[AK5536]
AK5536
6-Channel Differential 32-bit ADC
1. General Description
The AK553x series is a 32-bit, 768 kHz sampling, differential input A/D converter for digital audio
systems. It achieves 111 dB dynamic range and 103 dB S/(N+D) while maintaining low power
consumption performance.
The AK5536 integrates a 6-channel A/D converter, suitable for mixers and multi-channel recorders. Four
types of digital filters are integrated and selectable according to the sound quality preference. The
AK5536 can be easily connected to a DSP by supporting TDM audio formats. Additionally, it supports
DSD output up to 11.2MHz. The channel summation improves the dynamic range to 114 dB in 6-to-3
mode, to 117 dB in 4-to-1 mode and to 118 dB in 6-to-1 mode.
2. Features
Sampling Rate: 8 kHz-768 kHz
Input: Full Differential Inputs
S/(N+D): 103 dB
DR: 111 dB (6-to-3 mode: 114 dB, 4-to-1 mode: 117 dB, 6-to-1 mode: 118 dB)
S/N: 111 dB (6-to-3 mode: 114 dB, 4-to-1 mode: 117 dB, 6-to-1 mode: 118 dB)
Internal Filter: Four types of LPF, Digital HPF
Power Supply: 3.0-3.6 V (Analog), 1.7-1.98 V or 3.0-3.6 V (Digital)
Output Format:
PCM mode: 24/32-bit MSB justified, I2S or TDM
DSD mode: DSD Native 64, 128, 256
Maximized Slot Efficiency in TDM Mode by Optimal Data Placed Mode
Cascade TDM I/F:
TDM512: fs= 48 kHz
TDM256: fs= 96 kHz or 48 kHz
TDM128: fs= 192 kHz, 96 kHz or 48 kHz
Operation Mode: Master Mode & Slave Mode
Detection Function: Input Overflow Flag
Serial Interface: 3-wire Serial and I2C μP I/F (Pin setting is also available)
Power Consumption: 142 mW (@AVDD= 3.3 V, TVDD= 3.3 V, fs= 48 kHz)
Package: 64-pin QFN
015099885-E-00
2016/03
-1-
[AK5536]
3. Table of Contents
General Description ............................................................................................................................ 1
Features .............................................................................................................................................. 1
Table of Contents................................................................................................................................ 2
Block Diagram..................................................................................................................................... 3
■ Block Diagram.................................................................................................................................... 3
5. Pin Configurations and Functions ...................................................................................................... 4
■ Pin Configurations ............................................................................................................................. 4
■ Pin Functions ..................................................................................................................................... 5
■ Handling of Unused Pin ..................................................................................................................... 7
6. Absolute Maximum Ratings ................................................................................................................ 8
7. Recommended Operation Conditions ................................................................................................ 8
8. Analog Characteristics ........................................................................................................................ 9
9. Filter Characteristics ......................................................................................................................... 10
■ ADC Filter Characteristics (fs= 48 kHz) .......................................................................................... 10
■ ADC Filter Characteristics (fs= 96 kHz) .......................................................................................... 12
■ ADC Filter Characteristics (fs= 192 kHz) ........................................................................................ 14
■ ADC Filter Characteristics (fs= 384 kHz) ........................................................................................ 16
■ ADC Filter Characteristics (fs= 768 kHz) ........................................................................................ 17
10.
DC Characteristics ........................................................................................................................ 18
11.
Switching Characteristics .............................................................................................................. 19
■ Timing Diagram ............................................................................................................................... 26
12.
Functional Descriptions ................................................................................................................. 31
■ Digital Core Power Supply ............................................................................................................... 31
■ Output Mode .................................................................................................................................... 31
■ Master Mode and Slave Mode ......................................................................................................... 31
■ System Clock ................................................................................................................................... 31
■ Audio Interface Format .................................................................................................................... 34
■ Channel Summation (PCM Mode, DSD Mode) .............................................................................. 46
■ Optimal Data Placement (PCM Mode, DSD Mode) ........................................................................ 46
■ CH Power Down & Channel Summation Setting (PCM Mode, DSD Mode) .................................. 47
■ Digital Filter Setting (PCM Mode) .................................................................................................... 52
■ Digital HPF (PCM Mode) ................................................................................................................. 52
■ Overflow Detection (PCM Mode, DSD Mode) ................................................................................. 52
■ LDO .................................................................................................................................................. 53
■ Reset ................................................................................................................................................ 53
■ Power Up/Down Sequence ............................................................................................................. 54
■ Operation Mode Control .................................................................................................................. 57
■ Register Control Interface ................................................................................................................ 57
■ Register Map .................................................................................................................................... 61
■ Register Definitions .......................................................................................................................... 61
13.
Recommended External Circuits .................................................................................................. 64
14.
Package......................................................................................................................................... 67
■ Outline Dimensions.......................................................................................................................... 67
■ Material & Lead Finish ..................................................................................................................... 67
■ Marking ............................................................................................................................................ 67
15.
Ordering Guide .............................................................................................................................. 68
16.
Revision History ............................................................................................................................ 68
IMPORTANT NOTICE ........................................................................................................................... 69
1.
2.
3.
4.
015099885-E-00
2016/03
-2-
[AK5536]
4. Block Diagram
VREFL3
VREFH3
VREFL2
VREFH2
VREFL1
VREFH1
■ Block Diagram
TVDD
AIN1P
Delta-Sigma
Modulator
VDD18
DVSS
LDO
Voltage Reference
AIN1N
LDOE
Decimation
Filter
HPF
DIF0/DSDSEL0
DIF1/DSDSEL1
AIN2P
AIN2N
AIN3P
AIN3N
Delta-Sigma
Modulator
Decimation
Filter
HPF
Delta-Sigma
Modulator
Decimation
Filter
HPF
Delta-Sigma
Modulator
Decimation
Filter
HPF
Delta-Sigma
Modulator
Decimation
Filter
HPF
BICK/DCLK
LRCK/DSDOL1
TDMIN/DSDOR1
SDTO1/DSDOL2
SDTO2/DSDOR2
AIN4P
AIN4N
AIN5P
AIN5N
Serial Output
Interface
SDTO3/DSDOL3
DSDOR3
DP
AIN6P
AIN6N
Delta-Sigma
Modulator
Decimation
Filter
HPF
TDM0
TDM1
ODP
AVDD1
AVSS1
PSN/CAD0_SPI
CKS0/SDA/CDTI
CKS1/CAD0_I2C/CSN
CKS2/SCL/CCLK
CKS3/CAD1
Controller
AVDD2
I2C
DCKS/HPFE
OVF
MSN
PW0
PW1
PW2
SD/PMOD
SLOW/DCKB
TEST
MCLK
PDN
AVSS2
Figure 1. Block Diagram
015099885-E-00
2016/03
-3-
[AK5536]
5. Pin Configurations and Functions
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SD/PMOD
SLOW/DCKB
CKS3/CAD1
CKS2/SCL/CCLK
CKS1/CAD0_I2C/CSN
CKS0/SDA/CDTI
OVF
TESTO2
TESTO1
DSDOR3
SDTO3/DSDOL3
SDTO2/DSDOR2
SDTO1/DSDOL2
TDMIN/DSDOR1
LRCK/DSDOL1
BICK/DCLK
■ Pin Configurations
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
64QFN
TOP VIEW
Exposed Pad (Back Face) *
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
MSN
PW2
PW1
PW0
PDN
VDD18
DVSS
TVDD
MCLK
TEST
TESTIN6
TESTIN5
TESTIN4
TESTIN3
TESTIN2
TESTIN1
AVSS1
AVDD1
AIN3P
AIN3N
VREFL2
VREFH2
AIN4N
AIN4P
AIN5P
AIN5N
VREFH3
VREFL3
AIN6N
AIN6P
AVDD2
AVSS2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DIF0/DSDSEL0
DIF1/DSDSEL1
TDM0
TDM1
PSN/CAD0_SPI
I2C
DP
DCKS/HPFE
LDOE
ODP
AIN1P
AIN1N
VREFL1
VREFH1
AIN2N
AIN2P
* The exposed pad at back face of the package must be open or connected to the ground of the board.
Figure 2. Pin Configurations
015099885-E-00
2016/03
-4-
[AK5536]
■ Pin Functions
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Pin Name
AVSS1
AVDD1
AIN3P
AIN3N
VREFL2
VREFH2
AIN4N
AIN4P
AIN5P
AIN5N
VREFH3
VREFL3
AIN6N
AIN6P
AVDD2
AVSS2
TESTIN1
TESTIN2
TESTIN3
TESTIN4
TESTIN5
TESTIN6
TEST
MCLK
I/O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Function
Analog Ground Pin(AIN1-4)
Analog Power Supply Pin(AIN1-4), 3.0-3.6 V
Channel 3 Positive Input Pin
Channel 3 Negative Input Pin
ADC Low Level Voltage Reference Input Pin
ADC High Level Voltage Reference Input Pin
Channel 4 Negative Input Pin
Channel 4 Positive Input Pin
Channel 5 Positive Input Pin
Channel 5 Negative Input Pin
ADC High Level Voltage Reference Input Pin
ADC Low Level Voltage Reference Input Pin
Channel 6 Negative Input Pin
Channel 6 Positive Input Pin
Analog Power Supply Pin(AIN5-6), 3.0-3.6 V
Analog Ground Pin(AIN5-6)
Test Input Pin1
Test Input Pin2
Test Input Pin3
Test Input Pin4
Test Input Pin5
Test Input Pin6
TEST Enable Pin. This pin is pull down by 100kΩ internally
Master Clock Input Pin
Digital I/O Buffers and LDO Power Supply Pin
1.7-1.98 V (LDOE pin= “L”) or 3.0-3.6 V (LDOE pin= “H”).
Digital Ground Pin
Digital Core Power Supply Pin, 1.7-1.98 V (LDOE pin= “L”)
25 TVDD
-
26 DVSS
I
27 VDD18
O LDO Stabilization Capacitor Connect Pin. (LDOE pin= “H”)
28 PDN
I
29 PW0
30 PW1
31 PW2
I
I
I
32 MSN
I
I
BICK
33
O
DCLK
O
I
LRCK
34
O
DSDOL1
O
Reset & Power Down Pin
“L”: Reset & Power down, “H” : Normal operation
Power Management Pin, Channel Summation select Pin
Power Management Pin, Channel Summation select Pin
Power Management Pin, Channel Summation select Pin
Master/Slave Select Pin
“L”: Slave Mode, “H” : Master Mode
Audio Serial Data Clock Input Pin in PCM & Slave Mode.
This pin is pulled down by 100 kΩ internally
Audio Serial Data Clock Output Pin in PCM & Master Mode
This pin is pulled down by 100 kΩ internally
DSD Clock Output Pin in DSD Mode
This pin is pulled down by 100 kΩ internally
Channel Clock Input Pin in PCM & Slave Mode
This pin is pulled down by 100 kΩ internally
Channel Clock Output Pin in PCM & Master Mode
This pin is pulled down by 100 kΩ internally
Audio Serial Data Output Pin for AIN1 in DSD Mode
This pin is pulled down by 100 kΩ internally
015099885-E-00
Power Down
Status
Hi-z & Pull
Down with
500 Ω
Hi-z
Hi-z
Hi-z
Hi-z
2016/03
-5-
[AK5536]
No.
Pin Name
I/O
TDMIN
I
DSDOR1
O
SDTO1
DSDOL2
SDTO2
DSDOR2
SDTO3
DSDOL3
DSDOR3
TESTO1
TESTO2
OVF
CKS0
SDA
CDTI
CKS1
CAD0_I2C
CSN
CKS2
SCL
CCLK
CKS3
CAD1
SLOW
DCKB
SD
PMOD
O
O
O
O
O
O
O
O
O
O
I
I/O
I
I
I
I
I
I
I
I
I
I
I
I
I
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
DIF0
I
DSDSEL0
I
DIF1
I
DSDSEL1
I
51 TDM0
I
52 TDM1
I
53
PSN
I
CAD0_SPI
I
54 I2C
I
55 DP
I
Function
TDM Data Input Pin in PCM Mode
This pin is pulled down by 100 kΩ internally
Audio Serial Data Output Pin for AIN2 in DSD Mode
This pin is pulled down by 100 kΩ internally
Audio Serial Data Output Pin for AIN1 and AIN2 in PCM Mode
Audio Serial Data Output Pin for AIN3 in DSD Mode
Audio Serial Data Output Pin for AIN3 and AIN4 in PCM Mode
Audio Serial Data Output Pin for AIN4 in DSD Mode
Audio Serial Data Output Pin for AIN5 and AIN6 in PCM Mode
Audio Serial Data Output Pin for AIN5 in DSD Mode
Audio Serial Data Output Pin for AIN6 in DSD Mode
Test Output Pin1
Test Output Pin2
Analog Input Over Flow Flag Output Pin
Clock Mode Select Pin
Control Data I/O Pin in I2C Bus Serial Control Mode
Control Data Input Pin in 3-wire Serial Control Mode
Clock Mode Select Pin
Chip Address 0 Pin in I2C Bus Serial Control Mode
Chip Select Pin in 3-wire Serial Control Mode
Clock Mode Select Pin
Control Data Clock Pin in I2C Bus Serial Control Mode
Control Data Clock Pin in 3-wire Serial Control Mode
Clock Mode Select Pin
Chip Address 1 Pin in I2C Bus or 3-wire Serial Control Mode
Slow Roll-OFF Digital Filter Select Pin in PCM Mode
Polarity of DCLK Pin in DSD Mode
Short Delay Digital Filter Select Pin in PCM Mode
DSD Phase Modulation Mode Select Pin in DSD Mode
Audio Data Format Select Pin in PCM Mode
“L”: MSB justified, “H”: I2S
DSD Sampling Rate Control Pin in DSD Mode
Audio Data Format Select Pin in PCM Mode
“L”: 24-bit Mode, “H”: 32-bit Mode
DSD Sampling Rate Control Pin in DSD Mode
TDM I/F Format Select Pin
* This pin must be fixed to “L” when using DSD mode.
TDM I/F Format Select Pin
* This pin must be fixed to “L” when using DSD mode.
Control Mode Select Pin (I2C pin = “H”)
“L”:I2C Bus Serial Control Mode, “H” :Parallel Control Mode
Chip Address 0 Pin in 3-wire Serial Control Mode (I2C pin = “L”)
Control Mode Select Pin
“L”: 3-wire Serial Control Mode
“H”: I2C Bus Serial Control Mode or Parallel Control Mode
DSD Mode Enable Pin
“L”: PCM Mode, “H”: DSD Mode
015099885-E-00
Power Down
Status
Hi-z
L
L
L
L
L
L
L
Hi-Z
Hi-Z
L
Hi-z
-
2016/03
-6-
[AK5536]
No.
Pin Name
I/O
Power Down
Status
Function
High Pass Filter Enable Pin
“L”: HPF Disable, “H”: HPF Enable
DCKS
I Master Clock Frequency Select at DSD Mode (DSD Only)
LDO Enable Pin
57 LDOE
I
“L”: LDO Disable, “H”: LDO Enable
This pin is pulled down by 100 kΩ internally.
58 ODP
I Optimal Data Placement Mode Select Pin
59 AIN1P
I Channel 1 Positive Input Pin
60 AIN1N
I Channel 1 Negative Input Pin
61 VREFL1
I ADC Low Level Voltage Reference Input Pin
62 VREFH1
I ADC High Level Voltage Reference Input Pin
63 AIN2N
I Channel 2 Negative Input Pin
64 AIN2P
I Channel 2 Positive Input Pin
Note 1. All digital input pins must not be allowed to float.
56
HPFE
I
-
-
■ Handling of Unused Pin
The unused I/O pins should be connected appropriately.
1. PCM Mode
Classification
Analog
Digital
Pin Name
AIN1-6P, AIN1-6N
VREFH1-3
VREFL1-3, TESTIN1-6
TDMIN, TEST
SDTO1-3, OVF, TESTO1-2
Setting
Open
Connect to AVDD
Connect to AVSS
Connect to DVSS
Open
2. DSD Mode
Classification
Pin Name
AIN1-6P, AIN1-6N
Analog
VREFH1-3
VREFL1-3, TESTIN1-6
TDM0, TDM1, TEST
Digital
DSDOL1-3, DSDOR1-3, OVF
TESTO1-2
Note 2. Unused channels must be powered down.
015099885-E-00
Setting
Open
Connect to AVDD
Connect to AVSS
Connect to DVSS
Open
2016/03
-7-
[AK5536]
6. Absolute Maximum Ratings
(VSS= 0 V; Note 3)
Parameter
Symbol
Min.
Max.
Unit
AVDDam
−0.3
6.0
V
Power
Analog (AVDD pin)
Supplies: Digital Interface (TVDD pin)
TVDDam
−0.3
4.0
V
Digital Core (VDD18 pin) (Note 4)
VDD18am
−0.3
2.5
V
Input Current (Any Pin Except Supplies)
IIN
10
mA
Analog Input Voltage (AIN1-6P, AIN1-6N pins)
VINA
−0.3
AVDD+0.3
V
Digital Input Voltage
VIND
−0.3
TVDD+0.3
V
Ambient Temperature (Power applied)
°C
When the back tab is connected to VSS
Ta
−40
105
°C
When the back tab is open
Ta
−40
70
Storage Temperature
Tstg
−65
150
°C
Note 3. All voltages with respect to ground.
Note 4. The 1.8 V LDO is off (LDOE pin = “L”) and an external power is supplied to the VDD18 pin.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operation Conditions
(VSS= 0 V; Note 3)
Parameter
Symbol
Min.
Typ. Max. Unit
Analog (AVDD pin)
AVDD
3.0
3.3
3.6
V
(LDOE pin= “L”) (Note 5)
Power
Digital Interface (TVDD pin)
(Note 6)
TVDD
1.7
1.8
1.98
V
Supplies
Digital Core (VDD18 pin)
VDD18
1.7
1.8
1.98
V
(LDOE pin= “H”) (Note 7)
Digital Interface (TVDD pin)
TVDD
3.0
3.3
3.6
V
“H” voltage Reference (Note 8)
VREFH1-3
3.0
3.3
3.6
V
Voltage
Reference “L” voltage reference (Note 9)
VREFL1-3
AVSS
V
Note 3. All voltages with respect to ground.
Note 5. TVDD pin must be powered up before or at the same time with the VDD18 pin when the LDOE
pin = “L”. The power up sequence between AVDD pin and TVDD pin or between AVDD pin and
VDD18 pin is not critical.
Note 6. TVDD must not exceed VDD18±0.1 V when LDOE pin= “L”.
Note 7. When LDOE pin = “H”, the internal LDO supplies 1.8 V (typ). The power up sequences between
AVDD pin and TVDD pin is not critical.
Note 8. VREFH1-3 must not exceed AVDD+0.1 V.
Note 9. VREFL1-3 must be connected to AVSS.
Analog Input Voltage is proportional to {(VREFH) – (VREFL)}.
Vin (typ, @ 0dB) = 1.85 {(VREFH) – (VREFL)} / 3.3 [V].
* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.
015099885-E-00
2016/03
-8-
[AK5536]
8. Analog Characteristics
(Ta= 25 C; AVDD= 3.3 V; TVDD= 3.3 V, fs= 48 kHz, BICK= 64fs;
Signal Frequency= 1 kHz; 24-bit Data; Measurement frequency= 20 Hz-20 kHz at fs= 48 kHz,
40 Hz-40 kHz at fs= 96 kHz, 40 Hz-40 kHz at fs= 192 kHz, unless otherwise specified.)
Parameter
Min.
Typ.
Max.
Unit
Analog Input Characteristics:
Resolution
32
bit
Input Voltage
(Note 10)
Vpp
1.75
1.85
1.95
1
dBFS
103
dB
97
S/(N+D)
fs= 48 kHz
89
dB
20 dBFS
BW=20 kHz
49
dB
60 dBFS
1 dBFS
103
dB
fs= 96 kHz
86
dB
20 dBFS
BW= 40 kHz
46
dB
60 dBFS
1 dBFS
103
dB
fs= 192 kHz
86
dB
20 dBFS
BW= 40 kHz
46
dB
60 dBFS
Not-Sum. mode
106
111
dB
Dynamic Range
6-to-3 mode
114
dB
4-to-1 mode
117
dB
(60 dBFS with A-weighted)
6-to-1 mode
118
dB
Not-Sum. mode
106
111
dB
S/N
6-to-3 mode
114
dB
(A-weighted)
4-to-1 mode
117
dB
6-to-1 mode
118
dB
Input Resistance
These values will be doubled in DSD 64fs mode.
8.8
10.4
12.0
k
(Values in DSD128 or DSD256 modes are as shown
here)
Interchannel Isolation
110
120
dB
(AIN1↔AIN2, AIN3↔AIN4, AIN5↔AIN6)
Interchannel Gain Mismatch
0
0.5
dB
Power Supply Rejection
(Note 11)
60
dB
Power Supplies
Power Supply Current
Normal Operation (PDN pin = “H”, LDOE pin = “H”)
mA
AVDD + VREFHm (m=1-3)
29
38
mA
TVDD
(fs= 48 kHz)
14
19
mA
TVDD
(fs= 96 kHz)
24
32
mA
TVDD
(fs= 192 kHz)
21
28
Power Down mode (PDN pin = “L”)
(Note 12)
AVDD+TVDD
10
100
A
Note 10. This value is (AINnP)(AINnN) that the ADC output becomes full-scale (n=1-6).
Vin = 0.56 (VREFHmVREFLm) [Vpp]. (m=1-3)
Note 11. PSRR is applied to AVDD, TVDD with 1 kHz, 20 mVpp sine wave. The VREFH1-3 are held to
the fixed voltage.
Note 12. All digital inputs are fixed to TVDD or TVSS.
015099885-E-00
2016/03
-9-
[AK5536]
9. Filter Characteristics
■ ADC Filter Characteristics (fs= 48 kHz)
(Ta= 40 - +105C; AVDD= 3.0-3.6 V, TVDD=1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin= “L”))
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter (Decimation LPF): SHARP ROLL-OFF (Figure 3)
(SD pin= “L”, SLOW pin= “L”)
Passband (Note 13) +0.001/0.06 dB
PB
0
22.0
kHz
24.4
kHz
6.0 dB
Stopband (Note 13)
SB
27.9
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 20.0 kHz
0
1/fs
GD
Group Delay (Note 14)
GD
19
1/fs
Digital Filter (Decimation LPF): SLOW ROLL-OFF (Figure 4)
(SD pin= “L”, SLOW pin= “H”)
Passband (Note 13) +0.001/0.076 dB
PB
0
12.5
kHz
21.9
kHz
6.0 dB
Stopband (Note 13)
SB
36.5
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 20.0 kHz
0
1/fs
GD
Group Delay (Note 14)
GD
7
1/fs
Digital Filter (Decimation LPF): SHORT DELAY SHARP ROLL-OFF FILTER (Figure 5)
(SD pin= “H”, SLOW pin= “L”)
Passband (Note 13)
PB
0
22.0
kHz
+0.001/0.06 dB
24.4
kHz
6.0 dB
Stopband (Note 13)
SB
27.9
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 20.0 kHz
2.8
1/fs
GD
Group Delay (Note 14)
GD
5
1/fs
Digital Filter (Decimation LPF): SHORT DELAY SLOW ROLL-OFF (Figure 6)
(SD pin= “H”,SLOW pin= “H”)
Passband (Note 13) +0.001/0.076 dB
PB
0
12.5
kHz
21.9
kHz
6.0 dB
Stopband (Note 13)
SB
36.5
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 20.0 kHz
1.2
1/fs
GD
Group Delay (Note 14)
GD
5
1/fs
Digital Filter (HPF):
Frequency Response
FR
1.0
Hz
3.0 dB
2.5
Hz
0.5 dB
(Note 13)
6.5
Hz
0.1 dB
Note 13. The Passband and Stopband Frequencies scale with fs.
For Example, PB (+0.001 dB/0.06 dB) = 0.46 fs (SHARP ROLL-OFF).
For Example, PB (+0.001 dB/0.076 dB) = 0.26 fs (SLOW ROLL-OFF).
Note 14. The calculated delay time induced by digital filtering. This time is from the input of an analog
signal to the L channel MSB output timing of the SDTO. It may have an error of +1[1/fs] at
maximum when outputting data via audio interfaces.
015099885-E-00
2016/03
- 10 -
[AK5536]
Figure 3. SHARP ROLL-OFF (fs= 48 kHz)
Figure 4. SLOW ROLL-OFF (fs= 48 kHz)
Figure 5. SHORT DELAY SHARP ROLL-OFF (fs= 48 kHz)
Figure 6. SHORT DELAY SLOW ROLL-OFF (fs= 48 kHz)
015099885-E-00
2016/03
- 11 -
[AK5536]
■ ADC Filter Characteristics (fs= 96 kHz)
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD=1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin= “L”))
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter (Decimation LPF): SHARP ROLL-OFF (Figure 7)
(SD pin= “L”, SLOW pin= “L”)
44.1
Passband (Note 13) +0.001/0.06 dB
0
kHz
PB
48.8
kHz
6.0 dB
Stopband (Note 13)
SB
55.7
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
0
1/fs
GD
Group Delay (Note 14)
GD
19
1/fs
Digital Filter (Decimation LPF): SLOW ROLL-OFF (Figure 8)
(SD pin= “L”, SLOW pin= “H”)
25
Passband (Note 13) +0.001/0.076 dB
0
kHz
PB
43.8
kHz
6.0 dB
Stopband (Note 13)
SB
73
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
0
1/fs
GD
Group Delay (Note 14)
GD
7
1/fs
Digital Filter (Decimation LPF): SHORT DELAY SHARP ROLL-OFF (Figure 9)
(SD pin= “H”,SLOW pin= “L”)
Passband (Note 13) +0.001/0.06 dB
0
44.1
kHz
PB
48.8
kHz
6.0 dB
Stopband (Note 13)
SB
55.7
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
2.8
1/fs
GD
Group Delay (Note 14)
GD
5
1/fs
Digital Filter (Decimation LPF): SHORT DELAY SLOW ROLL-OFF (Figure 10)
(SD pin=“H”, SLOW pin= “H”)
Passband (Note 13) +0.001/0.076 dB
0
25
kHz
PB
43.8
kHz
6.0dB
Stopband (Note 13)
SB
73
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
1.2
1/fs
GD
Group Delay (Note 14)
GD
5
1/fs
Digital Filter (HPF):
Frequency Response
FR
1.0
Hz
3.0 dB
2.5
Hz
0.5 dB
(Note 13)
6.5
Hz
0.1 dB
Note 13. The Passband and Stopband Frequencies scale with fs.
For example, PB (+0.001 dB/0.06 dB) = 0.46 fs (SHARP ROLL-OFF).
For example, PB (+0.001 dB/0.076 dB) = 0.26 fs (SLOW ROLL-OFF).
Note 14. The calculated delay time induced by digital filtering. This time is from the input of an analog
signal to the L channel MSB output timing of the SDTO. It may have an error of +1[1/fs] at
maximum when outputting data via audio interfaces.
015099885-E-00
2016/03
- 12 -
[AK5536]
Figure 7. SHARP ROLL-OFF (fs= 96 kHz)
Figure 8. SLOW ROLL-OFF (fs= 96 kHz)
Figure 9. SHORT DELAY SHARP ROLL-OFF (fs= 96 kHz)
Figure 10. SHORT DELAY SLOW ROLL-OFF (fs= 96 kHz)
015099885-E-00
2016/03
- 13 -
[AK5536]
■ ADC Filter Characteristics (fs= 192 kHz)
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD=1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin= “L”))
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter (Decimation LPF): SHARP ROLL-OFF (Figure 11)
(SD pin=“L”, SLOW pin= “L”)
83.7
Passband (Note 13) +0.001/0.037 dB
0
kHz
PB
100.2
kHz
6.0 dB
Stopband (Note 13)
SB
122.9
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
0
1/fs
GD
Group Delay (Note 14)
GD
15
1/fs
Digital Filter (Decimation LPF): SLOW ROLL-OFF (Figure 12)
(SD pin=“L”, SLOW pin= “H”)
Passband (Note 13) +0.001/0.1 dB
0
31.5
kHz
PB
75.2
kHz
6.0 dB
Stopband (Note 13)
SB
146
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
0
1/fs
GD
Group Delay (Note 14)
GD
8
1/fs
Digital Filter (Decimation LPF): SHORT DELAY SHARP ROLL-OFF FILTER (Figure 13)
(SD pin=“H”, SLOW pin= “L”)
Passband (Note 13) +0.001/0.037 dB
0
83.7
kHz
PB
100.2
kHz
6.0 dB
Stopband (Note 13)
SB
122.9
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
0.3
1/fs
GD
Group Delay (Note 14)
GD
6
1/fs
Digital Filter (Decimation LPF): SHORT DELAY SLOW ROLL-OFF FILTER (Figure 14)
(SD pin=“H”, SLOW pin= “H”)
Passband (Note 13) +0.001/0.1 dB
0
31.5
kHz
PB
75.2
kHz
6.0 dB
Stopband (Note 13)
SB
146
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
0.4
1/fs
GD
Group Delay (Note 14)
GD
6
1/fs
Digital Filter (HPF):
Frequency Response
FR
1.0
Hz
3.0 dB
2.5
Hz
0.5 dB
(Note 13)
6.5
Hz
0.1 dB
Note 13. The Passband and Stopband Frequencies scale with fs.
For Example, PB (+0.001 dB/0.037 dB) = 0.436 fs (SHARP ROLL-OFF).
For Example, PB (+0.001 dB/0.1 dB) = 0.164 fs (SLOW ROLL-OFF).
Note 14. The calculated delay time induced by digital filtering. This time is from the input of an analog
signal to the L channel MSB output timing of the SDTO. It may have an error of +1[1/fs] at
maximum when outputting data via audio interfaces.
015099885-E-00
2016/03
- 14 -
[AK5536]
Figure 11. SHARP ROLL-OFF (fs= 192 kHz)
Figure 12. SLOW ROLL-OFF (fs= 192 kHz)
Figure 13. SHORT DELAY SHARP ROLL-OFF (fs= 192 kHz)
Figure 14. SHORT DELAY SLOW ROLL-OFF (fs= 192 kHz)
015099885-E-00
2016/03
- 15 -
[AK5536]
■ ADC Filter Characteristics (fs= 384 kHz)
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD=1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin= “L”))
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter (Decimation LPF) (Figure 15)
(SD pin = “X”, SLOW pin = “X”) * It does not depend on the SD pin and Slow pin.
Frequency Response
0.1 dB
81.75
kHz
(Note 13)
1.0 dB
114
kHz
FR
137.63
kHz
3.0 dB
157.2
kHz
6.0 dB
Stopband (Note 13)
SB
277.4
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
ΔGD
0
1/fs
Group Delay (Note 14)
GD
7
1/fs
Note 13. The Passband and Stopband Frequencies scale with fs.
Note 14. The calculated delay time induced by digital filtering. This time is from the input of an analog
signal to the L channel MSB output timing of the SDTO. It may have an error of +1[1/fs] at
maximum when outputting data via audio interfaces.
Figure 15. Frequency Response (fs= 384 kHz)
015099885-E-00
2016/03
- 16 -
[AK5536]
■ ADC Filter Characteristics (fs= 768 kHz)
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD=1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin= “L”))
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter (Decimation LPF) (Figure 16)
(SD pin = “X”, SLOW pin = “X”) * It does not depend on the SD pin and SLOW pin.
Frequency Response
0.1 dB
26.25
kHz
(Note 13)
1.0 dB
83.75
kHz
FR
144.5
kHz
3.0 dB
203.1
kHz
6.0 dB
Stopband (Note 13)
SB
640.3
kHz
Stopband Attenuation
SA
85
dB
Group Delay Distortion 0 - 40.0 kHz
ΔGD
0
1/fs
Group Delay (Note 14)
GD
5
1/fs
Note 13. The Passband and Stopband Frequencies scale with fs.
Note 14. The calculated delay time induced by digital filtering. This time is from the input of an analog
signal to the L channel MSB output timing of the SDTO. It may have an error of +1[1/fs] at
maximum when outputting data via audio interfaces.
Figure 16. Frequency Response (fs= 768 kHz)
015099885-E-00
2016/03
- 17 -
[AK5536]
10. DC Characteristics
(Ta= 40-105 C; AVDD= 3.0-3.6 V, VDD18= 1.7-1.98 V (LDOE pin=“L”))
Parameter
Symbol
Min.
TVDD= 3.0-3.6 V (LDOE pin=”H”)
High-Level Input Voltage
Low-Level Input Voltage
High-Level Output Voltage
(Iout= 100 µA)
Low-Level Output Voltage
(except SDA pin: Iout= 100 µA)
(SDA pin: Iout= 3 mA)
TVDD= 1.7-1.98 V (LDOE pin=”L”)
(Note 15)
(Note 15)
(Note 16)
Typ.
Max.
Unit
VIH
VIL
70%TVDD
-
-
30%TVDD
V
V
VOH
TVDD0.5
-
-
V
VOL
VOL
-
-
0.5
0.4
V
V
(Note 17)
High-Level Input Voltage
(Note 15)
VIH
80%TVDD
V
Low-Level Input Voltage
(Note 15)
VIL
20%TVDD
V
High-Level Output Voltage
(Note 16)
VOH
TVDD0.3
V
(Iout= 100 µA)
Low-Level Output Voltage
(Note 17)
(except SDA pin: Iout= 100 µA)
VOL
0.3
V
(SDA pin: Iout= 3 mA)
VOL
20%TVDD
V
Input Leakage Current
Iin
10
A
Note 15. MCLK, PDN, PW0-2, MSN, BICK (Slave Mode), LRCK (Slave Mode), TDMIN, SLOW/DCKB,
SD/PMOD, CKS0/SDA (Write)/CDTI, CKS1/CAD_I2C/CSN, CKS2/SCL/CCLK, CKS3/CAD1,
DIF0/DSDSEL0, DIF1/DSDSEL1, TDM0, TDM1, PSN/CAD0_SPI, I2C, DP, DCKS/HPFE,
LDOE, ODP, TEST
Note 16. BICK (Master Mode)/DCLK, LRCK (Master Mode)/DSDOL1, DSDOR1, SDTO1/DSDOL2,
SDTO2/DSDOR2, SDTO3/DSDOL3, DSDOR3, OVF
Note 17. Note.16 and SDA (Read)
The external pull-up resistors should be connected to TVDD+0.3 V or less.
015099885-E-00
2016/03
- 18 -
[AK5536]
11. Switching Characteristics
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Parameter
Symbol
Master Clock (MCLK)Timing (Figure 17, Figure 18)
Frequency
fCLK
Duty Cycle
dCLK
LRCK Timing (Slave mode) (Figure 17)
Normal mode (TDM1-0 bits = “00”)
fs
Frequency
fsn
Normal Speed mode
fsd
Double Speed mode
fsq
Quad Speed mode
fso
Oct speed mode
fsh
Hex speed mode
Duty
Duty Cycle
TDM128 mode (TDM1-0 bits = “01”)
fs
Frequency
fsn
Normal Speed mode
fsd
Double Speed mode
fsq
Quad Speed mode
tLRH
High time
tLRL
Low time
TDM256 mode (TDM1-0 bits = “10”)
fs
Frequency
fsn
Normal Speed mode
fsd
Double Speed mode
tLRH
High time
tLRL
Low time
TDM512 mode (TDM1-0 bits = “11”)
fs
Frequency
fsn
Normal Speed mode
tLRH
High time
tLRL
Low time
LRCK Timing (Master mode) (Figure 18)
Normal mode (TDM1-0 bits = “00”)
fs
Frequency
fsn
Normal Speed mode
fsd
Double Speed mode
fsq
Quad Speed mode
fso
Oct speed mode
fsh
Hex speed mode
Duty
Duty Cycle
TDM128 mode (TDM1-0 bits = “01”)
fs
Frequency
fsn
Normal Speed mode
fsd
Double Speed mode
fsq
Quad Speed mode
tLRH
High time
TDM256 mode (TDM1-0 bits = “10”)
fs
Frequency
fsn
Normal Speed mode
fsd
Double Speed mode
tLRH
High time
TDM512 mode (TDM1-0 bits = “11”)
fs
Frequency
fsn
Normal Speed mode
tLRH
High time
Min.
Typ.
Max.
Unit
2.048
45
-
49.152
55
MHz
%
8
54
108
45
384
768
-
54
108
216
55
kHz
kHz
kHz
kHz
kHz
%
8
54
108
1/128fs
1/128fs
-
54
108
216
-
kHz
kHz
kHz
ns
ns
8
54
1/256fs
1/256fs
-
54
108
-
kHz
kHz
ns
ns
8
1/512fs
1/512fs
-
54
-
kHz
ns
ns
8
54
108
-
384
768
50
54
108
216
-
kHz
kHz
kHz
kHz
kHz
%
8
54
108
-
1/4fs
54
108
216
-
kHz
kHz
kHz
ns
8
54
-
1/8fs
54
108
-
kHz
kHz
ns
8
-
1/16fs
54
-
kHz
ns
Note 18. When the 1024fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK5536
should be reset by the PDN pin or RSTN bit.
015099885-E-00
2016/03
- 19 -
[AK5536]
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Audio Interface Timing (Slave mode)
Normal mode (TDM1-0 bits = “00”)
(8 kHz fs 216 kHz) (Figure 19)
(LDOE pin = “H”)
BICK Period
tBCK
1/128fsn
ns
Normal Speed mode
tBCK
1/128fsd
ns
Double Speed mode
tBCK
1/64fsq
ns
Quad Speed mode
tBCKL
32
ns
BICK Pulse Width Low
tBCKH
32
ns
BICK Pulse Width High
tLRB
25
ns
LRCK Edge to BICK “↑”
(Note 19)
tBLR
25
ns
BICK “↑” to LRCK Edge
(Note 19)
tLRS
25
ns
LRCK to SDTO (MSB) (Except I2S mode)
tBSD
25
ns
BICK “↓”to SDTO1/2/3
Normal mode (TDM1-0 bits = “00”)
(8 kHz ≤ fs ≤ 216 kHz) (Figure 19)
(LDOE pin = “L”)
BICK Period
tBCK
1/128fsn
ns
Normal Speed mode (8 kHz ≤ fs ≤ 48 kHz)
tBCK
1/128fsd
ns
Double Speed mode (48 kHz ≤ fs ≤ 96 kHz)
tBCK
1/64fsq
ns
Quad Speed mode (96 kHz ≤ fs ≤ 192 kHz)
tBCKL
36
ns
BICK Pulse Width Low
tBCKH
36
ns
BICK Pulse Width High
tLRB
30
ns
LRCK Edge to BICK “↑”
(Note 19)
tBLR
30
ns
BICK “↑” to LRCK Edge
(Note 19)
tLRS
30
ns
LRCK to SDTO (MSB) (Except I2S mode)
tBSD
30
ns
BICK “↓” to SDTO1/2/3
Normal mode (TDM1-0 bits = “00”)
(fs = 384 kHz, 768 kHz) (Figure 20)
BICK Period
tBCK
1/64fso
ns
Oct Speed mode
tBCK
1/48fsh
ns
Hex Speed mode
tBCKL
12
ns
BICK Pulse Width Low
tBCKH
12
ns
BICK Pulse Width High
tLRB
12
ns
LRCK Edge to BICK “↑”
(Note 19)
tBLR
12
ns
BICK “↑” to LRCK Edge
(Note 19)
tBSDD
5
22
ns
BICK “↑” to SDTO1/2/3
Note 18. When the 1024fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK5536
should be reset by the PDN pin or RSTN bit.
Note 19. BICK rising edge must not occur at the same time as LRCK edge.
015099885-E-00
2016/03
- 20 -
[AK5536]
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Audio Interface Timing (Slave mode) (Figure 21)
TDM128 mode (TDM1-0 bits = “01”)
BICK Period
tBCK
1/128fsn
ns
Normal Speed mode
tBCK
1/128fsd
ns
Double Speed mode
tBCK
1/128fsq
ns
Quad Speed mode
tBCKL
14
ns
BICK Pulse Width Low
tBCKH
14
ns
BICK Pulse Width High
tLRB
14
ns
LRCK Edge to BICK “↑”
(Note 19)
tBLR
14
ns
BICK “↑” to LRCK Edge
(Note 19)
tBSDD
5
30
ns
BICK “↑” to SDTO1/2
tSDH
5
ns
TDMIN Hold Time
tSDS
5
ns
TDMIN Setup Time
TDM256 mode (TDM1-0 bits = “10”)
BICK Period
tBCK
1/256fsn
ns
Normal Speed mode
tBCK
1/256fsd
ns
Double Speed mode
tBCKL
14
ns
BICK Pulse Width Low
tBCKH
14
ns
BICK Pulse Width High
tLRB
14
ns
LRCK Edge to BICK “↑”
(Note 19)
tBLR
14
ns
BICK “↑” to LRCK Edge
(Note 19)
tBSDD
5
30
ns
BICK “↑” to SDTO1
tSDH
5
ns
TDMIN Hold Time
tSDS
5
ns
TDMIN Setup Time
TDM512 mode (TDM1-0 bits = “11”)
BICK Period
tBCK
1/512fsn
ns
Normal Speed mode
tBCKL
14
ns
BICK Pulse Width Low
tBCKH
14
ns
BICK Pulse Width High
tLRB
14
ns
LRCK Edge to BICK “↑”
(Note 19)
tBLR
14
ns
BICK “↑” to LRCK Edge
(Note 19)
tBSDD
5
30
ns
BICK “↑” to SDTO1
tSDH
5
ns
TDMIN Hold Time
tSDS
5
ns
TDMIN Setup Time
Note 18. When the 1024fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK5536
should be reset by the PDN pin or RSTN bit.
Note 19. BICK rising edge must not occur at the same time as LRCK edge.
015099885-E-00
2016/03
- 21 -
[AK5536]
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Min.
Typ.
Max.
Parameter
Symbol
Unit
Audio Interface Timing (Master mode) (Figure 22)
Normal mode (TDM1-0 bits = “00”)
(8 kHz fs 216 kHz)
BICK Period
tBCK
1/64fsn
ns
Normal Speed mode
tBCK
1/64fsd
ns
Double Speed mode
tBCK
1/64fsq
ns
Quad Speed mode
dBCK
50
%
BICK Duty
tMBLR
20
20
ns
BICK “↓” to LRCK Edge
tBSD
20
ns
BICK “↓”to SDTO1/2/3
20
Normal mode (TDM1-0 bits = “00”)
(fs = 384kHz, 768 kHz)
(LDOE pin = ”H”)
BICK Period
tBCK
1/64fso
ns
Oct speed mode
tBCK
1/64fsh
ns
Hex speed mode
dBCK
50
%
BICK Duty
tMBLR
4
4
ns
BICK “↓” to LRCK Edge
tBSD
4
ns
BICK “↓” to SDTO1/2/3
4
Normal mode (TDM1-0 bits = “00”)
(fs = 384 kHz,768 kHz)
(LDOE pin = ”L”)
BICK Period
tBCK
1/64fso
ns
Oct speed mode
tBCK
1/48fsh
ns
Hex speed mode
dBCK
50
%
BICK Duty
tMBLR
5
5
ns
BICK “↓” to LRCK Edge
tBSD
5
ns
BICK “↓” to SDTO1/2/3
5
Note 18. When the 1024fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK5536
should be reset by the PDN pin or RSTN bit.
015099885-E-00
2016/03
- 22 -
[AK5536]
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Min.
Typ.
Max.
Parameter
Symbol
Unit
Audio Interface Timing (Master mode) (Figure 22)
TDM128 mode (TDM1-0 bits = “01”)
BICK Period
tBCK
1/128fsn
ns
Normal Speed mode
tBCK
1/128fsd
ns
Double Speed mode
tBCK
1/128fsq
ns
Quad Speed mode
dBCK
50
%
BICK Duty
tMBLR
5
5
ns
BICK “↓” to LRCK Edge
tBSD
5
ns
BICK “↓” to SDTO1/2
5
tSDH
ns
TDMIN Hold Time
5
tSDS
ns
TDMIN Setup Time
5
TDM256 mode (TDM1-0 bits = “10”)
BICK Period
tBCK
1/256fsn
ns
Normal Speed mode
tBCK
1/256fsd
ns
Double Speed mode
dBCK
50
%
BICK Duty
tMBLR
5
5
ns
BICK “↓” to LRCK Edge
tBSD
5
ns
BICK “↓” to SDTO1
5
tSDH
ns
TDMIN Hold Time
5
tSDS
ns
TDMIN Setup Time
5
TDM512 mode (TDM1-0 bits = “11”)
BICK Period
tBCK
1/512fsn
ns
Normal Speed mode
dBCK
50
%
BICK Duty
tMBLR
5
5
ns
BICK “↓” to LRCK Edge
tBSD
5
ns
BICK “↓” to SDTO1
5
tSDH
ns
TDMIN Hold Time
5
tSDS
ns
TDMIN Setup Time
5
Note 18. When the 1024fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK5536
should be reset by the PDN pin or RSTN bit.
015099885-E-00
2016/03
- 23 -
[AK5536]
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Audio Interface Timing (Master mode) (Figure 23)
DSD Audio Interface Timing
(64fs mode, DSDSEL 1-0 bits = “00”)
tDCK
1/64fs
ns
DCLK Period
144
tDCKL
ns
DCLK Pulse Width Low
144
tDCKH
ns
DCLK Pulse Width High
tDDD
20
ns
DCLK Edge to DSDOL/R
(Note 20)
20
DSD Audio Interface Timing
(128fs mode, DSDSEL 1-0 bits = “01”)
tDCK
1/128fs
ns
DCLK Period
72
tDCKL
ns
DCLK Pulse Width Low
72
tDCKH
ns
DCLK Pulse Width High
tDDD
10
ns
DCLK Edge to DSDOL/R
(Note 20)
10
DSD Audio Interface Timing
(256fs mode, DSDSEL 1-0 bits = “10”)
tDCK
1/256fs
ns
DCLK Period
36
tDCKL
ns
DCLK Pulse Width Low
36
tDCKH
ns
DCLK Pulse Width High
tDDD
10
ns
DCLK Edge to DSDOL/R
(Note 20)
10
Note 18. When the 1024fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK5536
should be reset by the PDN pin or RSTN bit.
Note 20. tDDD is defined from a falling edge of DCLK “↓” to a DSDOL/R edge when DCKB bit = “0” and it
is defined from a rising edge of DCLK “↑” to a DSDOL/R edge when DCKB bit = “1”.
015099885-E-00
2016/03
- 24 -
[AK5536]
(Ta= 40 - +105 C; AVDD= 3.0-3.6 V, TVDD= 1.7-1.98 V (LDOE pin=“L”) or 3.0-3.6 V (LDOE pin=“H”),
VDD18= 1.7-1.98 V (LDOE pin=“L”), CL= 10 pF)
Parameter
Symbol
Min.
Typ.
Max. Unit
Control Interface Timing (3-Wire Serial mode):
(Figure 25) (Figure 26)
tCCK
200
ns
CCLK Period
tCCKL
80
ns
CCLK Pulse Width Low
tCCKH
80
ns
Pulse Width High
tCDS
40
ns
CDTI Setup Timing
tCDH
40
ns
CDTI Hold Timing
tCSW
150
ns
CSN “H” Time
tCSS
50
ns
CSN “↓” to CCLK “↑”
tCSH
50
ns
CCLK “↑” to CSN “↑”
Control Interface Timing (I2C Bus mode): (Figure 27)
fSCL
400
kHz
SCL CLOCK Frequency
tBUF
1.3
µs
Bus Free Time Between Transmissions
tHD
STA
0.6
µs
Start Condition Hold Tune (Prior to First Clock Pulse)
tLow
1.3
µs
Clock Low Time
tHIGH
0.6
µs
Clock High Time
tSU STA
0.6
µs
Setup Time for Repeated Start Condition
tHD DAT
0
µs
SDA Hold Time from SCL Falling (Note 21)
tSU DAT
0.1
µs
SDA Setup Time from SCL Rising
tR
1.0
µs
Rise Time of Both SDA and SCL Lines
tF
0.3
µs
Fall Time of Both SDA and SCL Lines
tSU STO
0.6
µs
Setup Time for Stop Condition
tSP
0
50
ns
Pulse Width of Spike Noise Suppressed by Input Filter
Cb
400
pF
Capacitive Load on Bus
Power Down & Reset Timing (Figure 28)
tPD
150
ns
PDN Pulse Width
(Note 22)
tRPD
30
ns
PDN Reject Pulse Width
(Note 22)
tPDV
583
1/fs
PDN “↑” to SDTO1-4 valid
(Note 23)
Note 21. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 22. The AK5536 can be reset by setting the PDN pin to “L” upon power-up. The PDN pin must held
“L” for more than 150 ns for a certain reset. The AK5536 is not reset by the “L” pulse less than
30 ns.
Note 23. This cycle is the number of LRCK rising edges from the PDN pin = “H”.
015099885-E-00
2016/03
- 25 -
[AK5536]
■ Timing Diagram
[1] PCM Mode
1/fCLK
50%TVDD
MCLK
tdCLKH
tdCLKL
dCLK=tdCLKHfs100
or
tdCLKLfs100
1/fs
50%TVDD
LRCK
tLRH
tLRL
tBCK
Duty=tLRHfs100
or
tLRLfs100
VIH
BICK
VIL
tBCKH
tBCKL
Figure 17. Clock Timing (Slave Mode)
1/fCLK
50%TVDD
MCLK
tCLKH
tCLKL
dCLK=tCLKHfCLK100
or
tCLKLfCLK100
1/fs
50%TVDD
LRCK
Duty=tLRHfs100
tLRH
tBCK
50%TVDD
BICK
tBCKH
tBCKL
dBCK=tBCKH/tBCK100
or
tBCKL/tBCK100
Figure 18. Clock Timing (Master Mode)
015099885-E-00
2016/03
- 26 -
[AK5536]
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tLRS
tBSD
SDTO1/2/3
50%TVDD
Figure 19. Audio Interface Timing (Normal Mode & Slave Mode: 8 kHz ≤ fs ≤ 216 kHz)
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSDD
SDTO1/2/3
50%TVDD
Figure 20. Audio Interface Timing (Normal & Slave Mode: fs=384 kHz, 768 kHz)
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSDD
SDTO1/2/3
50%TVDD
tSDS
tSDH
VIH
TDMIN
VIL
Figure 21. Audio Interface Timing (TDM & Slave Mode)
015099885-E-00
2016/03
- 27 -
[AK5536]
LRCK
50%TVDD
tMBLR
50%TVDD
BICK
tBSD
50%TVDD
SDTO1/2/3
tSDS
tSDH
VIH
TDMIN
VIL
Figure 22. Audio Interface Timing (Master Mode)
[2] DSD Mode
tDCK
tDCKL
tDCKH
VOH
DCLK
VOL
tDDD
VOH
DSDOL1-3
DSDOR1-3
VOL
Figure 23. Audio Serial Interface Timing (Normal Mode, DCKB bit= “0” or DCKB pin= “L”)
tDCK
tDCKL
tDCKH
VOH
DCLK
VOL
tDDD
tDDD
VOH
DSDOL1-3
DSDOR1-3
VOL
Figure 24. Audio Serial Interface Timing (Phase Modulation Mode, DCKB bit= “0” or DCKB pin= “L”)
015099885-E-00
2016/03
- 28 -
[AK5536]
[3] 3-Wire Serial Interface
VIH
CSN
VIL
tCSS
tCCKL tCCKH
VIH
CCLK
VIL
tCDS
CDTI
C1
tCDH
C0
R/W
VIH
A4
VIL
Figure 25. WRITE Command Input Timing (3-wire Serial Mode)
tCSW
VIH
CSN
VIL
tCSH
VIH
CCLK
VIL
CDTI
D3
D2
D1
VIH
D0
VIL
Figure 26. WRITE Data Input Timing (3-wire Serial Mode)
[4]I2C Interface
VIH
SDA
VIL
tLOW
tBUF
tR
tHIGH
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
Start
tHD:DAT
tSU:DAT
tSU:STA
tSU:STO
Start
Stop
Figure 27. I2C Bus Mode Timing
015099885-E-00
2016/03
- 29 -
[AK5536]
[5] Power-down Timing
tPD
VIH
PDN
VIL
tPDV
SDTO1/2/3
tRP
D
50%TVDD
Figure 28. Power-down & Reset Timing
015099885-E-00
2016/03
- 30 -
[AK5536]
12. Functional Descriptions
■ Digital Core Power Supply
The digital core of the AK5536 is operates off of a 1.8 V power supply. Normally, this voltage is generated
by the internal LDO from TVDD (3.3 V) for digital interface. The internal LDO will be powered up by
setting the LDOE pin = “H”. Set the LDOE pin to “L” and supply a 1.8 V power to the VDD18 pin externally
when a 1.8 V is used as TVDD.
■ Output Mode
The AK5536 is able to output either PCM or DSD data. The DP pin or DP bit select the output mode. Set
the PW2 pin = PW1 pin = PW0 pin = “L” or RSTN bit = “0” or PW8-1 bits = “0H” to reset all channels when
changing the PCM/DSD mode. The AK5536 outputs data from the SDTO1-3 pins by BICK and LRCK in
PCM mode. DSD data are output from the DSDOL1-3 pins and DSDOR1-3 pins by DCLK in DSD mode.
DP pin
DP bit
Interface
L
0
PCM
H
1
DSD
Table 1 PCM/DSD Mode Control
■ Master Mode and Slave Mode
The AK5536 requires a master clock (MCLK), an audio serial data clock (BICK) and an output channel
clock (LRCK) in PCM mode. In this case, the LRCK frequency will be the sampling frequency. Both
master and slave modes are available in PCM mode. In master mode, the AK5536 internally generates
BICK and LRCK clocks from MCLK inputs and outputs them from the BICK pin and the LRCK pin. In
slave mode, AK5536 operates in the input MCLK, BICK and LRCK. MCLK must be synchronized with
BICK and LRCK but the phase is not important. The AK5536 is in master mode when the MSN pin = “H”
and in slave mode when the MSN pin = “L”.
The AK5536 requires a master clock (MCLK) in DSD mode. Slave mode is not available in DSD mode,
only master mode is supported.
■ System Clock
[1] PCM Mode
The external system clocks, which are required to operate the AK5536, are MCLK, BICK and LRCK in
PCM mode. MCLK frequency is determined based on LRCK frequency, according to the operation mode.
Table 2, Table 3, Table 4 show MCLK frequencies correspond to the normal audio rate. Set the
frequency ratio between Sampling frequency and MCLK by the CKS3-0 pins (Table 5)
All channels must be reset when changing the clock mode or audio interface format by the CKS2-0 pins
(bits), TDM1-0 pins (bits), DIF1-0 pins (bits) and the MSN pin. In parallel control mode, all channels will
be reset by the PDN pin = “L” or PW2-0 pins = “LLL”. In serial control mode, all channels will be reset by
RSTN bit = “0” or PW6-1 bits = “0H”. A stable clock must be supplied after releasing the reset.
The AK5536 integrates a phase detection circuit for LRCK. If the internal timing becomes out of
synchronization in slave mode, the AK5536 is reset automatically and the phase is resynchronized.
The following sequence must be executed when synchronizing multiple AK5536’s. Stop all AK5536’s in
reset status by setting the PDN pin = “L” → “H” after stopping the system clock. Make pin or register
settings while all channels are in reset status. After that, input the same system clock to all AK5536’s.
015099885-E-00
2016/03
- 31 -
[AK5536]
32fs
48fs
64fs
96fs
128fs
MCLK
192fs
32 kHz
N/A
N/A
N/A
N/A
N/A
N/A
48 kHz
N/A
N/A
N/A
N/A
N/A
N/A
96 kHz
N/A
N/A
N/A
N/A
N/A
N/A
192 kHz
N/A
N/A
N/A
N/A
384 kHz
N/A
N/A
fs
768 kHz
24.576 36.864
MHz
MHz
24.576 36.864
MHz
MHz
N/A
N/A
24.576 36.864
MHz
MHz
256fs 384fs 512fs 768fs 1024fs
8.192 12.288 16.384 24.576 32.768
MHz
MHz
MHz
MHz
MHz
12.288 18.432 24.576 36.864
N/A
MHz
MHz
MHz
MHz
24.576 36.864
N/A
N/A
N/A
MHz
MHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
(N/A: Not Available)
Table 2. System Clock Example (Slave Mode)
32fs
48fs
64fs
96fs
128fs
MCLK
192fs
32 kHz
N/A
N/A
N/A
N/A
N/A
N/A
48 kHz
N/A
N/A
N/A
N/A
N/A
N/A
96 kHz
N/A
N/A
N/A
N/A
N/A
N/A
192 kHz
N/A
N/a
N/A
N/A
fs
24.576 36.864
MHz
MHz
24.576 36.864 49.152
768 kHz
N/A
MHz
MHz
MHz
384 kHz
N/A
N/A
24.576 36.864
MHz
MHz
256fs 384fs 512fs 768fs 1024fs
8.192 12.288 16.384 24.576 32.768
MHz
MHz
MHz
MHz
MHz
12.288 18.432 24.576 36.864
N/A
MHz
MHz
MHz
MHz
24.576 36.864
N/A
N/A
N/A
MHz
MHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
(N/A: Not Available)
Table 3. System Clock Example (Master Mode)
32fs
48fs
64fs
96fs
128fs
MCLK
192fs
256fs
384fs
32 kHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
48 kHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
96 kHz
N/A
N/A
N/A
N/A
N/A
N/A
192 kHz
N/A
N/A
N/A
N/A
384 kHz
N/A
N/A
fs
768 kHz
24.576 36.864
MHz
MHz
24.576 36.864
MHz
MHz
NA
N/A
24.576 36.864
MHz
MHz
24.576 36.864
MHz
MHz
512fs 768fs 1024fs
16.384 24.576 32.768
MHz
MHz
MHz
24.576 36.864
N/A
MHz
MHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
(N/A: Not Available)
Table 4. System Clock Example (Auto Mode)
015099885-E-00
2016/03
- 32 -
[AK5536]
CKS3
pin(bit)
CKS2
pin(bit)
CKS1
pin(bit)
CKS0
pin(bit)
L(0)
L(0)
L(0)
L(0)
L(0)
L(0)
L(0)
H(1)
L(0)
L(0)
H(1)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
L(0)
L(0)
L(0)
H(1)
L(0)
H(1)
L(0)
H(1)
H(1)
L(0)
L(0)
H(1)
H(1)
H(1)
H(1)
L(0)
L(0)
L(0)
H(1)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
L(0)
H(1)
L(0)
H(1)
H(1)
H(1)
H(1)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
H(1)
H(1)
L(0)
H(1)
H(1)
H(1)
H(1)
MSN pin
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
MCLK
Frequency
128fs
24M
192fs
36M
256fs
12M
256fs
24M
384fs
36M
384fs
18M
512fs
24M
768fs
36M
64fs
24M
32fs
24M
96fs
36M
48fs
36M
NA
64fs
49.1M
1024fs
32M
Speed Mode
fs Range
Quad Speed
108 kHz fs 216 kHz
Quad Speed
108 kHz fs 216 kHz
Normal Speed
8 kHz fs 54 kHz
Double Speed
54 kHz fs 108 kHz
Double Speed
54 kHz fs 108 kHz
Normal Speed
8 kHz fs 54 kHz
Normal Speed
8 kHz fs 54 kHz
Normal Speed
8 kHz fs 54 kHz
Oct Speed
fs = 384 kHz
Hex Speed
fs = 768 kHz
Oct Speed
fs = 384 kHz
Hex Speed
fs = 768 kHz
NA
Hex Speed
fs = 768 kHz
Normal Speed
8 kHz ≤ fs ≤ 32 kHz
NA
NA
Auto
H
NA
Table 5. Clock Mode (fs & MCLK Frequency)
015099885-E-00
8 kHz fs 216 kHz
fs = 384kHz, 768kHz
NA
2016/03
- 33 -
[AK5536]
[2] DSD Mode
The external clock, which is required to operate the AK5536, is MCLK in DSD mode. The AK5536
generates DCLK from MCLK inputs and DSD data outputs (DSDOL1-3 and DSDOR1-3) are
synchronized with DCLK. The necessary MCLK frequencies are 512fs and 768fs (fs=32 kHz, 44.1 kHz,
48 kHz). MCLK frequency can be changed by the DCKS pin (bit). After exiting reset (PDN pin = “L” → “H”)
upon power-up, the AK5536 is in power-down state until MCLK is input.
DCKS pin (bit)
MCLK Frequency
L (0)
512fs
H (1)
768fs
Table 6. System Clock (DSD Mode)
(default)
The AK5536 supports 64fs, 128fs and 256fs DSD sampling frequencies (fs= 32 kHz 44.1 kHz, 48 kHz).
DSDSEL1-0 pins (bits) control this setting (Table 7).
DSDSEL1
pin (bit)
L(0)
L(0)
H(1)
H(1)
DSDSEL0
pin (bit)
L(0)
H(1)
L(0)
H(1)
Frequency
DSD Sampling Frequency
Mode
fs=32 kHz
fs=44.1 kHz
fs=48 kHz
64fs
2.048 MHz
2.8224 MHz
3.072 MHz
128fs
4.096 MHz
5.6448 MHz
6.144 MHz
256fs
8.192 MHz
11.2896 MHz
12.288 MHz
Reserved
Reserved
Reserved
Table 7. DSD Sampling Frequency Select
(default)
■ Audio Interface Format
TDM1-0 pins(bits), DIF1-0 pins(bits), SLOW pin(bit) and SD pin(bit) settings should be changed when all
channel are reset condition.
[1] PCM Mode
48 types of audio interface format can be selected by the TDM1-0 pins (bits), MSN pin and DIF1-0 pins
(bits) (Table 8, Table 9). In all formats the serial data is MSB-first, 2's complement format. In master mode,
the SDTO1-3 is clocked out on the falling edge of BICK. Normal output in slave mode, the SDTO1-3 is
clocked out on the falling edge of BICK if 8 kHz ≤ fs ≤ 216 kHz. In other conditions, the data is clocked out
on the prior rising edge of BICK to compensate for some delay that renders the edge of data transition
near BICK falling edge.
Audio interface format is distinguished in four types: Normal mode, TDM128 mode, TDM256 mode and
TDM512 mode are available. The TDM1-0 pins (bits) select these modes.
In Normal mode (non TDM), AIN1 and AIN2 A/D converted data is output from the SDTO1 pin, AIN3 and
AIN4 A/D converted data is output from the SDTO2 pin, AIN5 and AIN6 A/D converted data is output from
the SDTO3 pin.
The BICK frequency must be in the rage from 48fs to 128fs (fs= 48 kHz) in slave mode if the audio
interface format is in normal output (non TDM) and the interface speed is in Normal, Double or Quad
mode. Bit length of A/D data is 24-bit or 32-bit and it is selected by the DIF1 pin (bit).
The BICK frequency must be set to 32fs, 48fs or 64fs in slave mode if the audio interface format is normal
output (non TDM) and the interface speed is in OCT mode. Bit length of A/D data is determined by BICK
frequency regardless of the DIF1 pin (bit) if the BICK frequency is 32fs or 48fs. It is 16-bit when the BICK
frequency is 32fs and 24-bit when the BICK frequency is 48fs. When the BICK frequency is 64fs, A/D
data can be selected between 24-bit and 32-bit by the DIF1 pin (bit).
The BICK frequency must be set to 32fs or 48fs in slave mode if the audio interface format is normal
output (non TDM) and the interface speed is in EXT mode. Bit length of A/D data is determined by BICK
frequency regardless of the DIF1 pin (bit). It is 16-bit when the BICK frequency is 32fs and 24-bit when
the BICK frequency is 48fs.
015099885-E-00
2016/03
- 34 -
[AK5536]
The BICK frequency will be 64fs in master mode if the audio interface format is normal output (non TDM)
and the interface speed is Normal, Double or Quad mode. Data bit length can be selected from 24-bit and
32-bit by the DIF1 pin (bit).
The MCLK frequency must be 64fs or 96fs in master mode if the audio interface format is normal output
(non TDM) and the interface speed is OCT mode. The BICK frequency will be 64fs. Data bit length can be
selected from 24-bit and 32-bit by the DIF1 pin (bit).
The BICK frequency will be synchronized with the MCLK frequency in master mode if the audio interface
format is normal output (non TDM) and the interface speed is HEX mode. The MCLK frequency must be
32fs, 48fs or 64fs. The bit length of A/D data is 16-bit when the MCLK frequency is 32fs, 24-bit when the
MCLK frequency is 48fs and 24-bit or 32-bit can be selected by the DIF1 pin (bit) when the MCLK
frequency is 64fs.
The DIF0 pin selects the A/D data format between MSB justified and I2S Compatible.
No.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Multiplex Speed TDM1 TDM0
Mode
Mode pin(bit) pin(bit)
MSN
Pin
L
Normal
Double
Quad
L(0)
L(0)
H
L
Normal
OCT
HEX
L(0)
L(0)
H
DIF1
DIF0
SDTO
pin(bit) pin(bit)
L(0)
L(0)
24-bit, MSB
2
L(0)
H(1)
24-bit, I S
H(1)
L(0)
32-bit, MSB
2
H(1)
H(1)
32-bit, I S
L(0)
L(0)
24-bit, MSB
2
L(0)
H(1)
24-bit, I S
H(1)
L(0)
32-bit, MSB
2
H(1)
H(1)
32-bit, I S
*
L(0)
16-bit, MSB
2
*
H(1)
16-bit, I S
*
L(0)
24-bit, MSB
2
*
H(1)
24-bit, I S
L(0)
L(0)
24-bit, MSB
2
L(0)
H(1)
24-bit, I S
H(1)
L(0)
32-bit, MSB
2
H(1)
H(1)
32-bit, I S
*
L(0)
16-bit, MSB
2
*
H(1)
16-bit, I S
*
L(0)
24-bit, MSB
2
*
H(1)
24-bit, I S
L(0)
L(0)
24-bit, MSB
2
L(0)
H(1)
24-bit, I S
H(1)
L(0)
32-bit, MSB
2
H(1)
H(1)
32-bit, I S
LRCK
Pol. I/O
H/L I
L/H I
H/L I
L/H I
H/L O
L/H O
H/L O
L/H O
↑
I
↓
I
↑
I
↓
I
↑
I
↓
I
↑
I
↓
I
↑
O
↓
O
↑
O
↓
O
↑
O
↓
O
↑
O
↓
O
BICK
Freq.
48-128fs
48-128fs
64-128fs
64-128fs
64fs
64fs
64fs
64fs
32fs
32fs
48fs
48fs
64fs
64fs
64fs
64fs
32fs
32fs
48fs
48fs
64fs
64fs
64fs
64fs
I/O
I
I
I
I
O
O
O
O
I
I
I
I
I
I
I
I
O
O
O
O
O
O
O
O
MCLK
Freq.
I/O
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
32-96fs
I
32-96fs
I
32-96fs
I
32-96fs
I
32-96fs
I
32-96fs
I
32-96fs
I
32-96fs
I
32fs
I
32fs
I
48fs
I
48fs
I
64-96fs
I
64-96fs
I
64-96fs
I
64-96fs
I
Table 8. Audio Interface Format (Normal Mode)
015099885-E-00
2016/03
- 35 -
[AK5536]
No.
Multiplex Speed TDM1 TDM0
Mode
Mode pin(bit) pin(bit)
24
25
26
Normal
27
TDM128 Double
28
Quad
29
30
31
32
33
34
35
Normal
TDM256
Double
36
37
38
39
40
41
42
43
TDM512 Normal
44
45
46
47
MSN
pin
L
L(0)
H(1)
H
L
H(1)
L(0)
H
L
H(1)
H(1)
H
DIF1
DIF0
pin(bit) pin(bit)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
L(0)
L(0)
L(0)
H(1)
H(1)
L(0)
H(1)
H(1)
SDTO
24-bit, MSB
2
24-bit, I S
32-bit, MSB
2
32-bit, I S
24-bit, MSB
2
24-bit, I S
32-bit, MSB
2
32-bit, I S
24-bit, MSB
2
24-bit, I S
32-bit, MSB
2
32-bit, I S
24-bit, MSB
2
24-bit, I S
32-bit, MSB
2
32-bit, I S
24-bit, MSB
2
24-bit, I S
32-bit, MSB
2
32-bit, I S
24-bit, MSB
2
24-bit, I S
32-bit, MSB
2
32-bit, I S
LRCK
Edg. I/O
↑
I
↓
I
↑
I
↓
I
↑
O
↓
O
↑
O
↓
O
↑
I
↓
I
↑
I
↓
I
↑
O
↓
O
↑
O
↓
O
↑
I
↓
I
↑
I
↓
I
↑
O
↓
O
↑
O
↓
O
BICK
Freq. I/O
128fs
I
128fs
I
128fs
I
128fs
I
128fs
O
128fs
O
128fs
O
128fs
O
256fs
I
256fs
I
256fs
I
256fs
I
256fs
O
256fs
O
256fs
O
256fs
O
512fs
I
512fs
I
512fs
I
512fs
I
512fs
O
512fs
O
512fs
O
512fs
O
MCLK
Freq.
I/O
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
128-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
256-1024fs I
512-1024fs I
512-1024fs I
512-1024fs I
512-1024fs I
Table 9. Audio Interface Format (TDM Mode)
015099885-E-00
2016/03
- 36 -
[AK5536]
Cascade Connection in TDM Mode
The AK5536 supports cascade connection in TDM mode. All A/D converted data of connected AK5536
are output from the SDTO1 pin of the last AK5536 by cascade connection.
When the ODP pin = “L”, a cascade connection of two devices in TDM512 mode is supported. Figure 29
shows a connection example. When the ODP pin = “H”, a cascade connection of two up to sixteen
devices is available.
When using multiple devices in slave mode on cascade connection, internal operation timing of each
device may differ for one MCLK cycle depending on MCLK and BICK input timings. To prevent this timing
difference, BICK “↓” should be more than ± 10ns from MCLK “↑” as shown in Table 10. To realize this
timing, BICK divided by two should be input on a falling edge of MCLK as shown in Figure 54 when
MCLK=2xBICK (normal speed 1024fs mode). When MCLK=BICK (normal speed 512fs mode), MCLK
and BICK should be input in-phase as shown in Figure 55 to satisfy the timing shown in Table 10.
256fs, 512fs or 1024fs
AK5536 #1
MCLK
48kHz
LRCK
512fs
BICK
256fs, 512fs or 1024fs
TDMIN
48kHz
SDTO1
GND
512fs
Slave mode
BICK
BICK
SDTO1
GND
AK5536 #2
TDMIN
LRCK
TDMIN
LRCK
Master mode
AK5536 #2
MCLK
AK5536 #1
MCLK
MCLK
16ch TDM
LRCK
BICK
SDTO1
TDMIN
16ch TDM
SDTO1
Slave mode
Slave mode
TDM512
TDM512
Figure 29. Cascade Connection
015099885-E-00
2016/03
- 37 -
[AK5536]
LRCK
0
1
2
11
12
13
23
24
31
0
1
2
11
12
13
23
24
31
0
1
BICK(64fs)
SDTO1-3
1
13 12 11
23 22
0
23 22
13
1
12 11
0
31
23: MSB, 0: LSB
AIN1/3/5 Data
AIN2/4/6 Data
Figure 30. Mode 0/4 Timing (Normal Output, Normal/Double/Quad Speed Mode, MSB Justified, 24-bit)
LRCK
0
1
2
3
22
23
24
25
29
30
31
0
1
2
3
22
23
24
25
29
30
31
0
1
BICK(64fs)
SDTO1-3
23 22
2
1
0
23 22
2
1
0
23: MSB, 0: LSB
AIN1/3/5 Data
AIN2/4/6 Data
Figure 31. Mode 1/5 Timing (Normal Output, Normal/Double/Quad Speed Mode, I2S Compatible, 24-bit)
LRCK
0
1
2
11
12
13
20
21
31
0
1
2
12
13
14
24
25
31
0
1
BICK(64fs)
SDTO1-3
12 11
22 20 19
31 30
1
0
31 30
22
12 11
20 19
1
0
31
31: MSB, 0: LSB
AIN1/3/5 Data
AIN2/4/6 Data
Figure 32. Mode 2/6 Timing (Normal Output, Normal/Double/Quad Speed Mode, MSB Justified, 32-bit)
LRCK
0
1
2
3
23
24
25
26
29
30
31
0
1
2
3
23
24
25
26
29
30
31
0
1
BICK(64fs)
SDTO1-3
31 30
16 15 14
3
2
1
0
31 30
16 15 14
3
2
1
0
31: MSB, 0: LSB
AIN1/3/5 Data
AIN2/4/6 Data
Figure 33. Mode 3/7 Timing (Normal Output, Normal/Double/Quad Speed Mode, I2S Compatible, 32-bit)
015099885-E-00
2016/03
- 38 -
[AK5536]
32 BICK
LRCK (Master)
LRCK (Slave)
BICK (32fs)
SDTO1-3 (O)
0 15 14
9
8
7
6
1
0 15 14
9
8
7
6
1
AIN1/3/5 Data
AIN2/4/6 Data
16 BICK
16 BICK
0 15 14
Figure 34. Mode 8/16 Timing (Normal Output, OCT/HEX Speed Mode, MSB Justified, 16-bit)
32 BICK
LRCK (Master)
LRCK (Slave)
BICK (32fs)
SDTO1-3 (O)
0 15 14
9
8
7
6
1
0 15 14
9
8
7
6
1
AIN1/3/5 Data
AIN2/4/6 Data
16 BICK
16 BICK
0 15 14
Figure 35. Mode 9/17 Timing (Normal Output, OCT/HEX Speed Mode, I2S Compatible, 16-bit)
48 BICK
LRCK (Master)
LRCK (Slave)
BICK (48fs)
SDTO1-3 (O)
0 23 22
13 12 11 10
1
0 23 22
13 12 11 10
1
AIN1/3/5 Data
AIN2/4/6 Data
24 BICK
24 BICK
0 23 22
Figure 36. Mode 10/18 Timing (Normal Output, OCT/HEX Speed Mode, MSB Justified, 24-bit)
48 BICK
LRCK (Master)
LRCK (Slave)
BICK (48fs)
SDTO1-3 (O)
0 23 22
13 12 11 10
1
0 23 22
13 12 11 10
1
AIN1/3/5 Data
AIN2/4/6 Data
24 BICK
24 BICK
0 23 22
Figure 37. Mode 11/19 Timing (Normal Output, OCT/HEX Speed Mode, I2S Compatible, 24-bit)
015099885-E-00
2016/03
- 39 -
[AK5536]
64 BICK
LRCK (Master)
LRCK (Slave)
BICK (64fs)
SDTO1-3 (O)
23 22
15
8
7
0
23 22
15
8
7
0
AIN1/3/5 Data
AIN2/4/6 Data
32 BICK
32 BICK
23 22
Figure 38. Mode 12/20 Timing (Normal Output, OCT/HEX Speed Mode, MSB Justified, 24-bit)
64 BICK
LRCK (Master)
LRCK (Slave)
BICK (64fs)
SDTO1-3 (O)
23 22
15
8
7
0
23 22
15
8
7
0
AIN1/3/5 Data
AIN2/4/6 Data
32 BICK
32 BICK
23 22
Figure 39. Mode 13/21 Timing (Normal Output, OCT/HEX Speed Mode, I2S Compatible, 24-bit)
64 BICK
LRCK (Master)
LRCK (Slave)
BICK (64fs)
SDTO1-3 (O)
0 31 30
17 16 15 14
1
0 31 30
17 16 15 14
1
AIN1/3/5 Data
AIN2/4/6 Data
32 BICK
32 BICK
0 31 30
Figure 40. Mode 14/22 Timing (Normal Output, OCT/HEX Speed Mode, MSB Justified, 32-bit)
64 BICK
LRCK (Master)
LRCK (Slave)
BICK (64fs)
SDTO1-3 (O)
0 31 30
17 16 15 14
1
0 31 30
17 16 15 14
1
AIN1/3/5 Data
AIN2/4/6 Data
32 BICK
32 BICK
0 31 30
Figure 41. Mode 15/23 Timing (Normal Output, OCT/HEX Speed Mode, I2S Compatible, 32-bit)
015099885-E-00
2016/03
- 40 -
[AK5536]
128 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
SDTO2 (O)
23 22
0
23 22
0
23 22
0
23 22
0
Data 1
Data 2
Data 3
Data 4
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
23 22
0
Data 5
Data 6
32 BICK
32 BICK
23 22
SDTO3 (O)
Figure 42. Mode 24/28 Timing (TDM128 Mode, MSB Justified, 24-bit)
128 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
SDTO2 (O)
23 22
0
23 22
0
23 22
0
23 22
0
Data 1
Data 2
Data 3
Data 4
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
Data 5
Data 6
32 BICK
32 BICK
23 22
23 22
SDTO3 (O)
Figure 43. Mode 25/29 Timing (TDM128 Mode, I2S Compatible)
128 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
SDTO2 (O)
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
Data 1
Data 2
Data 3
Data 4
32 BICK
32 BICK
32 BICK
32 BICK
0 31 30
1
0 31 30
1
Data 5
Data 6
32 BICK
32 BICK
0
0 31 30
31 30
SDTO3 (O)
Figure 44. Mode 26/30 Timing (TDM128 Mode, MSB Justified)
015099885-E-00
2016/03
- 41 -
[AK5536]
128 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
0 31 30
SDTO2 (O)
1
0 31 30
1
0 31 30
1
0 31 30
1
Data 1
Data 2
Data 3
Data 4
32 BICK
32 BICK
32 BICK
32 BICK
0 31 30
1
0 31 30
1
Data 5
Data 6
32 BICK
32 BICK
0
0 31 30
31 30
SDTO3 (O)
Figure 45. Mode 27/31 Timing (TDM128 Mode, I2S Compatible)
256 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23 22
SDTO2-3 (O)
Figure 46. Mode 32/36 Timing (TDM256 Mode, MSB Justified, 24-bit)
256 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
SDTO2-3 (O)
Figure 47. Mode 33/37 Timing (TDM256 Mode, I2S Compatible, 24-bit)
015099885-E-00
2016/03
- 42 -
[AK5536]
256 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
31 30
SDTO2-3 (O)
Figure 48. Mode 34/38 Timing (TDM256 Mode, MSB Justified, 32-bit)
256 BICK
LRCK (Master)
LRCK (Slave)
BICK (256fs)
SDTO1 (O)
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
31
SDTO2-3 (O)
Figure 49. Mode 35/39 Timing (TDM256 Mode, I2S Compatible, 32-bit)
512 BICK
LRCK (Master)
LRCK (Slave)
BICK (512fs)
SDTO1 (O)
23 22
0
23 33
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
#2 Data 1 #2 Data 2 #2 Data 3 #2 Data 4 #2 Data 5 #2 Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
SDTO2-3 (O)
TDMIN (I)
23 22
(#1 SDTO1)
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data 6
0
32 BICK
23 22
0
32 BICK
23 22
0
32 BICK
23 22
0
32 BICK
23 22
0
32 BICK
23 22
0
31 30
32 BICK
Figure 50. Mode 40/44 Timing (TDM512 Mode, MSB Justified, 24-bit)
015099885-E-00
2016/03
- 43 -
[AK5536]
512 BICK
LRCK (Master)
LRCK (Slave)
BICK (512fs)
SDTO1 (O)
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
#2 Data 1 #2 Data 2 #2 Data 3 #2 Data 4 #2 Data 5 #2 Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
SDTO2-3 (O)
TDMIN (I)
23 22
(#1 SDTO1)
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data 6
0
23 22
32 BICK
0
23 22
32 BICK
0
23 22
32 BICK
0
23 22
32 BICK
0
23 22
32 BICK
0
23
32 BICK
Figure 51. Mode 41/45 Timing (TDM512 Mode, I2S Compatible, 24-bit)
512 BICK
LRCK (Master)
LRCK (Slave)
BICK (512fs)
SDTO1 (O)
31 30
1 0 31 30
1 0 31 30
1 0 31 30
1 0 31 30
1
0 31 30
1
0
31 30
#2 Data 1 #2 Data 2 #2 Data 3 #2 Data 4 #2 Data 5 #2 Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0
31 30
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
SDTO2-3 (O)
TDMIN (I)
31 30
(#1 SDTO1)
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data 6
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0
31 30
32 BICK
Figure 52. Mode 42/46 Timing (TDM512 Mode, MSB Justified, 32-bit)
512 BICK
LRCK (Master)
LRCK (Slave)
BICK (512fs)
SDTO1 (O)
0 31 30
1 0 31 30
1 0 31 30
1 0 31 30
1 0 31 30
1
0 31 30
1
0
31 30
#2 Data 1 #2 Data 2 #2 Data 3 #2 Data 4 #2 Data 5 #2 Data 6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0 31 30
1
0
31
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data6
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
SDTO2-3 (O)
TDMIN (I)
31 30
(#1 SDTO1)
#1 Data 1 #1 Data 2 #1 Data 3 #1 Data 4 #1 Data 5 #1 Data 6
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0 31 30
32 BICK
1 0
31
32 BICK
Figure 53. Mode 43/47 Timing (TDM512 Mode, I2S Compatible, 32-bit)
Parameter
MCLK “↑” to BICK “↓”
BICK “↓” to MCLK“↑”
Symbol
Min.
tMCB
tBIM
10
10
Typ.
Max.
Unit
ns
ns
Table 10. TDM Mode Clock Timing
015099885-E-00
2016/03
- 44 -
[AK5536]
VIH
MCLK
VIL
tMCB
tBIM
VIH
BICK
VIL
Figure 54. Audio Interface Timing (Slave mode, TDM mode, MCLK=2×BICK)
VIH
MCLK
VIL
tMCB
tBIM
VIH
VIL
BICK
Figure 55. Audio Interface Timing (Slave Mode, TDM Mode, MCLK=BICK)
[2] DSD Mode
DSD output is available only when the AK5536 is in Master mode.
The DCLK frequency can be selected from 64fs, 128fs and 256fs by setting the DSDSEL1-0 pins (bits).
The AK5536 enters Phase Modulation mode by setting PMOD pin = “H” or PMOD bit = “1”. It does not
support Phase Modulation mode when the DCLK frequency is 256fs. DCKB bit controls DCLK polarity.
DCLK (64fs, 128fs, 256fs)
DCKB bit=”1”
DCLK (64fs, 128fs, 256fs)
DCKB bit=”0”
DSDOL, DSDOR
Normal
D0
DSDOL,DSDOR
Phase Modulation
D0
D1
D1
D2
D1
D2
D3
D2
D3
Figure 56. DSD Mode Timing
015099885-E-00
2016/03
- 45 -
[AK5536]
■ Channel Summation (PCM Mode, DSD Mode)
Channel Summation function improves the dynamic range and S/N performance by averaging all A/D
data of multiple-channel that the same signal is input. The AK5536 supports 6-to-3 mode, 4-to-1 mode,
6-to-1 mode.
6-to-3 mode (1.5-Stereo mode)
Improve the dynamic range and S/N for 3 dB (2.5 dB in DSD mode) by averaging two channels.
4-to-1 mode (2-Mono mode)
Improve the dynamic range and S/N for 6 dB (5 dB in DSD mode) by averaging four channels. In this
mode, the data of other two channels are also averaged and output.
6-to-1 mode (Mono mode)
Improve the dynamic range and S/N for 7 dB (6 dB in DSD mode) by averaging six channels.
Not-Summation mode (3-Stereo mode)
Normal mode that does not execute Summation is called as Not-Summation mode or 3-Stereo mode.
Refer to the section “CH Power Down & Channel Summation mode” for details.
■ Optimal Data Placement (PCM Mode, DSD Mode)
Assigned data to the SDTO1-3 slot is controlled by the ODP pin setting in parallel control mode.
When the ODP pin = “L”, the data is output by Fixed Data Placement mode. Channel assignment of data
slot is fixed regardless of enable/disenable of channel summation. For example, averaging data of two
channels are output to both channel slots.
When the ODP pin = “H”, the data is output by Optimal Data Placement mode that is uses data slot more
efficiently. In Optimal Data Placement mode, there are no data redundant of channel summation, and the
data is output in MSB justified. Therefore, the maximum number of connecting device in cascade
connection will be increased.
If the AK5536 is set to 6-to-3 mode (1.5-Stereo Mode), two devices can be connected in TDM256 mode,
four devices can be connected in TDM512 mode.
If the AK5536 is set to 4-to-1 mode (2-Mono Mode), two devices can be connected in TDM128 mode, four
devices can be connected in TDM256 mode and eight devices can be connected in TDM512 mode.
If the AK5536 is set to 6-to-1 mode (Mono Mode), four devices can be connected in TDM128 mode, eight
devices can be connected in TDM256 mode and sixteen devices can be connected in TDM512 mode.
In serial control mode, the data output is Optimal Data Placement mode regardless of the ODP pin
setting.
Refer to “CH Power Down & Channel Summation mode” for details.
015099885-E-00
2016/03
- 46 -
[AK5536]
■ CH Power Down & Channel Summation Setting (PCM Mode, DSD Mode)
[1] Parallel Control Mode
The setting of the PW2-0 pins and the ODP pin controls the channel power-down and channel
summation mode setting in parallel mode (Table 11-Table 16). The PDN pin must be set to “L” when
changing the ODP pin and the PW2-0 pins. The power consumption of the device can be improved by
setting unused channels to power-down state. In this case, the channel circuit that is powered down will
be reset.
When the ODP pin = “L”, the PW2-0 pins control channel power-down and 6-to-3 mode. In this mode,
AIN1 and AIN2 channel data are summed digitally and output from the SDTO1 (DSDOL1 and DSDOR1)
by dividing into half amplitude. In the same manner, AIN3 and AIN4 channel data are summed digitally
and output from the SDTO2 (DSDOL2 and DSDOR2) by dividing into half amplitude. AIN5 and AIN6
channel data are summed digitally and output from the SDTO3 (DSDOL3 and DSDOR3) by dividing into
half amplitude.
Power ON/OFF
PW2 PW1 PW0
pin
pin
pin
Ch6 Ch5 Ch4 Ch3 Ch2 Ch1
L
L
L
OFF OFF OFF OFF OFF OFF
L
L
H
ON OFF ON ON ON ON
L
H
L
OFF ON ON ON ON ON
L
H
H
ON
ON ON ON ON ON
H
L
L
OFF OFF ON ON ON ON
H
L
H
ON OFF ON ON ON ON
H
H
L
OFF ON ON ON ON ON
H
H
H
ON
ON ON ON ON ON
Table 11. Channel Power ON/OFF (Parallel Control Mode, ODP pin= “L”)
PW2
pin
L
L
L
L
H
H
H
H
PW1
pin
L
L
H
H
L
L
H
H
Data on Slot
PW0
pin
Slot 6
Slot 5
Slot 4
Slot 3
Slot 2
L
All “0”
All “0”
All “0”
All “0”
All “0”
H
CH6
All “0”
(CH3+4)/2 (CH3+4)/2 (CH1+2)/2
L
All “0”
CH5
(CH3+4)/2 (CH3+4)/2 (CH1+2)/2
H
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2 (CH3+4)/2 (CH1+2)/2
L
All “0”
All “0”
CH4
CH3
CH2
H
CH6
All “0”
CH4
CH3
CH2
L
All “0”
CH5
CH4
CH3
CH2
H
CH6
CH5
CH4
CH3
CH2
Table 12. Slot Data Assign (Parallel Control Mode, ODP pin= “L”)
Slot 1
All “0”
(CH1+2)/2
(CH1+2)/2
(CH1+2)/2
CH1
CH1
CH1
CH1
When the ODP pin = “H”, the AK5536 becomes optimal data placement mode and data slots can be used
efficiently. The PW2-0 pins control power down, 6-to-3 mode, 4-to-1 mode and 6-to-1 mode.
In 6-to-3 mode, AIN1 and AIN2 channel data are summed digitally and output from the SDTO1
(DSDOL1) of the slot1 by dividing into half amplitude. In the same manner, AIN3 and AIN4 channel data
are summed digitally and output from the SDTO1 (DSDOR1) of the slot2 by dividing into half amplitude.
AIN5 and AIN6 channel data are summed digitally and output from the SDTO2 (DSDOL2) of the slot3 by
dividing into half amplitude.
In 4-to-1 mode, AIN1 - AIN4 channel data are summed digitally and output from the SDTO1 (DSDOL1) of
the slot1 by dividing into quarter amplitude. AIN5 – AIN6 channel data are summed digitally and output
from the SDTO1 (DSDOR1) of the slot2 by dividing into half amplitude.
In 6-to-1 mode, AIN1 – AIN6 channel data are summed digitally and output from the SDTO1 (DSDOL1)
of the slot1 by dividing into 1/6 amplitude.
015099885-E-00
2016/03
- 47 -
[AK5536]
Power ON/OFF
PW2 PW1 PW0
pin
pin
pin
Ch6 Ch5 Ch4 Ch3 Ch2 Ch1
L
L
L
OFF OFF OFF OFF OFF OFF
L
L
H
ON
ON ON ON ON ON
L
H
L
ON
ON ON ON ON ON
L
H
H
ON
ON ON ON ON ON
H
L
L
ON
ON ON ON ON ON
H
L
H
ON
ON ON ON ON ON
H
H
L
ON
ON ON ON ON ON
H
H
H
ON
ON ON ON ON ON
Table 13. Channel Power ON/OFF (Parallel Control Mode, ODP pin= “H”)
Data on Slot
PW2 PW1 PW0
pin pin pin
Slot 6
Slot 5
Slot 4
Slot 3
Slot 2
Slot 1
L
L
L
All “0”
All “0”
All “0”
All “0”
All “0”
All “0”
L
L
H
All “0”
All “0”
All “0”
All “0”
(CH5+6)/2
(CH1+2+3+4)/4
L
H
L
All “0”
All “0”
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
L
H
H
All “0”
All “0”
All “0”
All “0”
All “0”
(CH1+2+3+4+5+6)/6
H
L
L
CH6
CH5
CH4
CH3
CH2
CH1
H
L
H
All “0”
All “0”
All “0”
All “0”
(CH5+6)/2
(CH1+2+3+4)/4
H
H
L
All “0”
All “0”
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
H
H
H
All “0”
All “0”
All “0”
All “0”
All “0”
(CH1+2+3+4+5+6)/6
Table 14. Slot Data Assign (Parallel Control Mode, ODP pin= “H”, Normal Output)
Data on Slot
PW2 PW1 PW0
pin pin pin
Slot 6
Slot 5
Slot 4
Slot 3
Slot 2
Slot 1
L
L
L
All “0”
All “0”
All “0”
All “0”
All “0”
All “0”
L
L
H
All “0”
All “0”
TDMIN
TDMIN
(CH5+6)/2
(CH1+2+3+4)/4
L
H
L
All “0”
All “0”
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
L
H
H
All “0”
All “0”
TDMIN
TDMIN
TDMIN
(CH1+2+3+4+5+6)/6
H
L
L
CH6
CH5
CH4
CH3
CH2
CH1
H
L
H
All “0”
All “0”
TDMIN
TDMIN
(CH5+6)/2
(CH1+2+3+4)/4
H
H
L
All “0”
All “0”
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
H
H
H
All “0”
All “0”
TDMIN
TDMIN
TDMIN
(CH1+2+3+4+5+6)/6
Table 15. Slot Data Assign (Parallel Control Mode, ODP pin= “H”, TDM128)
Data on Slot
PW2 PW1 PW0
pin pin pin
Slot 6
Slot 5
Slot 4
Slot 3
Slot 2
Slot 1
L
L
L
All “0”
All “0”
All “0”
All “0”
All “0”
All “0”
L
L
H
TDMIN
TDMIN
TDMIN
TDMIN
(CH5+6)/2
(CH1+2+3+4)/4
L
H
L
TDMIN
TDMIN (CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
L
H
H
TDMIN
TDMIN
TDMIN
TDMIN
TDMIN
(CH1+2+3+4+5+6)/6
H
L
L
CH6
CH5
CH4
CH3
CH2
CH1
H
L
H
TDMIN
TDMIN
TDMIN
TDMIN
(CH5+6)/2
(CH1+2+3+4)/4
H
H
L
TDMIN
TDMIN (CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
H
H
H
TDMIN
TDMIN
TDMIN
TDMIN
TDMIN
(CH1+2+3+4+5+6)/6
Table 16. Slot Data Assign (Parallel Control Mode, ODP pin= “H”, TDM256 & TDM512)
015099885-E-00
2016/03
- 48 -
[AK5536]
[2] Serial Control Mode
In 3-wire serial mode or I2C mode, PW1-6 bits control the power of AIN1-6 channels independently. AINn
channel is powered down when PWn bit = “0” (n=1-6) and AINn channel is in normal operation when
PWn bit = “1”. The power-down channel is reset status and outputs all “0”. The channel summation is
controlled by MONO1 and MONO2 bits. RSTN bit must be “0” when changing the setting of MONO1,
MONO2 and PW1-6 bits.
MONO2
bit
0
0
1
1
Data on Slot (Normal Output)
MONO1
bit
Slot6
Slot 5
Slot 4
Slot 3
Slot 2
Slot 1
0
CH6
CH5
CH4
CH3
CH2
CH1
1
All “0”
All “0”
All “0”
All “0”
(CH5+6)/2
(CH1+2+3+4)/4
0
All “0”
All “0” (CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
1
All “0”
All “0”
All “0”
All “0”
All “0”
(CH1+2+3+4+5+6)/6
Table 17. Slot Data Assign (Serial Control mode, Normal Output & DSD mode)
MONO2 MONO1
bit
bit
0
0
0
1
1
0
1
1
Data on Slot (TDM128)
Slot6
Slot 5
Slot 4
Slot 3
Slot 2
Slot 1
CH6
CH5
CH4
CH3
CH2
CH1
All “0”
All “0”
TDMI
TDMI
(CH5+6)/2
(CH1+2+3+4)/4
All “0”
All “0”
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
All “0”
All “0”
TDMI
TDMI
TDMI
(CH1+2+3+4+5+6)/6
Table 18. Slot Data Assign (Serial Control Mode, TDM128)
Data on Slot (TDM256, TDM512)
MONO2 MONO1
bit
bit
Slot6
Slot 5
Slot 4
Slot 3
Slot 2
Slot 1
0
0
CH6
CH5
CH4
CH3
CH2
CH1
0
1
TDMI
TDMI
TDMI
TDMI
(CH5+6)/2
(CH1+2+3+4)/4
1
0
TDMI
TDMI
(CH5+6)/2 (CH5+6)/2 (CH3+4)/2
(CH1+2)/2
1
1
TDMI
TDMI
TDMI
TDMI
TDMI
(CH1+2+3+4+5+6)/6
Table 19. Slot Data Assign (Serial Control Mode, TDM256 & TDM512)
015099885-E-00
2016/03
- 49 -
[AK5536]
■ Data Slot Configuration
[1] PCM Mode
LRCK Period = 1/fs
Normal Output
SDTO1 pin
Slot 1
Slot 2
SDTO2 pin
Slot 3
Slot 4
SDTO3 pin
Slot 5
Slot 6
LRCK Period = 1/fs
TDM128
SDTO1 pin
Slot 1
Slot 2
SDTO2 pin
Slot 5
Slot 6
Slot 3
Slot 4
All ”0”
All “0”
SDTO3 pin
LRCK Period = 1/fs
TDM256
SDTO1 pin
Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6
SDTO2 pin
All “0”
SDTO3 pin
All “0”
All “0”
LRCK Period = 1/fs
TDM512
SDTO1 pin
1
2
3
4
5
6
All “0”
SDTO2 pin
All “0”
SDTO3 pin
All “0”
TDMI
Figure 57. Slot Assign in PCM Mode
015099885-E-00
2016/03
- 50 -
[AK5536]
[2] DSD Mode
LRCK Period = 1/fs
DSDOL1 pin
Slot 1
DSDOR1 pin
Slot 2
DSDOL2 pin
Slot 3
DSDOR2 pin
Slot 4
DSDOL3 pin
Slot 5
DSDOR3 pin
Slot 6
Figure 58. Slot Assign in DSD Mode
015099885-E-00
2016/03
- 51 -
[AK5536]
■ Digital Filter Setting (PCM Mode)
The AK5536 has four types of digital filters and they can be selected by SD pin (bit) and SLOW pin (bit).
The filter setting is not available in OCT speed mode, HEX speed mode and DSD mode. So the setting of
the digital filter is ignored.
SD pin (bit)
L (0)
L (0)
H (1)
H (1)
SLOW pin (bit)
Filter
L (0)
Sharp Roll-off Filter
H (1)
Slow Roll-off Filter
L (0)
Short Delay Sharp Roll-off Filter
H (1)
Short Delay Slow Roll-off Filter
Table 20. Digital Filter Setting
■ Digital HPF (PCM Mode)
The AK5536 has a digital high-pass filter for DC offset (include internal offset) cancelation. The digital
high-pass filter is enabled by setting the HPFE pin (bit) = “H (1)”. The cut-off frequency of the high-pass
filter is fixed 1.0 Hz when fs= 48 kHz (Normal Speed mode), 96 kHz (Double Speed mode) or 192 kHz
(Quad Speed mode). The high-pass filter is not available in OCT speed mode, HEX speed mode and
DSD mode. So that the setting of the HPFE pin is ignored. The high pass-filter setting should be changed
when all channels are reset condition.
■ Overflow Detection (PCM Mode, DSD Mode)
[1] PCM Mode
The AK5536 has an overflow detect function for the analog input.
The OVF pin outputs “H” if one of AIN1 - 6 channels overflows (more than 0.3 dBFS). The OVF pin
returns to “L” when analog input overflows are resolved. The OVF output for overflowed analog input has
the same group delay as the ADC.
[2] DSD Mode
Overflow Detection (Error Detection Function)
The OVF pin outputs “H” if any channel’s DSD modulators overflows. The OVF pin returns to “L” when
overflows are resolved.
015099885-E-00
2016/03
- 52 -
[AK5536]
■ LDO
The voltage range of TVDD is from 1.7 V to 1.98 V or from 3.0 V to 3.6 V. Set ON/OFF of the LDO by the
LDOE pin according to TVDD voltage (Table 21).
The internal LDO is switched ON/OFF depending on TVDD voltage range.
Additional Voltage Range
LDOE
PDN
LDO
VDD18 pin
to TVDD pin
L
L
OFF
External Power Input 1.7-1.98 V
1.7-1.98 V
L
H
OFF
External Power Input 1.7-1.98 V
1.7-1.98 V
H
L
OFF
3.0-3.6 V
Pulled Down by 500 internally
H
H
ON
LDO Voltage Output
3.0-3.6 V
Table 21. LDO Control
[1] TVDD=1.7-1.98 V, LDO is OFF (LDOE pin = “L”)
The internal LDO does not work properly when the TVDD voltage range is from 1.7 V to 1.98 V. Set the
LDOE pin to “L” to switch OFF the LDO. A 1.7 V - 1.98 V is supplied from the VDD18 pin for internal logic
circuits. The voltage difference between TVDD and VDD18 must be ±0.1 V or less.
[2] TVDD=3.0-3.6 V, LDO is ON (LDOE pin = “H”)
The internal LDO should be ON when the TVDD voltage range is from 3.0 V to 3.6 V. It will be the power
supply for the internal logic circuit. The VDD18 pin will be a connection terminal for a stabilization
capacitor. It is not possible to supply the power to external circuits from the VDD18 pin.
■ Reset
The AK5536 must be reset upon power up or when changing the clock setting or clock frequency. It can
be reset by the PDN pin or PW2-0 pins and RSTN bit or PW6-1 bits.
015099885-E-00
2016/03
- 53 -
[AK5536]
■ Power Up/Down Sequence
The AK5536 enters power-down mode by setting the PDN pin to “L”. Digital filters are reset at the same
time.
[1] PCM Mode
In slave mode, internal power down signal (Internal PDN) is released by inputting MCLK, BICK and
LRCK after setting the PDN pin to “H”. In master mode, The Internal PDN is released by inputting MCLK
after setting the PDN pin to “H”.
Initialization cycle starts when the Internal PDN is released. The output data of SDTO will be valid in 583
x 1/fs after exiting power-down mode in slave mode, it will be valid in 578 x 1/fs after exiting power-down
mode in master mode. During initialization, the ADC digital outputs of both channels are in 2’s
complement format and forced to “0”. The ADC outputs settle to data correspondent to the input signals
after the end of initialization. This settling takes approximately the group delay time.
Power
PDN pin
(1)
VDD18 pin
(2)
Internal PDN
(3)
Internal
State
Power -down
Initialize
Normal Operation
Power -down
ADC In
(Analog)
GD
(5)
(5)
GD
(4)
(4)
ADC Out
(Digital)
Clock In
MCLK,LRCK,BICK
“0”data
Don’t care
Idle Noise
Idle Noise
“0”data
Don’t care
Figure 59. Power-Up/Down Sequence Example
Notes
(1) The PDN pin should be held to “L” for more than 150 ns after AVDD and TVDD are powered up.
(2) a. LDOE pin = “H”, I2C pin = “H” and PSN pin = “H” (Parallel Mode):
The internal LDO is powered up by releasing PDN pin to “H”. The Internal PDN is released by
toggling MCLK for 16384times.
b. LDOE pin = “H” and PSN pin = “L” (Register Mode):
The internal LDO is powered up by releasing PDN pin to “H”. The internal PDN is released by
toggling internal oscillator clock for 16384 times (max. 10 ms).
c. LDOE pin = “L”:
The internal PDN is released in 1 ms (max.) after releasing PDN pin to “H”.
During this period, digital output and digital in/output pins may output an instantaneous pulse (max. 1
us). Therefore, referring the output of digital pins and data transmission with a device on the same
3-wire serial/I2C bus as the AK5536 should be avoided in this period to prevent system errors.
(3) Initialization cycle is 583/fs in slave mode and 578/fs in master mode.
(4) The ADC output data is “0” during initialization cycle and power-down mode.
(5) The digital output corresponding to analog input has group delay (GD).
015099885-E-00
2016/03
- 54 -
[AK5536]
Internal PDN Release Sequence
Figure 60. Internal PDN Release Sequence
015099885-E-00
2016/03
- 55 -
[AK5536]
[2] DSD Mode
The Internal PDN is released by inputting MCLK after setting the PDN pin to “H”.
PDN pin
Internal PDN
(1)
MCLK In
Don’t care
Internal
State
Power-Down
Don’t care
Initialize
Normal Operation
Power-Down
(2)
ADC In
(Analog)
(6)
(4)
OVF-pin
(5)
(3)
DSD Out
(Digital)
“L” (-full scale data)
normal data
abnormal data
normal data
“L” (-full scale data)
Figure 61. DSD Operation Timing
Notes:
(1) The internal LDO is powered up by releasing PDN pin to “H”. The internal PDN is released by
toggling internal oscillator clock for 16384 times (max. 10ms).
The internal PDN is released in max. 1 ms after releasing PDN pin to “H”.
Register writings become available when the internal PDN changes to “1”.
During this period, digital output and digital in/output pins may output an instantaneous pulse (max.
1 us). Therefore, referring the output of digital pins and data transmission with a device on the same
3-wire serial/I2C bus as the AK5536 should be avoided in this period to prevent system errors.
(2) Initialization operation will be completed in 583/fs.
(3) DSD output pins output “L” (-full scale data) during power down and initializing operation. DSD
output pins output full scale data during phase modulation mode, a reset sequence and a CH power
down status.
(4) The OVF pin outputs “H” when an excessive signal is input and overflow is detected at internal
modulator. The OVF pin status will change after group delay period from the excessive input.
(5) In the case above (4), the DSD output data will not be correct.
(6) The OVF pin returns to “L” when the input signal settled to a normal state and overflow status of the
internal modulator is resolved. The OVF pin status will change after group delay period from the
normal input.
015099885-E-00
2016/03
- 56 -
[AK5536]
■ Operation Mode Control
Operation modes of the AK5536 are set by pins or registers. In parallel control mode, the operation mode
is set by pin and register settings are invalid. Therefor the functions that needs register settings are not
available in parallel control mode. For register accessing, 3-wire serial and I2C bus communications are
available. This control mode of the AK5536 is selected by the I2C pin and the PSN pin. In serial control
mode, register settings are prioritized so that all pin settings except the MSN pin setting are ignored.
I2C pin
L
L
H
H
PSN pin
Control mode
L
3-wire Serial
H
3-wire Serial
L
I2C Bus
H
Parallel
Table 22. Control Mode
■ Register Control Interface
(1) 3-wire Serial Control Mode (I2C pin = “L”)
The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The
data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only), Register
address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the
rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after
a low-to-high transition of CSN. The clock speed of CCLK is 5MHz (max).
The internal registers are initialized by setting the PDN pin = “L”. In serial control mode, an internal timing
circuit is reset by setting RSTN bit = “0” but register values are not initialized.
CSN
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CCLK
CDTI
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
C1-C0:
R/W:
A4-A0:
D7-D0:
Chip Address (C1=CAD1, C0=CAD0)
READ/WRITE (Fixed to “1”, Write only)
Register Address
Control Data
Figure 62. Control I/F Timing
* The AK5536 does not support read commands in 3-wire serial control mode.
* When the AK5536 is in power down mode (PDN pin = “L”), a writing into the control registers is
prohibited.
* The control data cannot be written when the CCLK rising edge is 15 times or less, or 17 times or more
during CSN is “L”.
015099885-E-00
2016/03
- 57 -
[AK5536]
(2) I2C-bus Control Mode (I2C pin = “H” and PSN pin = “L”)
The AK5536 supports the fast-mode I2C-bus (max: 400 kHz, Ver1.0).
(2)-1. WRITE Operations
Figure 63 shows the data transfer sequence of the I2C-bus control mode. All commands are preceded by
a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START
condition (Figure 69). After the START condition, a slave address is sent. This address is 7 bits long
followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave
address are fixed as “00100”. The next bits are CAD1-0 (device address bits). This bits identifies the
specific device on the bus. The hard-wired input pins (CAD1-0 pins) set these device address bit (Figure
64). If the slave address matches that of the AK5536, the AK5536 generates an acknowledge and the
operation is executed. The master must generate the acknowledge-related clock pulse and release the
SDA line (HIGH) during the acknowledge clock pulse (Figure 70). R/W bit = “1” indicates that the read
operation is to be executed. “0” indicates that the write operation is to be executed.
The second byte consists of the control register address of the AK5536. The format is MSB first, and
those most significant 3-bits are fixed to zeros (Figure 65). The data after the second byte contains
control data. The format is MSB first, 8bits (Figure 66). The AK5536 generates an acknowledge after
each byte is received. Data transfer is always terminated by a STOP condition generated by the master.
A LOW to HIGH transition on the SDA line while SCL is HIGH defines STOP condition (Figure 69).
The AK5536 can perform more than one byte write operation per sequence. After receipt of the third byte
the AK5536 generates an acknowledge and awaits the next data. The master can transmit more than
one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each
data packet the internal 6-bit address counter is incremented by one, and the next data is automatically
taken into the next address. If the address exceeds “07H” prior to generating a stop condition, the
address counter will “roll over” to “00H” and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW
state of the data line can only change when the clock signal on the SCL line is LOW (Figure 71) except
for the START and STOP conditions.
S
T
A
R
T
SDA
S
S
T
O
P
R/W= “0”
Slave
Address
1st byte
Sub
Address(n)
A
C
K
2nd byte
Data(n)
A
C
K
Data(n+1)
A
C
K
3rd byte
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 63. Data Transfer Sequence at the I2C-Bus Control Mode
0
0
1
0
0
CAD1
CAD0
R/W
A1
A0
D1
D0
(CAD0 and CAD1 are set by pins)
Figure 64. The First Byte
0
0
0
A4
A3
A2
Figure 65. The Second Byte
D7
D6
D5
D4
D3
D2
Figure 66. Byte Structure After The Second Byte
015099885-E-00
2016/03
- 58 -
[AK5536]
(2)-2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK5536. After transmission of data, the master can
read the next address’s data by generating an acknowledge instead of terminating the write cycle after
the receipt of the first data word. After receiving each data packet the internal 6-bit address counter is
incremented by one, and the next data is automatically taken into the next address. If the address
exceeds “07H” prior to generating stop condition, the address counter will “roll over” to “00H” and the data
of “00H” will be read out.
The AK5536 supports two basic read operations: Current Address Read and Random Address Read.
(2)-2-1. Current Address Read
The AK5536 contains an internal address counter that maintains the address of the last word accessed,
incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address
with R/W bit “1”, the AK5536 generates an acknowledge, transmits 1-byte of data to the address set by
the internal address counter and increments the internal address counter by 1. If the master does not
generate an acknowledge but generates a stop condition instead, the AK5536 ceases transmission.
S
T
A
R
T
SDA
S
S
T
O
P
R/W= “1”
Slave
Address
Data(n)
A
C
K
Data(n+1)
A
C
K
Data(n+2)
A
C
K
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 67. Current Address Read
(2)-2-2. Random Address Read
The random read operation allows the master to access any memory location at random. Prior to issuing
a slave address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The
master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After
the register address is acknowledged, the master immediately reissues the start request and the slave
address with the R/W bit =“1”. The AK5536 then generates an acknowledge, 1 byte of data and
increments the internal address counter by 1. If the master does not generate an acknowledge but
generates a stop condition instead, the AK5536 ceases transmission.
S
T
A
R
T
SDA
S
S
T
A
R
T
R/W= “0”
Slave
Address
Sub
Address(n)
A
C
K
S
A
C
K
S
T
O
P
R/W= “1”
Slave
Address
Data(n)
A
C
K
Data(n+1)
A
C
K
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 68. Random Address Read
015099885-E-00
2016/03
- 59 -
[AK5536]
SDA
SCL
S
P
start condition
stop condition
Figure 69. START and STOP Conditions
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 70. Acknowledge on the I2C-Bus
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 71. Bit Transfer on the I2C-Bus
015099885-E-00
2016/03
- 60 -
[AK5536]
■ Register Map
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
00H Power Management1
1
1
PW6
PW5
PW4
PW3
PW2
PW1
01H Power Management2
0
0
0
0
0
MONO2 MONO1
RSTN
02H Control 1
0
CKS3 CKS2 CKS1 CKS0
DIF1
DIF0
HPFE
03H Control 2
0
TDM1 TDM0
0
0
0
0
0
04H Control 3
DP
0
0
0
0
0
SD
SLOW
05H DSD
0
0
DCKS
0
PMOD DCKB DSDSEL1 DSDSEL0
06H TEST1
TST7 TST6 TST5 TST4 TST3
TST2
TST1
TST0
07H TEST2
0
0
0
0
0
0
0
TRST
Note 24. Data must not be written into addresses from “06H” to “1FH”.
Note 25. The bits indicated as “0” must contain a “0” value. When RSTN bit is set to “0”, the internal digital
filter and the control block are reset but the register values are not initialized.
Note 26. When the PDN pin is set to “L”, all registers are initialized to their default values.
■ Register Definitions
Addr Register Name
00H Power Management1
R/W
Default
D7
1
R/W
1
D6
1
R/W
1
D5
PW6
R/W
1
D4
PW5
R/W
1
D3
PW4
R/W
1
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
PW3
R/W
1
D1
PW2
R/W
1
D0
PW1
R/W
1
PW6-1: Power Down control for channel 6-1
0: Power OFF
1: Power ON (default)
Addr
Register Name
01H Power Management2
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D2
D1
D0
MONO2 MONO1 RSTN
R/W
R/W
R/W
0
0
1
RSTN: Internal Timing Reset
0: Reset. All registers are not initialized.
1: Normal Operation (default)
Internal clock timings are reset but registers are not reset.
MONO2-1: Channel Summation mode Select (Table 17, Table 18, Table 19)
00: Not- Summation mode (default)
01: 4-to-1 mode
10: 6-to-3 mode
11: 6-to-1 mode
015099885-E-00
2016/03
- 61 -
[AK5536]
Addr
Register Name
02H Control 1
R/W
Default
D7
0
R/W
0
D6
CKS3
R/W
0
D5
CKS2
R/W
0
D4
CKS1
R/W
0
D3
CKS0
R/W
0
D2
DIF1
R/W
0
D1
DIF0
R/W
0
D0
HPFE
R/W
1
HPFE: High Pass Filter Enable
0: High Pass Filter OFF
1: High Pass Filter ON (default)
When this bit is “1”, digital HPFs for all channels are ON.
DIF1-0: Audio Data Interface Mode Select (Table 8, Table 9)
Select A/D data bit length (24-bit/32-bit) and the format (MSB justified/ I2S Compatible)
CKS3-0: Sampling Speed Mode and MCLK Frequency Select (Table 5)
Select Sampling Speed and MCLK frequency.
Addr
Register Name
03H Control 2
R/W
Default
D7
0
R/W
0
D6
TDM1
R/W
0
D5
TDM0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
0
R/W
0
TDM1-0: TDM Modes Select (Table 9)
Select the A/D data multiplex mode from Normal, TDM128, TDM256 and TDM512 modes.
Addr Register Name
04H Control 3
R/W
Default
D7
DP
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
SD
R/W
0
D0
SLOW
R/W
0
SLOW: Slow Roll-off Filter Select (Table 20)
0: Sharp Roll-off (default)
1: Slow Roll-off
Select Roll-off characteristic of the digital filter.
SD: Short Delay Select (Table 20)
0: Normal Delay (default)
1: Short Delay
Select group delay of the digital filter.
DP: DSD Mode Select
0: PCM Mode (default)
1: DSD Mode
Select A/D Data Output Mode.
015099885-E-00
2016/03
- 62 -
[AK5536]
Addr
Register Name
05H DSD
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
DCKS
R/W
0
D4
0
R/W
0
D3
PMOD
R/W
0
D2
D1
D0
DCKB DSDSEL1 DSDSEL0
R/W
R/W
R/W
0
0
0
DSDSEL1-0: Select the Frequency of DCLK
00: 64fs (default)
01: 128fs
10: 256fs
11: Reserved
DCKB: Polarity of DCLK
0: DSD data is output from DCLK Falling Edge (default)
1: DSD data is output from DCLK Rising Edge
PMOD: DSD Phase Modulation Mode
0: Not Phase Modulation Mode (default)
1: Phase Modulation Mode
DSD Output Phase Modulation Mode Enable
DCKS: Master Clock Frequency Select at DSD Mode (DSD Only)
0: 512fs (default)
1: 768fs
Addr
06H
Register Name
TEST1
R/W
Default
D7
TST7
RD
0
D6
TST6
RD
0
D5
TST5
RD
0
D4
TST4
RD
0
D3
TST3
RD
0
D2
TST2
RD
0
D1
TST1
RD
0
D0
TST0
RD
0
TST7-0: Test register.
This register must be used as the default setting. Normal operation is not guaranteed if all bits
are not “0”.
Addr
07H
Register Name
TEST2
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
TRST
W
0
TRST: Test register. This register must be “0”.
This register must be “0”.
This register must be used as the default setting. Normal operation is not guaranteed if all bits
are not “0”.
015099885-E-00
2016/03
- 63 -
[AK5536]
AIN1+
AIN1
Analog 3.3V
+
20
100 0.1
TDM0
TDM1
46
45
44
43
42
41
40
39
38
37
36
35
34
33
CKS3/CAD1
CKS2/SCL/CCLK
CKS1/CAD0_I2C/CSN
CKS0/SDA/CDTI
OVF
TESTO2
TESTO1
DSDOR3
SDTO3/DSDOL3
SDTO2/DSDOR2
SDTO1/DSDOL2
TDMIN/DSDOR1
LRCK/DSDOL1
BICK/DCLK
DIF1/DSDSEL1
PSN/CAD0_SPI
I2C
DP
HPFE/DCKS
LDOE
ODP
AIN1P
AIN1N
VREFL1
VREFH1
AIN2N
AIN2P
MSN
PW2
PW1
PW0
PDN
VDD18
DVSS
TVDD
MCLK
TEST
TESTIN6
TESTIN5
TESTIN4
TESTIN3
TESTIN2
TESTIN1
AK5536
Top View
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
Mode
Setting
Controller
0.1 4.7
+
+
0.1
10
Digital 3.3V
Mater Clock
0.1
+
Analog 3.3V
AIN6
AIN6+
10
+
100 0.1
20
Analog 3.3V
100 0.1
+
AIN4
AIN4+
AIN5+
AIN5
20
Analog 3.3V
Analog 3.3V
AIN3+
AIN3
+
10
0.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
AIN2
AIN2+
DIF0/
DSDSEL0
Controller
AVSS1
AVDD1
AIN3P
AIN3N
VREFL2
VREFH2
AIN4N
AIN4P
AIN5P
AIN5N
VREFH3
VREFL3
AIN6N
AIN6P
AVDD2
AVSS2
Mode
Setting
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
SD/PMOD 48
SLOW/DCKB 47
Mode
Setting
fs
64fs
13. Recommended External Circuits
Figure 72 shows recommended external connection.
Figure 72. Typical Connection Diagram
Note 27. All digital input pins must not be allowed to float.
015099885-E-00
2016/03
- 64 -
[AK5536]
1. Grounding and Power Supply Decoupling
The AK5536 requires careful attention to power supply and grounding arrangements. Normally AVDD1/2
and TVDD are supplied from analog supply of the system. The power-up sequence between AVDD1/2
and TVDD are not critical when AVDD1/2 and TVDD are supplied separately. DVSS and AVSS1/2 must
be connected to the same analog ground plane. System analog ground and digital ground should be
wired separately and connected together as close as possible to where the supplies are brought onto the
printed circuit board. Decoupling capacitors for high frequency should be placed as near as possible to
the supply pin.
2. Reference Voltage
The differential voltage between the VREFH1-3 pins and the VREFL1-3 pins are the common voltage of
A/D conversion. The VREFL1-3 pins are normally connected to AVSS. In order to remove a high
frequency noise, connect a 20 Ω resistor between the VREFH1-3 pins and analog 3.3 V supply, and
connect a 0.1 μF ceramic capacitor in parallel with an 100 μF electrolytic capacitor between the
VREFH1-3 pins and the VREFL1-3 pins. Especially the ceramic capacitor should be connected as close
as possible to the pin. All digital signals, especially clocks, should be kept away from the VREFH1-3 pins
and VREFL1-3 pins in order to avoid unwanted noise coupling into the AK5536.
3. Analog Inputs
The Analog input signal is differentially supplied into the modulator via the AINn+ and the AINn- pins (n=
1-6). The input voltage is the difference between the ALINn+ and ALINn- pins (n= 1-6). The full scale
signal on each pin is nominally 1.85 V (typ). A voltage from AVSS1/2 to AVDD1/2 can be input to the
AK5536. The output code format is two’s complement. The internal HPF removes DC offset (including
DC offset by the ADC itself).
The AK5536 requires a +3.3 V analog supply voltage. Any voltage which exceeds the upper limit of
AVDD1/2+0.3 V and lower limit of AVSS1/20.3 V and any current beyond 10 mA for the analog input
pins should be avoided. Excessive currents to the input pins may damage the device. Hence input pins
must be protected from signals at or beyond these limits. Use caution especially when using ±15 V for
other analog circuits in the system.
015099885-E-00
2016/03
- 65 -
[AK5536]
4. External Analog Circuit Examples
Figure 73 shows an input buffer circuit example 1. (1st order HPF; fc= 0.70 Hz, 2nd order LPF; fc= 351
kHz, gain= 14.5 dB). The analog signal is able to input through XLR or BNC connectors. (short JP1 and
JP2 for BNC input, open JP1 and JP2 for XLR input). The input level of this circuit is 9.85 Vpp (AK5536:
1.85 Vpp Typ.). When using this circuit, analog characteristics at fs= 48 kHz is DR= 111 dB, S/(N+D)=
103 dB. The S/(N+D) characteristics of the AK5536 varies depending on DC bias current of the input
signal. Set the DC bias voltage in a range from 0.48 x AVDD to 0.52 x AVDD for a better characteristic.
* Film capacitors are recommended for the components shown as 15 nF and 1 nF in the figure below.
4.7k
4.7k
Analog In
620
JP1
VP+
Vin- 68µ
+
9.85Vpp
Bias
VP-
1n *
3.3k
10
+
1.85Vpp
AK5536 AINn+
100p
NJM5534
NJM5534
XLR
15n *
VA+
620
10k
Bias
10k
JP2
68µ
-
+
10µ
1n *
3.3k
Vin+
0.1µ
10
+
NJM5534
Bias
VA=+3.3V
VP=15V
AK5536 AINn100p
1.85Vpp
Figure 73. Input Buffer Example1
fin
1Hz
10Hz
Frequency
1.77dB
0.02dB
Response
Table 23. Frequency Response of HPF
fin
20kHz
40kHz
80kHz
Frequency
0.00dB
0.00dB
0.00dB
Response
Table 24. Frequency Response of LPF
015099885-E-00
6.144MHz
49.68dB
2016/03
- 66 -
[AK5536]
14. Package
■ Outline Dimensions
64-pin QFN (Unit mm)
9.00±0.15
A
0.40±0.10
8.75
B
64
49
48
48
1
33
16
6.15
8.75
9.00±0.15
1
64
49
16
33
32
17
0.10
M AB
0.25
+0.05
-0.07
.60
C0
X
MA
32
0.50
17
6.15
+0.15
S
0.85 -0.05
+0.03
-0.02
0.08
0.02
0.20
S
■ Material & Lead Finish
Package molding compound: Epoxy resin
Lead frame material: Cu
Terminal surface treatment: Solder (Pb free) plate
■ Marking
AKM
AK5536VN
XXXXXXX
1
1)
2)
3)
4)
Pin #1 indication
Date Code : XXXXXXX (7 digits)
Marketing Code: AK5536VN
AKM Logo
015099885-E-00
2016/03
- 67 -
[AK5536]
15. Ordering Guide
40 - 105 ºC
64-pin QFN
Evaluation Board for AK5536
AK5536VN
AKD5536
16. Revision History
Date (Y/M/D)
16/03/16
Revision
00
Reason
Page
First Edition
Contents
015099885-E-00
2016/03
- 68 -
[AK5536]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or
application of AKM product stipulated in this document (“Product”), please make inquiries the
sales office of AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and
application examples of AKM Products. AKM neither makes warranties or representations with
respect to the accuracy or completeness of the information contained in this document nor
grants any license to any intellectual property rights or any other rights of AKM or any third party
with respect to the information in this document. You are fully responsible for use of such
information contained in this document in your product design or applications. AKM ASSUMES
NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM
THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact,
including but not limited to, equipment used in nuclear facilities, equipment used in the
aerospace industry, medical equipment, equipment used for automobiles, trains, ships and
other transportation, traffic signaling equipment, equipment used to control combustions or
explosions, safety devices, elevators and escalators, devices related to electric power, and
equipment used in finance-related fields. Do not use Product for the above use unless
specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are
responsible for complying with safety standards and for providing adequate designs and
safeguards for your hardware, software and systems which minimize risk and avoid situations in
which a malfunction or failure of the Product could cause loss of human life, bodily injury or
damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or
related technology or any information contained in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws
and regulations. The Products and related technology may not be used for or incorporated into
any products or systems whose manufacture, use, or sale is prohibited under any applicable
domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the
RoHS compatibility of the Product. Please use the Product in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses
occurring as a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set
forth in this document shall immediately void any warranty granted by AKM for the Product and
shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without
prior written consent of AKM.
015099885-E-00
2016/03
- 69 -