be executed.
The second byte consists of the control register address of the AK4456. The format is MSB first, and those
most significant 3-bits are fixed to zeros (Figure 74). The data after the second byte contains control data. The
format is MSB first, 8bits (Figure 75). The AK4456 generates an acknowledge after each byte is received. Data
transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the
SDA line while SCL is HIGH defines STOP condition (Figure 78).
The AK4456 can perform more than one byte write operation per sequence. After receipt of the third byte the
AK4456 generates an acknowledge and awaits the next data. The master can transmit more than one byte
instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the
internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next
address. If the address exceeds 14H prior to generating a stop condition, the address counter will “roll over” to
00H and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of
the data line can only change when the clock signal on the SCL line is LOW (Figure 80) except for the START
and STOP conditions.
S
T
A
R
T
SDA
S
T
O
P
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Data(n)
A
C
K
Data(n+1)
A
C
K
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 72. Data Transfer Sequence at the I2C-Bus Mode
0
0
1
0
0
CAD1
CAD0
R/W
(These CAD1-0 should match with CAD1-0 pins)
Figure 73. The First Byte
0
0
0
A4
A3
A2
A1
A0
D1
D0
Figure 74. The Second Byte
D7
D6
D5
D4
D3
D2
Figure 75. Byte Structure After The Second Byte
015006886-E-02
2019/11
- 70 -
[AK4456]
2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4456. After transmission of data, the master can read
the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of
the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one,
and the next data is automatically taken into the next address. If the address exceeds 14H prior to generating
stop condition, the address counter will “roll over” to 00H and the data of 14H will be read out.
The AK4456 supports two basic read operations: Current Address Read and Random Address Read.
2-1. Current Address Read
The AK4456 contains an internal address counter that maintains the address of the last word accessed,
incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with
R/W bit “1”, the AK4456 generates an acknowledge, transmits 1-byte of data to the address set by the internal
address counter and increments the internal address counter by 1. If the master does not generate an
acknowledge but generates a stop condition instead, the AK4456 ceases transmission.
S
T
A
R
T
SDA
S
T
O
P
R/W="1"
Slave
S Address
Data(n)
Data(n+1)
MA
AC
SK
T
E
R
A
C
K
Data(n+2)
MA
AC
SK
T
E
R
Data(n+x)
MA
AC
SK
T
E
R
MA
AC
SK
T
E
R
P
MN
AA
SC
T
EK
R
Figure 76. Current Address Read
2-2. Random Address Read
The random read operation allows the master to access any memory location at random. Prior to issuing a slave
address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a
start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is
acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”.
The AK4456 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1.
If the master does not generate an acknowledge but generates a stop condition instead, the AK4456 ceases
transmission.
S
T
A
R
T
SDA
S
T
A
R
T
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Slave
S Address
A
C
K
S
T
O
P
R/W="1"
Data(n)
A
C
K
Data(n+1)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
S
T K
E
R
MA
AC
S
T K
E
R
P
MN
A A
S
T C
E K
R
Figure 77. Random Address Read
015006886-E-02
2019/11
- 71 -
[AK4456]
SDA
SCL
S
P
start condition
stop condition
Figure 78. START and STOP Conditions
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 79. Acknowledge on the I2C-Bus
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 80. Bit Transfer on the I2C-Bus
015006886-E-02
2019/11
- 72 -
[AK4456]
■ Function List
Available functions are different in PCM mode and in DSD mode.
Function
Attenuation Level
Audio Data Interface Modes
Data Zero Detect Enable
Minimum delay Filter Enable
Slow Roll-off Filter Enable
Short delay Filter Enable
De-emphasis Response
Default
Address
03-04H
0F-14H
0dB
32-bit MSB
justified
Disable
Sharp roll-off
filter
OFF
Bit
PCM
DSD
ATT7-0
Y
Y
00H
DIF2-0
Y
-
07-08H
L1-3/R1-3
01-02H
SD
SLOW
Y
Y
Y
Y
Y
-
Y
-
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
01H,0AH
0EH
01H
02H
DEM1-3
Soft Mute Enable
Normal Operation
SMUTE
DSD/PCM Mode Select
PCM mode
D/P
Master Clock Frequency Select
512fs
02H
DCKS
at DSD mode
MONO mode Stereo mode
Stereo
02H,0DH
MONO
select
Inverting Enable of DZF
“H” active
02H
DZFB
The data selection of L channel
02H,05H
R channel
SELLR1-3
and R channel
0DH
The data selection of DAC1-4
Normal
0A-0BH
SDS1/2
Data Invert Mode
OFF
05H,0CH
INVL1-3/R1-3
Clock Synchronization Function
Enable
07H
SYNCE
Table 29. Function List (Y: Available, -: Not available)
015006886-E-02
2019/11
- 73 -
[AK4456]
■ Register Map
Addr
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
Register Name
Control 1
Control 2
Control 3
L1ch ATT
R1ch ATT
Control 4
DSD1
Control 5
Sound Control
DSD2
Control 6
Control 7
Control 8
Control 9
Control 10
L2ch ATT
R2ch ATT
L3ch ATT
R3ch ATT
Reserved
Reserved
D7
ACKS
0
DP
ATT7
ATT7
INVL1
DDM
L3
L1
DML2
TDM1
ATS1
0
0
0
ATT7
ATT7
ATT7
ATT7
1
1
D6
0
0
0
ATT6
ATT6
INVR1
DML1
R3
R1
DMR2
TDM0
ATS0
0
MONO3
1
ATT6
ATT6
ATT6
ATT6
1
1
D5
0
SD
DCKS
ATT5
ATT5
INVL2
DMR1
0
L2
DML3
SDS1
0
INVR3
MONO2
DEM31
ATT5
ATT5
ATT5
ATT5
1
1
D4
0
DFS1
DCKB
ATT4
ATT4
INVR2
DMC
0
R2
DMR3
SDS2
SDS0
INVL3
0
DEM30
ATT4
ATT4
ATT4
ATT4
1
1
D3
DIF2
DFS0
MONO1
ATT3
ATT3
SELLR2
DMRE
0
0
0
PW2
1
0
0
0
ATT3
ATT3
ATT3
ATT3
1
1
D2
DIF1
DEM11
DZFB
ATT2
ATT2
0
0
0
0
0
PW1
PW3
FIR2
SELLR3
0
ATT2
ATT2
ATT2
ATT2
1
1
D1
DIF0
DEM10
SELLR1
ATT1
ATT1
DFS2
DSDD
1
SC1
DSDF
DEM21
DCHAIN
FIR1
0
0
ATT1
ATT1
ATT1
ATT1
1
1
D0
RSTN
SMUTE
SLOW
ATT0
ATT0
SSLOW
DSDSEL0
SYNCE
SC0
DSDSEL1
DEM20
0
FIR0
0
0
ATT0
ATT0
ATT0
ATT0
1
1
Note 35. Data must not be written into addresses from 15H to 1FH.
Note 36. When the PDN pin is set to “L”, all registers are initialized to their default values.
Note 37. When RSTN bit is set to “0”, only the internal timing circuit is reset but register values are not
initialized.
015006886-E-02
2019/11
- 74 -
[AK4456]
■ Register Definitions
Addr Register Name
00H Control 1
R/W
Default
D7
ACKS
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
DIF2
R/W
1
D2
DIF1
R/W
1
D1
DIF0
R/W
0
D0
RSTN
R/W
0
RSTN: Internal Timing Reset
0: Reset (default)
Internal clock timings are reset, but all other registers are not reset to their default value and R/W
access is still allowed.
1: Normal Operation
DIF2-0: Audio Data Interface Modes (Table 13)
Default value is “110” (Mode 6: 32-bit MSB justified).
Be careful because Format varies in TDM1 and TDM0.
ACKS: Master Clock Frequency Auto Setting Mode Enable (PCM only)
0: Disable : Manual Setting Mode (default)
1: Enable : Auto Setting Mode
When ACKS bit = “1”, the sampling frequency and MCLK frequency are detected automatically.
Addr Register Name
01H Control 2
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
SD
R/W
1
D4
DFS1
R/W
0
D3
DFS0
R/W
0
D2
DEM11
R/W
0
D1
DEM10
R/W
1
D0
SMUTE
R/W
0
SMUTE: Soft Mute Enable.
0: Normal Operation (default)
1: DAC outputs soft-muted.
DEM11-0: DAC1 De-emphasis Response (Table 16)
Default value is “01” (OFF).
DFS1-0: Sampling Speed Control (Table 2)
Default value is “00” (Normal Speed). See also register address 05H for DFS2.
A click noise occurs when switching DFS2-0 bits setting.
SD: Short delay Filter Enable. (Table 12)
0: Sharp roll-off filter
1: Short delay filter (default)
015006886-E-02
2019/11
- 75 -
[AK4456]
Addr Register Name
02H Control 3
R/W
Default
D7
DP
R/W
0
D6
0
R
0
D5
DCKS
R/W
0
D4
DCKB
R/W
0
D3
MONO1
R/W
0
D2
DZFB
R/W
0
D1
SELLR1
R/W
0
D0
SLOW
R/W
0
SLOW: Slow Roll-off Filter Enable. (Table 12)
0: Sharp roll-off filter (default)
1: Slow roll-off filter
SELLR1: The data selection of DAC1 L channel and R channel, when MONO mode (Table 21)
0: All channel output L channel data. (default)
1: All channel output R channel data.
MONO1, INVL1, INVR1 Confirm the setup of bit, too.
DZFB: Inverting Enable of DZF (Table 20)
0: DZF pin goes “H” at Zero Detection (default)
1: DZF pin goes “L” at Zero Detection
MONO1: DAC1 enters monaural output mode when MONO bit = “1”. (Table 21)
0: Stereo mode (default)
1: MONO mode
DCKB: Polarity of DCLK (DSD Only)
0: DSD data is output from DCLK falling edge. (default)
1: DSD data is output from DCLK rising edge.
DCKS: Master Clock Frequency Select at DSD mode (DSD only)
0: 512fs (default)
1: 768fs
DP:
DSD/PCM Mode Select
0: PCM Mode (default)
1: DSD Mode
The AK4456 must be reset by RSTN bit when changing DP bit setting.
Addr Register Name
03H L1ch ATT
04H R1ch ATT
R/W
Default
D7
ATT7
ATT7
R/W
1
D6
ATT6
ATT6
R/W
1
D5
ATT5
ATT5
R/W
1
D4
ATT4
ATT4
R/W
1
D3
ATT3
ATT3
R/W
1
D2
ATT2
ATT2
R/W
1
D1
ATT1
ATT1
R/W
1
D0
ATT0
ATT0
R/W
1
ATT7-0: Attenuation Level (Table 17)
Initial value is “FF” (0dB)
015006886-E-02
2019/11
- 76 -
[AK4456]
Addr Register Name
05H Control 4
R/W
Default
D7
INVL1
R/W
0
D6
INVR1
R/W
0
D5
INVL2
R/W
0
D4
INVR2
R/W
0
D3
SELLR2
R/W
0
D2
0
R/W
0
D1
DFS2
R/W
0
D0
SSLOW
R/W
0
SSLOW: Digital Filter Bypass Mode Enable (Table 15)
0: Enable digital filter selected by SD and SLOW bits (default)
1: Super Slow Roll-off Mode
DFS2: Sampling Speed Control (Table 2)
Default value is “0” (Normal Speed). See also register address 01H for DFS1-0.
A click noise occurs when switching DFS2-0 bits setting.
SELLR2: Data Selection of DAC2 L channel and R channel, when MONO mode (Table 22)
0: All channel output L channel data. (default)
1: All channel output R channel data.
MONO2, INVL2, INVR2 Confirm the setup of bit, too.
INVL1: AOUTL1 Output Phase Inverting Bit
INVR1: AOUTR1 Output Phase Inverting Bit
INVL2: AOUTL2 Output Phase Inverting Bit
INVR2: AOUTR2 Output Phase Inverting Bit
0: Normal (default)
1: Inverted
015006886-E-02
2019/11
- 77 -
[AK4456]
Addr Register Name
06H DSD1
R/W
Default
D7
DDM
R/W
0
D6
DML1
R/W
0
D5
DMR1
R/W
0
D4
DMC
R/W
0
D3
DMRE
R/W
0
D2
0
R/W
0
D1
DSDD
R/W
0
D0
DSDSEL0
R/W
0
DSDSEL1-0: DSD sampling speed control (Table 10)
Default value is “00”.
DSDD: DSD play back path control (Table 11)
0: Full function (default)
1: Volume Bypass
DMRE: DSD mute release
0: Hold (default)
1: Mute Release
This register is only valid when DDM bit = “1” and DMC bit = “1”. It releases a mute state
when DSD data is muted by DDM and DMC bits.
DMC: DSD mute control
0: Auto Return (default)
1: Mute Hold
This register is only valid when DDM bit = “1”. It selects the process when DSD data level
drops under full scale while DSD data is muted by DDM bit.
DMR1/DML1
This register output detection flag when the signal level of the DSDR1/L1 pin is full scale.
DDM: DSD data mute
0: Disable (default)
1: Enable
The AK4456 has a function that mutes the output when DSD data is all “1” or “0” for 2048
samplings (1/fs). This register controls the DSD mute function.
015006886-E-02
2019/11
- 78 -
[AK4456]
Addr Register Name
07H Control 5
R/W
Default
D7
L3
R/W
0
D6
R3
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
1
R/W
1
D0
SYNCE
R/W
1
D5
L2
R/W
0
D4
R2
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
SC1
R/W
0
D0
SC0
R/W
0
SYNCE: SYNC Mode Enable
0: SYNC Mode Disable
1: SYNC Mode Enable (default)
L3, R3: Zero Detect Flag Enable Bit for the DZF pin
0: Disable(default)
1: Enable
Addr Register Name
08H Sound Control
R/W
Default
D7
L1
R/W
0
D6
R1
R/W
0
SC1-0: Sound Control (Table 24)
Default value is “00”.
L1-2, R1-2: Zero Detect Flag Enable Bit for the DZF pin
0: Disable (default)
1: Enable
015006886-E-02
2019/11
- 79 -
[AK4456]
Addr Register Name
09H DSD2
R/W
Default
D7
DML2
R/W
0
D6
DMR2
R/W
0
D5
DML3
R/W
0
D4
DMR3
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
DSDF
R/W
0
D0
DSDSEL1
R/W
0
DSDSEL1-0: DSD Sampling Speed Control (Table 10)
Default value is “00”.
DSDF: DSD Filter Select (Table 12)
Default value is “0”.
DMR2-3/DML2-3
These registers output detection flag when signal levels of the DSDR2-3/L2-3 pins are full scale.
Addr Register Name
0AH Control 6
R/W
Default
D7
TDM1
R/W
0
D6
TDM0
R/W
0
D5
SDS1
R/W
0
D4
SDS2
R/W
0
D3
PW2
R/W
1
D2
PW1
R/W
1
D1
DEM21
R/W
0
D0
DEM20
R/W
1
DEM21-0: DAC2 De-emphasis Response (Table 16)
Default value is “01”. (OFF)
PW2-1: Power Down control for DAC
PW2: Power management for DAC2
0: DAC2 power OFF
1: DAC2 power ON (default)
PW1: Power management for DAC1
0: DAC1 power OFF
1: DAC1 power ON (default)
SDS2-0: DAC1-4 Data Select
0: Normal Operation
1: Output Other Slot Data (Table 14)
Default value is “000”.
TDM1-0: TDM Mode Select
Default value is “00”.
015006886-E-02
2019/11
- 80 -
[AK4456]
Addr Register Name
0BH Control 7
R/W
Default
D7
ATS1
R/W
0
D6
ATS0
R/W
0
D5
0
R/W
0
D4
SDS0
R/W
0
D3
1
R/W
1
D2
PW3
R/W
1
D1
DCHAIN
R/W
0
D0
0
R/W
0
D3
0
R/W
0
D2
FIR2
R/W
0
D1
FIR1
R/W
0
D0
FIR0
R/W
0
DCHAIN: Daisy Chain Mode Enable
0: Daisy Chain Mode Disable (default)
1: Daisy Chain Mode Enable
PW3: Power Down control for DAC
PW3: Power management for DAC3
0: DAC3 power OFF
1: DAC3 power ON (default)
SDS2-0: DAC1-3 Data Select
0: Normal Operation
1: Output Other Slot Data (Table 14)
ATS1-0: DAC Digital attenuator transition time setting (Table 18)
Default value is “00”.
Addr Register Name
0CH Control 8
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
INVR3
R/W
0
D4
INVL3
R/W
0
FIR2-0: FIR Filter Control (Table 19)
Default value is “000”.
INVL3: AOUTL3 Output Phase Inverting Bit
INVR3: AOUTR3 Output Phase Inverting Bit
INVL4: AOUTL4 Output Phase Inverting Bit
0: Normal (default)
1: Inverted
015006886-E-02
2019/11
- 81 -
[AK4456]
Addr Register Name
0DH Control 9
R/W
Default
D7
0
R/W
0
D6
MONO3
R/W
0
D5
MONO2
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
SELLR3
R/W
0
D1
0
R/W
0
D0
0
R/W
0
SELLR3: The data selection of DAC3 L channel and R channel, when MONO mode (Table 23)
0: All channel output L channel data. (default)
1: All channel output R channel data.
MONO3, INVL3, INVR3, Confirm the setup of bit, too.
MONO2: DAC2 enters Mono output mode when MONO2 bit =“1”. (Table 22)
MONO3: DAC3 enters Mono output mode when MONO3 bit =“1”. (Table 23)
0: Stereo mode (default)
1: MONO mode
Addr Register Name
0EH Control 10
R/W
Default
D7
0
R/W
0
D6
1
R/W
1
D5
DEM31
R/W
0
D4
DEM30
R/W
1
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
0
R/W
0
D4
ATT4
ATT4
ATT4
ATT4
R/W
1
D3
ATT3
ATT3
ATT3
ATT3
R/W
1
D2
ATT2
ATT2
ATT2
ATT2
R/W
1
D1
ATT1
ATT1
ATT1
ATT1
R/W
1
D0
ATT0
ATT0
ATT0
ATT0
R/W
1
DEM31-0: DAC3 De-emphasis Response (Table 16)
Default value is “01”. (OFF)
Addr
0FH
10H
11H
12H
Register Name
L2ch ATT
R2ch ATT
L3ch ATT
R3ch ATT
R/W
Default
D7
ATT7
ATT7
ATT7
ATT7
R/W
1
D6
ATT6
ATT6
ATT6
ATT6
R/W
1
D5
ATT5
ATT5
ATT5
ATT5
R/W
1
ATT7-0: Attenuation Level (Table 17)
Initial value is “FF” (0dB)
015006886-E-02
2019/11
- 82 -
[AK4456]
10. Recommended External Circuits
■ Typical Connection Diagram
Figure 81 and Figure 82 show system connection diagram, and Figure 83 shows the analog output circuit
example.
(1) LDOE pin = “H”, I2C-bus Control Mode(I2C pin = “H”)
LRCK
4
SDTI1
5
SDTI2
6
SDTI3
7
SDTI4
8
DSDR3
9
TST1
TST3 38
37
0.1u
R3ch
Mute
R3ch Out
L3ch
LPF
L3ch
Mute
L3ch Out
R2ch
LPF
R2ch
Mute
R2ch Out
L2ch
LPF
L2ch
Mute
L2ch Out
R1ch
LPF
R1ch
Mute
R1ch Out
L1ch
LPF
L1ch
Mute
L1ch Out
10u
+
AOUTL3N 33
AOUTL3P 32
AVDD 31
AVSS 30
0.1u
+
10u
AOUTR2P 29
N
AOUTR2N 28
23 AOUTR1P
22 AOUTR1N
21 VREFH1
20 VREFL1
19 AOUT1LN
17 I2C
16 CAD0
15 PS
14 SCL
12 CAD1
18 AOUT1LP
VREFH2 27
11 DZF
13 SDA
AOUTR3P
TST4 39
TST5 40
TST7 42
TST8 43
LDOE 44
TVDD 45
TST6 41
VREFH3 34
10 TST2
Micro-
R3ch
LPF
VREFL3 35
0.1u
VREFL2
AOUTL2P
BICK
3
AOUTR3N
36
AOUTL2N
+
10u
26
25
24
2
Analog 5.0V
AK4456VN
DSP
MCLK
10u
+
0.1u
DVSS 46
PDN 48
1
1u
+
VDD18 47
Digital 3.3V
0.1u
Controller
+
10u
Digital
Ground
Analog
Ground
+
Electrolytic Capacitor
Ceramic Capacitor
Notes:
- Chip Address = “00”. BICK = 64fs, LRCK = fs
- Power lines of AVDD and VREFH1-3 should be distributed separately from LDO and etc. while keeping
low impedance. If it is not possible, it is recommended to connect a LPF composed by a 10Ω resistor and a
220uF capacitor between VREFL1-3 and VREFH1-3.
- DVSS and AVSS must be connected to the same potential.
- All digital input pins should not be allowed to float.
Figure 81. Typical Connection Diagram (AVDD=5V, TVDD=3.3V)
015006886-E-02
2019/11
- 83 -
[AK4456]
(2) LDOE pin = “L”, I2C-bus Control Mode(I2C pin = “H”)
Digital 3.3V
Digital 1.8V
Analog 5.0V
LRCK
4
SDTI1
5
SDTI2
6
SDTI3
7
SDTI4
8
DSDR3
9
TST1
37
TST3 38
AOUTR3P
TST4 39
TST5 40
TST6 41
TST7 42
TST8 43
LDOE 44
TVDD 45
R3ch
Mute
R3ch Out
L3ch
LPF
L3ch
Mute
L3ch Out
R2ch
LPF
R2ch
Mute
R2ch Out
L2ch
LPF
L2ch
Mute
L2ch Out
R1ch
LPF
R1ch
Mute
R1ch Out
L1ch
LPF
L1ch
Mute
L1ch Out
10u
+
AOUTL3P 32
AVDD 31
AVSS 30
0.1u
+
10u
AOUTR2P 29
N
AOUTR2N 28
23 AOUTR1P
22 AOUTR1N
21 VREFH1
20 VREFL1
19 AOUT1LN
17 I2C
16 CAD0
15 PS
14 SCL
12 CAD1
18 AOUT1LP
VREFH2 27
11 DZF
13 SDA
0.1u
AOUTL3N 33
10 TST2
Micro-
R3ch
LPF
VREFL3 35
VREFH3 34
0.1u
VREFL2
AOUTL2P
BICK
3
36
AOUTL2N
+
10u
26
25
24
2
AOUTR3N
AK4456VN
DSP
MCLK
DVSS 46
PDN 48
1
VDD18 47
10u
+
1u
+ 0.1u
0.1u
Controller
+
10u
Digital
Ground
Analog
Ground
+
Electrolytic Capacitor
Ceramic Capacitor
Notes:
- Chip Address = “00”. BICK = 64fs, LRCK = fs
- Power lines of AVDD and VREFH1-3 should be distributed separately from LDO and etc. while keeping
low impedance. If it is not possible, it is recommended to connect a LPF composed by a 10Ω resistor and a
220uF capacitor between VREFL1-3 and VREFH1-3.
- DVSS and AVSS must be connected to the same potential.
- All digital input pins should not be allowed to float.
Figure 82. Typical Connection Diagram (AVDD=5V, TVDD=3.3V)
015006886-E-02
2019/11
- 84 -
[AK4456]
1. Grounding and Power Supply Decoupling
To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD and TVDD
respectively. AVDD are supplied from the analog supply of the system and TVDD is supplied from the digital
supply of the system. DVSS and AVSS must be connected to the same analog ground plane.
Decoupling capacitors for high frequency should be placed as near as possible to the supply pin.
2. Voltage Reference
The differential voltage between the VREFH1/2/3 pin and the VREFL1/2/3 pin sets the analog output range.
The VREFH1/2/3 pin is normally connected to AVDD, and the VREFL1/2/3 pin is normally connected to
AVSS. VREFH1/2/3 and VREFL1/2/3should be connected with a 0.1µF ceramic capacitor as near as possible
to the pin to eliminate the effects of high frequency noise. All signals, especially clocks, should be kept away
from the VREFH1/2/3 and VREFL1/2/3 pins in order to avoid unwanted noise coupling into the AK4456.
015006886-E-02
2019/11
- 85 -
[AK4456]
3. Analog Outputs
The analog outputs are full differential outputs and 2.8Vpp (typ, VREFH1/2/3 VREFL1/2/3 = 5V) centered
around VREFH/2. The differential outputs are summed externally, VAOUT = (AOUT+) (AOUT) between
AOUT+ and AOUT. If the summing gain is 1, the output range is 5.6Vpp (typ, VREFH1/2/3 VREFL1/2/3=
5V). The bias voltage of the external summing circuit is supplied externally. PCM input data format is 2's
complement. The output voltage (VAOUT) is a positive full scale for 7FFFFFH (@24bit) and a negative full scale
for 800000H (@24bit). The ideal VAOUT is 0V for 000000H(@24bit).
The output level is determined by the 1-bit signal duty ratio in DSD input mode. The output level is positive full
scale when the duty is 100% (all “1”) and the output level is negative full scale when the duty is 0% (all “0”). In
ideal case, a 0V voltage is output when the input signal duty is 50%.
The internal switched - capacitor filters attenuate the noise generated by the delta -sigma modulator beyond the
audio pass band. Figure 83 shows an example of differential outputs and LPF circuit example by a single
op-amp.
PSRR will be “CMRR +6dB” of the external circuit when applying a 1kHz 100m Vpp sine wave to the
VREFH1-3 pins. If the CMRR of the external circuit is 50dB, PSRR will be 56dB.
AK4456
R1
AOUT-
3.9k
R2
4.7k
150
470p
+Vop
AOUT+
3.9n
R1
3.9k
4.7k
Analog
Out
150
470p
-Vop
Figure 83. External LPF Circuit Example 1 for PCM (fc = 99.0kHz, Q=0.680)
R1
R2
GAIN(dB)
DC Load (MAX)
3.3k
3.9k
3.9k
4.3k
4.7k
3.3k
4.7k
5.6k
6.8k
8.2k
0
1.620665 3.142468 3.980809 4.83432
3.8k
4.0k
3.5k
3.6k
3.6k
Table 30. External LPF Circuit Example 1 for PCM
5.6k
12.0k
6.619864
3.8k
Frequency Response
Gain
20kHz
0.036dB
40kHz
0.225dB
80kHz
1.855dB
Table 31. Frequency Response of External LPF Circuit Example 1 for PCM
015006886-E-02
2019/11
- 86 -
[AK4456]
11. Package
■ Outline Dimensions
■ Material & Lead finish
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy, Halogen (bromine and chlorine) free
Cu
Solder (Pb free) plate
015006886-E-02
2019/11
- 87 -
[AK4456]
■ Marking
AKM
AK4456VN
XXXXXXX
1
1) Pin #1 indication
2) AKM Logo
3) Date Code: XXXXXXX (7 digits)
4) Product Code: AK4456VN
12. Revision History
Date (Y/M/D) Revision
15/06/22
00
17/07/11
01
Reason
Page
First Edition
Description 13
Delete
Description 14
Addition
16
18
20
32
50
59
19/11/01
02
Error
Correction
7
Description
Addition
9
Contents
Note 17 (It is the pass band gain amplitude of …) was
deleted.
Figure 2 and Figure 3 were added.
Figure 4 and Figure 5 were added.
Figure 6 and Figure 7 were added.
Figure 8 and Figure 9 were added.
Table 7 was changed.
■ Out of Band Noise Reduction Filter
Description was changed.
■ Sound Quality Adjustment
Table 24 was changed
Pin Configurations were changed.
#11 DZF → DZF/SMUTE
#12 CAD1/SMUTE → CAD1/DCHAIN
■ Handling of unused pin
Descriptions of DSDL3 pin and DSDR3 pin were added.
015006886-E-02
2019/11
- 88 -
[AK4456]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application of
AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM
or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application
examples of AKM Products. AKM neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of AKM or any third party with respect to the
information in this document. You are fully responsible for use of such information contained in this
document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY
LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH
INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices, elevators
and escalators, devices related to electric power, and equipment used in finance-related fields. Do not
use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible
for complying with safety standards and for providing adequate designs and safeguards for your
hardware, software and systems which minimize risk and avoid situations in which a malfunction or
failure of the Product could cause loss of human life, bodily injury or damage to property, including
data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and regulations.
The Products and related technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth
in this document shall immediately void any warranty granted by AKM for the Product and shall not
create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.
015006886-E-02
2019/11
- 89 -