0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AK5704EN

AK5704EN

  • 厂商:

    AKM(旭化成)

  • 封装:

    WFQFN28_EP

  • 描述:

    AK5704EN

  • 数据手册
  • 价格&库存
AK5704EN 数据手册
[AK5704] AK5704 Low-Power 4-ch 32-bit ADC with MIC-Amp 1. General Description The AK5704 is a high performance analog front-end AD converter IC ideal for voice recognition, voice control, and conferencing applications. The device has a built-in 4-ch 32-bit ADC and a low noise microphone amplifier and extracts full performance of a high S/N microphone with low power consumption by achieving dynamic range of 105dB. It is possible to support up to 16-ch microphone array by connecting multiple AK5704’s. In addition, since it incorporates ultra-low power consumption voice activity detection, power consumption during wait time is greatly reduced. 1. 2. 3. 4. 5. 6. 7. 8. 9. 2. Features Recording Function 4-Channel Low Power 32-bit ADC 2-types Digital Filter (Low-latency [5/fs] Sharp Roll-off and Voice) Single-ended Inputs or Full-differential Inputs MIC Amplifier Gain: +30 dB to 0 dB, 3 dB step 2-output MIC Power Supplies: 2.8 V / 2.5 V / 1.8 V / Direct Mode Selectable ADC Characteristics: S/N, DR: 105 dB, THD+N: 90 dB, (Gain = 0 dB) S/N, DR: 96 dB, THD+N: 86 dB, (Gain = +18 dB) Excellent Power Supply Noise Reduction PSRR: 60dB Spurious Free Dynamic Range: 100dBc 4-Channel Digital MIC Interface Programmable Phase Adjustment Microphone Sensitivity Adjustment Digital Voice Activity Detector Programmable Digital Filter Mixer 2nd order HPF and LPF Digital ALC (Automatic Level Control): 4-ch Link Mode, 2-ch Mode Digital Audio interface Master/Slave mode Sampling Frequency: 8 k, 11.025 k, 12 k, 16 k, 22.05 k, 24 k, 32 k, 44.1 k, 48 k, 88.2 k, 96 k, 176.4 k, 192 kHz Interface Format - 32/24/16-bit I2S/MSB justified, 16-bit PCM Short/Long Frame - 4-ch TDM - 8/12/16-ch Cascade TDM Built-in PLL Control I/F: I2C-bus (400kHz) Operation Temperature Range: Ta = 40 to 85°C Power Supply: AVDD (ADC, MIC, PLL): 1.7 to 1.9 V or 3.0V to 3.6V TVDD (Host & Audio I/F, LDO12): 1.65 to 3.6 V Package: 28-pin QFN 019000890-E-01 2022/01 -1- [AK5704] 1. 2. 3. 4. 5. 6. 7. 8. 9. 3. Table of Contents General Description .............................................................................................................................. 1 Features ................................................................................................................................................ 1 Table of Contents .................................................................................................................................. 2 Block Diagram ....................................................................................................................................... 4 Pin Configurations and Functions ......................................................................................................... 5 5.1. Pin Configurations ................................................................................................................... 5 5.2. Functions ................................................................................................................................. 6 5.3. Handling of Unused Pin ........................................................................................................... 7 5.4. Pin State In Power-down Mode ............................................................................................... 8 Absolute Maximum Ratings .................................................................................................................. 9 Recommended Operating Conditions .................................................................................................. 9 Electrical Characteristics .................................................................................................................... 10 8.1. Microphone & ADC Analog Characteristics (AVDD=3.3V: AVDDL bit = “0”)........................ 10 8.2. Microphone & ADC Analog Characteristics (AVDD=1.8V: AVDDL bit = “1”)........................ 12 8.3. Power Supply Current ........................................................................................................... 14 8.4. Power Consumption for Each Operation Mode..................................................................... 14 8.5. ADC1/2 Short Delay Sharp Roll-off Filter (ADVF bit = “0”) ................................................... 15 8.6. ADC1/2 Digital Filter for Voice (ADVF bit = “1”) .................................................................... 16 8.7. DC Characteristics ................................................................................................................. 17 8.8. Switching Characteristics ...................................................................................................... 18 Functional Descriptions ...................................................................................................................... 28 9.1. Internal Pull-down Pin............................................................................................................ 28 9.2. LDO Circuit ............................................................................................................................ 28 9.3. System Clock ......................................................................................................................... 29 9.4. PLL......................................................................................................................................... 30 9.5. Audio Interface Format .......................................................................................................... 38 9.6. Synchronization with audio system (SYNCDET) .................................................................. 46 9.7. MIC/LINE Input ...................................................................................................................... 47 9.8. Microphone Amplifier Gain .................................................................................................... 49 9.9. Microphone Power ................................................................................................................. 50 9.10. MIC Input Start-Up Time........................................................................................................ 51 9.11. ADC1/2 Initialization Cycle .................................................................................................... 51 9.12. Mono/Stereo Mode ................................................................................................................ 52 9.13. Digital Microphone ................................................................................................................. 53 9.14. Digital Block ........................................................................................................................... 55 9.14.1. Programmable Phase Adjustment .................................................................................. 56 9.14.2. High Pass Filter (ADC1/2) ............................................................................................... 57 9.14.3. ADC1/2 Digital Filter ........................................................................................................ 57 9.14.4. Microphone Sensitivity Adjustment ................................................................................. 58 9.14.5. Monaural (MIX) Selection ................................................................................................ 58 9.14.6. High Pass Filter (HPF1/2) ............................................................................................... 59 9.14.7. Low Pass Filter (LPF1/2) ................................................................................................. 59 9.14.8. ALC Operation ................................................................................................................. 60 9.14.9. Input Digital Volume (Manual Mode) ............................................................................... 65 9.14.10. ALC 4ch Link Mode Sequence........................................................................................ 66 9.15. Digital Voice Activity Detector ............................................................................................... 67 9.15.1. VDLY ............................................................................................................................... 68 9.15.2. HPF, LPF ......................................................................................................................... 68 9.15.3. ABS.................................................................................................................................. 69 9.15.4. NLD (Noise Level Detector) ............................................................................................ 70 9.15.5. MAX ................................................................................................................................. 72 9.15.6. MULT (X) ......................................................................................................................... 72 9.15.7. Comparator (>) ................................................................................................................ 72 9.15.8. Guard Timer .................................................................................................................... 73 9.15.9. Interrupt Output (WINTN pin) .......................................................................................... 74 019000890-E-01 2022/01 -2- [AK5704] 9.15.10. Output Selector................................................................................................................ 74 9.16. I2C-bus Control Interface ...................................................................................................... 75 9.17. Register Map ......................................................................................................................... 78 9.18. Register Definition ................................................................................................................. 80 10. Recommended External Circuits ........................................................................................................ 94 11. Control Sequence ............................................................................................................................... 97 11.1. Clock Set Up .......................................................................................................................... 97 11.1.1. PLL Master Mode ............................................................................................................ 97 11.1.2. PLL Slave Mode (BCLK pin) ........................................................................................... 98 11.1.3. PLL Slave Mode (MCKI pin) ............................................................................................ 99 11.1.4. External Slave Mode ..................................................................................................... 100 11.1.5. External Master Mode ................................................................................................... 101 11.2. Voice Activity Detection (1ch Mic) ....................................................................................... 102 11.3. Voice Activity Detection (4ch Mic) ....................................................................................... 103 11.4. Microphone Input Recording (4ch) ...................................................................................... 104 11.5. Stop of Clock ....................................................................................................................... 105 11.5.1. PLL Master Mode .......................................................................................................... 105 11.5.2. PLL Slave Mode (BCLK pin) ......................................................................................... 105 11.5.3. PLL Slave Mode (MCKI pin) .......................................................................................... 105 11.5.4. External Slave Mode ..................................................................................................... 106 11.5.5. External Master Mode ................................................................................................... 106 11.6. Power Down ........................................................................................................................ 106 12. Package ............................................................................................................................................ 107 12.1. Outline Dimensions ............................................................................................................. 107 12.2. Material & Lead finish .......................................................................................................... 107 12.3. Marking ................................................................................................................................ 107 13. Ordering Guide ................................................................................................................................. 108 14. Revision History ................................................................................................................................ 108 IMPORTANT NOTICE ............................................................................................................................ 109 019000890-E-01 2022/01 -3- [AK5704] 4. Block Diagram AVDD VREF VCOM VSS1 SDA SCL MPWR2 MIC Power Supply Control Register MPWR1 AIN1A+ /DMDAT1 CAD PDN PLL MCKO MCKI AIN1AAIN1B+ /DMCLK1 Stereo MIC LRCK ADC1 Delay HPF Sensitivity Adj. AIN1BAIN2A+ /DMDAT2 Mixer, HPF, LPF, ALC Stereo BCLK Audio I/F SDTO1 MIC TDMIN /SDTO2 ADC2 Delay HPF Sensitivity Adj AIN2AAIN2B+ /DMCLK2 TVDD Digital VAD for Voice Waku-up AIN2B- LDO12 VDD12 VSS2 WINTN Figure 1. AK5704 Block Diagram 019000890-E-01 2022/01 -4- [AK5704] 5. Pin Configurations and Functions 5.1. Pin Configurations 15 VREF 16 VCOM 17 VSS1 18 AVDD 19 MPWR2 20 AIN2B- AIN2B+ 21 /DMCLK2 28-pin QFN 14 PDN AIN2A- 22 AIN2A+ 23 /DMDAT2 AIN1B- 24 13 TVDD 12 VSS2 AK5704 AIN1B+ 25 /DMCLK1 AIN1A- 26 11 VDD12 Top View 10 MCKI 1 2 3 4 5 6 7 CAD SCL SDA WINTN SDTO1 TDMIN /SDTO2 LRCK AIN1A+ 27 /DMDAT1 MPWR1 28 019000890-E-01 9 MCKO 8 BCLK 2022/01 -5- [AK5704] 5.2. Functions No. Pin Name I/O Protection Diode Function 1 CAD I I2C Chip Address Pin 2 SCL I I2C Serial Data Clock Pin 3 SDA I/O I2C Serial Data Input/Output Pin 4 WINTN O Interrupt Output Pin 5 SDTO1 O Audio Serial Data Output 1 Pin TDMIN I SDTO2 O 7 LRCK I/O Frame Sync Clock Pin 8 BCLK I/O Audio Serial Data Clock Pin 9 MCKO O Master Clock Output Pin 10 MCKI I Master Clock Input Pin 11 VDD12 - 12 13 VSS2 TVDD - 6 14 PDN I 15 VREF O 16 VCOM O 17 18 VSS1 AVDD - TDM Data Input Pin (Default) (SDTO2E bit = “0”) Audio Serial Data Output 2 Pin (SDTO2E bit = “1”) LDO12 (1.2 V) Output Pin This pin must be connected to the VSS2 pin with a 2.2 μF ±50 % capacitor in series. Digital Ground Pin Digital I/F & LDO12 Power Supply Pin Power down Pin “L”: Power-down, “H”: Power-Up Voltage Reference Pin This pin must be connected to the VSS1 pin with a 2.2 μF ±50% Ceramic capacitor in series. Common Voltage Output Pin This pin must be connected to the VSS1 pin with a 2.2 μF ±50% Ceramic capacitor in series. Analog Ground Pin Analog Power Supply Pin TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD/ VSS2 TVDD TVDD TVDD TVDD TVDD TVDD TVDD TVDD TVDD TVDD TVDD TVDD TVDD/ VSS2 TVDD AVDD/ VSS1 AVDD AVDD/ VSS1 AVDD AVDD/ 19 MPWR2 O MIC Power Supply 2 Pin VSS1 Note 1. Do not connect a load to the VDD12 pin, the VCOM pin and the VREF pin. 019000890-E-01 Power Domain AVDD AVDD 2022/01 -6- [AK5704] No. Pin Name I/O 20 AIN2B- I AIN2B+ I DMCLK2 O AIN2A- I AIN2A+ I DMDAT2 I AIN1B- I AIN1B+ I DMCLK1 O AIN1A- I AIN1A+ I DMDAT1 I 21 22 23 24 25 26 27 28 Note 2. Function Protection Diode Power Domain Negative Analog Input 2B Pin AVDD/ VSS1 AVDD Positive Analog Input 2B Pin (DMIC2 bit = “0”) Digital Microphone Clock Output 2 Pin (DMIC2 bit = “1”) AVDD/ VSS1 AVDD Negative Analog Input 2A Pin AVDD/ VSS1 AVDD Positive Analog Input 2A Pin (DMIC2 bit = “0”) Digital Microphone Data Input 2 Pin (DMIC2 bit = “1”) AVDD/ VSS1 AVDD Negative Analog Input 1B Pin AVDD/ VSS1 AVDD Positive Analog Input 1B Pin (DMIC1 bit = “0”) Digital Microphone Clock Output 1 Pin (DMIC1 bit = “1”) AVDD/ VSS1 AVDD Negative Analog Input 1A Pin AVDD/ VSS1 AVDD Positive Analog Input 1A Pin (DMIC1 bit = “0”) Digital Microphone Data Input 1 Pin (DMIC1 bit = “1”) AVDD/ VSS1 AVDD AVDD/ AVDD VSS1 All input pins except analog input pins (AIN1A+, AIN1A−, AIN1B+, AIN1B−, AIN2A+, AIN2A−, AIN2B+ and AIN2B− pins) should not be left floating. MPWR1 O MIC Power Supply 1 Pin 5.3. Handling of Unused Pin The unused I/O pins must be connected appropriately. Classification Analog Digital Pin Name MPWR1, MPWR2, AIN1A+, AIN1A−, AIN1B+, AIN1B− AIN2A+, AIN2A−, AIN2B+, AIN2B− MCKO, WINTN, SDTO1 MCKI, TDMIN 019000890-E-01 Setting Open Open and DMIC1 bit = “0” Open and DMIC2 bit = “0” Open Connect to VSS2 2022/01 -7- [AK5704] 5.4. Pin State In Power-down Mode Register Power-down Pin Name I/O Pin Power-down (PDN pin = “L”) I I I/O O O I O I/O I/O O I I O Hi-z Hi-z Hi-z Hi-z Pull-down to VSS2 by 49kΩ (typ.) Pull-down to VSS2 by 49kΩ (typ.) “L” (VSS2) 7 8 9 10 11 12 13 14 15 CAD SCL SDA WINTN SDTO1 TDMIN SDTO2 LRCK BCLK MCKO MCKI VDD12 VSS2 TVDD PDN VREF (PDN pin = “H”) ← ← ← “H” (TVDD) “L” (VSS2) “L” (VSS2) “L” (VSS2) “L” (VSS2) ← Normal Operation ← ← 16 VCOM O 17 18 19 20 VSS1 AVDD MPWR2 AIN2BAIN2B+ DMCLK2 AIN2AAIN2A+ DMDAT2 AIN1BAIN1B+ DMCLK1 AIN1AAIN1A+ DMDAT1 MPWR1 O I I O I I I I I O I I I O Pull-down to VSS2 by 49kΩ (typ.) Pull-down to VSS2 by 49kΩ (typ.) Pull-down to VSS2 by 49kΩ (typ.) Hi-z Pull-down to VSS2 by 700Ω (typ.) Hi-z Hi-z Pull-down to VSS1 by 260Ω (typ.) @AVDD=3.3V Pull-down to VSS1 by 265Ω (typ.) @AVDD=1.8V Hi-z Hi-z Hi-z ← Hi-z ← Hi-z ← Hi-z ← Hi-z ← Hi-z ← Hi-z ← Hi-z ← No. 1 2 3 4 5 6 21 22 23 24 25 26 27 28 019000890-E-01 ← ← ← 2022/01 -8- [AK5704] 6. Absolute Maximum Ratings (VSS1 = VSS2 = 0 V; Note 3, Note 4) Parameter Symbol Min. Power Analog AVDD −0.3 Supplies Digital I/F & LDO12 TVDD −0.3 Input Current, Any Pin Except Supplies IIN Analog Input Voltage (Note 5) VINA −0.3 Digital Input Voltage (Note 6) VIND1 −0.3 Max. 4.3 4.3 ±10 4.3 TVDD+0.3 or 4.3 AVDD+0.3 85 150 Unit V V mA V V (Note 7) VIND2 V −0.3 Ambient Temperature (powered applied) Ta −40 C Storage Temperature Tstg −65 C Note 3. All voltages are with respect to ground. Note 4. VSS1 and VSS2 must be connected to the same analog ground plane. Note 5. AIN1A+/-, AIN1B+/-, AIN2A+/-, AIN2B+/- pins Note 6. MCKI, BCLK, LRCK, TDMIN, CAD, SCL, SDA, PDN pins; The maximum value is lower value between “TVDD+0.3V” and “4.3V”. Note 7. DMDAT1 and DMDAT2 pins WARNING: Operation beyond these limits may results in permanent damage to the device. Normal operation is not guaranteed at these extremes. 7. Recommended Operating Conditions (VSS1 = VSS2 = 0 V; Note 8) Parameter Symbol Min. Typ. Max. Unit Power Supplies AVDDL 1.7 1.8 1.9 V Analog (Note 9) AVDDH 3.0 3.3 3.6 V Digital I/F & LDO12 TVDD 1.65 1.8 3.6 V Note 8. All voltages are with respect to ground. Note 9. The power-up sequence between AVDD and TVDD is not critical. The PDN pin must be “L” upon power-up, and should be changed to “H” after all power supplies are supplied to avoid an internal circuit error. WARNING: AKM assumes no responsibility for the usage beyond the conditions in datasheet. 019000890-E-01 2022/01 -9- [AK5704] 8. Electrical Characteristics 8.1. Microphone & ADC Analog Characteristics (AVDD=3.3V: AVDDL bit = “0”) (Ta = 25C; AVDD = 3.3V, TVDD = 1.8 V; VSS1 = VSS2 = 0 V; Signal Frequency = 1 kHz; 24-bit Data; fs = 48 kHz, BCLK = 64fs; Measurement Bandwidth = 20 Hz to 20 kHz; unless otherwise specified) Parameter Min. Typ. Max. Unit MIC Amplifier 1/2: AIN1A+/-, AIN1B+/-, AIN2A+/-, AIN2B+/- pins Input Resistance 140 200 260 k MIC-Amp 1/2 Gain Gain Setting 0 +30 dB Step Width 2 3 4 dB MIC Power Supply: MPWR1/2 pins MICL[1:0] bits = “00” 2.6 2.8 3.0 MICL[1:0] bits = “01” 2.3 2.5 2.7 Output Voltage (Note 10) V MICL[1:0] bits = “10” 1.7 1.8 1.9 MICL[1:0] bits = “11” AVDD Load Resistance 650  Load Capacitance 130 pF MICL[1:0] bits = “00” −111 Output Noise Level MICL[1:0] bits = “01” dBV −112 (A-weighted) MICL[1:0] bits = “10” −116 PSRR (1kHz) (Note 11) 60 dB Note 10. Output voltage setting of microphone power for MPWR1 and MPWR2 is common. The output voltage is proportional to AVDD. MICL[1:0] bits = “00”: Typ. 2.8 x AVDD/3.3V, “01”: Typ. 2.5 x AVDD/3.3V, “10”: Typ. 1.8 x AVDD/3.3V When MICL[1:0] bits are “11”, MPWR1/2 output AVDD via internal switch (Switch ON resistance: Typ. 37, Max. 62). Note 11. PSRR is referred to all power supplies with 100mVpp sine wave. 019000890-E-01 2022/01 - 10 - [AK5704] Parameter Min. Typ. Max. Unit ADC1/2 Analog Input Characteristics: AIN1A+, AIN1B+, AIN2A+, AIN2B+ pins (Single-ended Input) → ADC1/2 → SDTO1/2 Resolution 32 Bits 0 dB 1.85 2.02 2.18 Vpp Input Full Scale Voltage (Note 12) +18 dB 0.255 Vpp 0 dB dB −90 fs = 48 kHz BW = 20 kHz +18 dB dB −86 −78 0 dB dB −90 fs = 96 kHz THD+N −1 dBFS BW = 40 kHz +18 dB dB −86 0 dB dB −90 fs = 192 kHz BW = 40 kHz +18 dB dB −86 0 dB 99 105 dB Dynamic Range (−60 dBFS, A-weighted) +18 dB 96 dB 0 dB 99 105 dB S/N (A-weighted) +18 dB 96 dB 0 dB 100 dB Interchannel Isolation +18 dB 80 100 dB Interchannel Gain Mismatch 0 0.8 dB 0 dB 60 dB PSRR (1kHz) (Note 13) +18dB 60 dB 0 dB 100 dBc Spurious Free Dynamic Range (10kHz) (Note 14) +18dB 100 dBc ADC1/2 Analog Input Characteristics: AIN1A+/-, AIN1B+/-, AIN2A+/-, AIN2B+/- pins (Differential Input) → ADC1/2 → SDTO1/2 Resolution 32 Bits 0 dB 1.85 2.02 2.18 Vpp Input Full Scale Voltage (Note 12) +18 dB 0.255 Vpp 0 dB dB −90 fs = 48 kHz BW = 20 kHz +18 dB dB −86 0 dB dB −90 fs = 96 kHz THD+N −1 dBFS BW = 40 kHz +18 dB dB −86 0 dB dB −90 fs = 192 kHz BW = 40 kHz +18 dB dB −86 0 dB 105 dB Dynamic Range (−60 dBFS, A-weighted) +18 dB 96 dB 0 dB 105 dB S/N (A-weighted) +18 dB 96 dB 0 dB 100 dB Interchannel Isolation +18 dB 100 dB Interchannel Gain Mismatch 0 dB 0 dB 60 dB PSRR (1kHz) (Note 13) +18dB 60 dB 0 dB 100 dBc Spurious Free Dynamic Range (10kHz) (Note 14) +18dB 100 dBc Note 12. Input voltage is proportional to AVDD. Typ. 2.02 Vpp x AVDD/3.3V @ MIC-Amp Gain = 0 dB Note 13. PSRR is referred to all power supplies with 100mVpp sine wave. It is the ratio based on 100mVpp (= −26.1dBFS) at the ADC output. Note 14. SFDR is referred to AVDD with 100mVpp sine wave. It is the dynamic range based on full scale (0 dBFS) at the ADC output. 019000890-E-01 2022/01 - 11 - [AK5704] 8.2. Microphone & ADC Analog Characteristics (AVDD=1.8V: AVDDL bit = “1”) (Ta = 25C; AVDD = 1.8V, TVDD = 1.8 V; VSS1 = VSS2 = 0 V; Signal Frequency = 1 kHz; 24-bit Data; fs = 48 kHz, BCLK = 64fs; Measurement Bandwidth = 20 Hz to 20 kHz; unless otherwise specified) Parameter Min. Typ. Max. Unit MIC Amplifier 1/2: AIN1A+/-, AIN1B+/-, AIN2A+/-, AIN2B+/- pins Input Resistance 140 200 260 k MIC-Amp 1/2 Gain Gain Setting 0 +30 dB Step Width 2 3 4 dB MIC Power Supply: MPWR1/2 pins Output Voltage (Note 15) “11” AVDD V Note 15. Output voltage setting of microphone power for MPWR1 and MPWR2 is common. The setting of MICL[1:0] bits = "11" is only available. When MICL[1:0] bits are “11”, MPWR1/2 output AVDD via internal switch (Switch ON resistance: Typ. 37, Max. 62). 019000890-E-01 2022/01 - 12 - [AK5704] Parameter Min. Typ. Max. Unit ADC1/2 Analog Input Characteristics: AIN1A+, AIN1B+, AIN2A+, AIN2B+ pins (Single-ended Input) → ADC1/2 → SDTO1/2 Resolution 32 Bits 0 dB 1.01 1.10 1.19 Vpp Input Full Scale Voltage (Note 16) +18 dB 0.139 Vpp 0 dB dB −80 fs = 48 kHz BW = 20 kHz +18 dB dB −80 −72 0 dB dB −80 fs = 96 kHz THD+N −1 dBFS BW = 40 kHz +18 dB dB −80 0 dB dB −80 fs = 192 kHz BW = 40 kHz +18 dB dB −80 0 dB 95 101 dB Dynamic Range (−60 dBFS, A-weighted) +18 dB 91 dB 0 dB 95 101 dB S/N (A-weighted) +18 dB 91 dB 0 dB 100 dB Interchannel Isolation +18 dB 80 100 dB Interchannel Gain Mismatch 0 0.8 dB 0 dB 60 dB PSRR (1kHz) (Note 17) +18dB 60 dB 0 dB 80 dBc Spurious Free Dynamic Range (10kHz) (Note 18) +18dB 80 dBc ADC1/2 Analog Input Characteristics: AIN1A+/-, AIN1B+/-, AIN2A+/-, AIN2B+/- pins (Differential Input) → ADC1/2 → SDTO1/2 Resolution 32 Bits 0 dB 1.01 1.10 1.19 Vpp Input Full Scale Voltage (Note 16) +18 dB 0.139 Vpp 0 dB dB −80 fs = 48 kHz BW = 20 kHz +18 dB dB −80 0 dB dB −80 fs = 96 kHz THD+N −1 dBFS BW = 40 kHz +18 dB dB −80 0 dB dB −80 fs = 192 kHz BW = 40 kHz +18 dB dB −80 0 dB 101 dB Dynamic Range (−60 dBFS, A-weighted) +18 dB 91 dB 0 dB 101 dB S/N (A-weighted) +18 dB 91 dB 0 dB 100 dB Interchannel Isolation +18 dB 100 dB Interchannel Gain Mismatch 0 dB 0 dB 60 dB PSRR (1kHz) (Note 17) +18dB 60 dB 0 dB 80 dBc Spurious Free Dynamic Range (10kHz) (Note 18) +18dB 80 dBc Note 16. Input voltage is proportional to AVDD. Typ. 1.10 Vpp x AVDD/1.8V @ MIC-Amp Gain = 0 dB Note 17. PSRR is referred to all power supplies with 100mVpp sine wave. It is the ratio based on 100mVpp (= −20.8dBFS) at the ADC output. Note 18. SFDR is referred to AVDD with 100mVpp sine wave. It is the dynamic range based on full scale (0 dBFS) at the ADC output. 019000890-E-01 2022/01 - 13 - [AK5704] 8.3. Power Supply Current (Ta = 25C; AVDD = 3.3V or 1.8V, TVDD = 1.8 V; VSS1 = VSS2 = 0 V; unless otherwise specified) Parameter Min. Typ. Max. Unit Power Supply Current Power Up (PDN pin = “H”, All circuits power-up, Note 19) AVDD (AVDD=3.3V: AVDDL bit = “0”) 7.0 9.8 mA AVDD (AVDD=1.8V: AVDDL bit = “1”) 5.3 mA TVDD 2.4 3.4 mA Power Up (PDN pin = “H”, LDO12 Enable, Other circuits power-down) AVDD (AVDD=3.3V: AVDDL bit = “0”) 0.05 mA AVDD (AVDD=1.8V: AVDDL bit = “1”) 0.05 mA TVDD 0.15 mA Power Down (PDN pin = “L”, Note 20) AVDD + TVDD 4 20 μA Note 19. PLL Master Mode, MCKI=16MHz, BCLK=64fs, fs=48kHz (PLD[15:0] bits = 0018H, PLM[15:0] bits = 005FH, FS[3:0] bits = “1010”, CM[1:0] bits = “01”, PLS bit = “0”, MSN = BCKO = MCKOE bit = “1”); All PMxx bits except PMDMxx bits are powered up.; MICL[1:0] bits = “00” @AVDD=3.3V, MICL[1:0] bits = “11” @AVDD=1.8V; No signal input Note 20. All digital input pins are fixed to each power supply pin, TVDD or VSS2. 8.4. Power Consumption for Each Operation Mode (Ta = 25C; AVDD = 3.3V or 1.8V, TVDD = 1.8 V; VSS1 = VSS2 = 0 V; External Slave Mode, MCKI = 256 fs, BCLK = 64fs; No signal input, MPWR OFF) AVDD TVDD Total Power Mode [mA] [mA] [mW] 3.3V 2.4 9.7 AIN1/2 → 2-ch ADC (fs = 48 kHz) 1.0 1.8V 2.0 5.4 3.3V 4.4 17.8 AIN1/2 → 2-ch ADC (fs = 96 kHz) 1.8 1.8V 3.7 9.9 3.3V 4.4 17.8 AIN1/2 → 2-ch ADC (fs = 192 kHz) 1.8 1.8V 3.7 9.9 3.3V 4.5 17.0 AIN1/2 → 4-ch ADC (fs = 48 kHz) 1.2 1.8V 4.0 9.4 3.3V 8.4 31.7 AIN1/2 → 4-ch ADC (fs = 96 kHz) 2.2 1.8V 7.1 16.7 3.3V 8.4 31.7 AIN1/2 → 4-ch ADC 2.2 (fs = 192 kHz, MCKI=128fs) 1.8V 7.1 16.7 3.3V 1.2 4.9 Voice Activity Detection Mode 0.5 (AIN1A → 1-ch ADC → VAD, fs = 16kHz) 1.8V 1.0 2.7 019000890-E-01 2022/01 - 14 - [AK5704] 8.5. ADC1/2 Short Delay Sharp Roll-off Filter (ADVF bit = “0”) (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V; fs = 48kHz) Parameter Symbol Min. Typ. Max. Unit ADC Digital Filter (Decimation LPF): Passband (Note 21) ±0.16 dB PB 0 18.8 kHz 20.0 kHz −0.28 dB 22.8 kHz −3.0 dB Stopband (Note 21) SB 28.4 kHz Stopband Attenuation SA 72 dB Group Delay (Note 22) GD 5.0 1/fs Group Delay Distortion 2.4 1/fs GD ADC Digital Filter (HPF): HPFxC[1:0] bits = “00” (x=1, 2) Frequency Response FR 3.7 Hz −3.0 dB (Note 21) Note 21. The passband and stopband frequencies scale with fs (sampling frequency). Each response refers to that of 1kHz. Note 22. This time is from the input of an analog signal to the A channel MSB output timing of SDTO1/2. This time includes group delay of the HPF. The error of the delay at audio interface is within +1/8 [1/fs]. For the signal through the programmable filters, the group delay is increased by 1/fs. (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V; fs = 96kHz) Parameter Symbol Min. Typ. Max. ADC Digital Filter (Decimation LPF): Passband (Note 21) ±0.16 dB PB 0 37.6 40.0 −0.28 dB 45.6 −3.0 dB Stopband (Note 21) SB 56.8 Stopband Attenuation SA 72 Group Delay (Note 22) GD 5.0 Group Delay Distortion 2.4 GD ADC Digital Filter (HPF): HPFxC[1:0] bits = “00” (x=1, 2) Frequency Response FR 7.4 −3.0 dB (Note 21) (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V; fs = 192kHz) Parameter Symbol Min. Typ. Max. ADC Digital Filter (Decimation LPF): Passband (Note 21) ±0.12 dB PB 0 37 51 −1.0 dB 65 −3.0 dB 78 −6.0 dB Stopband (Note 21) SB 145.5 Stopband Attenuation SA 72 Group Delay (Note 22) GD 4.4 Group Delay Distortion 0 GD ADC Digital Filter (HPF): HPFxC[1:0] bits = “00” (x=1, 2) Frequency Response FR 14.8 −3.0 dB (Note 21) 019000890-E-01 Unit kHz kHz kHz kHz dB 1/fs 1/fs Hz Unit kHz kHz kHz kHz kHz dB 1/fs 1/fs Hz 2022/01 - 15 - [AK5704] 8.6. ADC1/2 Digital Filter for Voice (ADVF bit = “1”) (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V; fs = 8kHz) Parameter Symbol Min. Typ. Max. Voice Digital Filter Passband (Note 21) -0.5dB to 0.5dB PB 0 3.15 -3.0dB 3.35 Stopband (Note 21) SB 4.0 Stopband Attenuation SA 60 Group Delay (Note 22) GD 15.2 Group Delay Distortion GD 0 ADC Digital Filter (HPF): HPFxC[1:0] bits = “00” (x=1, 2) Frequency Response -3.0dB FR 0.6 (Note 21) (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V; fs = 16kHz) Parameter Symbol Min. Typ. Max. Voice Digital Filter Passband (Note 21) -0.5dB to 0.5dB PB 0 6.3 -3.0dB 6.7 Stopband (Note 21) SB 8.0 Stopband Attenuation SA 60 Group Delay (Note 22) GD 15.2 Group Delay Distortion GD 0 ADC Digital Filter (HPF): HPFxC[1:0] bits = “00” (x=1, 2) Frequency Response -3.0dB FR 1.2 (Note 21) 019000890-E-01 Unit kHz kHz kHz dB 1/fs 1/fs Hz Unit kHz kHz kHz dB 1/fs 1/fs Hz 2022/01 - 16 - [AK5704] 8.7. DC Characteristics (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V) Parameter Symbol Min. Typ. Max. Unit Normal Pin (Note 23) High-Level Input Voltage VIH 70% TVDD V Low-Level Input Voltage VIL 30% TVDD V VOH V High-Level Output Voltage (Iout = −200 μA) TVDD −0.2 Low-Level Output Voltage Except for SDA pin, Iout = 200 μA VOL 0.2 V SDA pin VOL 0.4 V 2 V < TVDD  3.6 V (Iout = 3 mA) VOL 20% TVDD V 1.65 V  TVDD  2 V (Iout = 2 mA) Input Leakage Current (Note 24) Iin +5 μA −5 Digital MIC Interface (DMDAT1/2 pin Input) High-Level Input Voltage VIH2 65% AVDD V Low-Level Input Voltage VIL2 35% AVDD V Digital MIC Interface (DMCLK1/2 pin Output) High-Level Output Voltage (Iout = −80 μA) VOH2 AVDD −0.4 V Low-Level Output Voltage (Iout = 80 μA) VOL2 0.4 V Input Leakage Current Iin −5 +5 μA Note 23. MCKI, MCKO, BLK, LRCK, TDMIN/SDTO2, SDTO1, CAD, SCL, SDA, PDN, WINTN pins Note 24. PSW1N = PSW2N bits = “1“ 019000890-E-01 2022/01 - 17 - [AK5704] 8.8. Switching Characteristics (Ta = −40 to 85C; AVDD = 1.7 to 1.9V or 3.0 to 3.6 V; TVDD = 1.65 to 3.6 V; CL = 50 pF(MCKO, BCLK, LRCK pins), 20 pF(SDTO1, SDTO2 pins); unless otherwise specified) Parameter Master Clock Input Timing Input Frequency Pulse Width Low Pulse Width High Master Clock Output Timing Output Frequency Duty Cycle (Note 25) LRCK Frequency (Slave mode) Normal mode (TDM[1:0] bits = “00”) Frequency Duty Cycle TDM128 mode (TDM[1:0] bits = “01”) Frequency High Time Low Time TDM256 mode (TDM[1:0] bits = “10”) Frequency High time Low time TDM512 mode (TDM[1:0] bits = “11”) Frequency High Time Low Time BCLK Frequency (Slave mode) Normal mode (TDM[1:0] bits = “00”) Frequency (Note 26) Symbol Min. Typ. Max. Unit fMCK tMCKL tMCKH 0.256 0.4 / fMCK 0.4 / fMCK - 27 - MHz ns ns fMCKO dMCKO - 50 24.576 - MHz % fs Duty 8 45 - 192 55 kHz % fs tLRH tLRL 8 1/128fs 1/128fs - 192 - kHz ns ns fs tLRH tLRL 8 1/256fs 1/256fs - 96 - kHz ns ns fs tLRH tLRL 8 1/512fs 1/512fs - 48 - kHz ns ns 1/tBCK 32fs - 24.576M or 512fs - BCLK Pulse Width Low tBCKL 32 BCLK Pulse Width High tBCKH 32 TDM128 mode (TDM[1:0] bits = “01”) Frequency 1/tBCK 128fs BCLK Pulse Width Low tBCKL 16 BCLK Pulse Width High tBCKH 16 TDM256 mode (TDM[1:0] bits = “10”) Frequency 1/tBCK 256fs BCLK Pulse Width Low tBCKL 16 BCLK Pulse Width High tBCKH 16 TDM512 mode (TDM[1:0] bits = “11”) Frequency 1/tBCK 512fs BCLK Pulse Width Low tBCKL 16 BCLK Pulse Width High tBCKH 16 Note 25. Divided by an even number. Note 26. The maximum value is slower frequency between “24.576MHz” and “512fs”. 019000890-E-01 Hz ns ns - Hz ns ns - Hz ns ns - Hz ns ns 2022/01 - 18 - [AK5704] 1/fMCK VIH MCKI VIL tMCKH tMCKL 1/fMCKO MCKO (Output) 50 %TVDD Duty “dMCKO” = tMCKOH / (1/fMCKO) x 100 tMCKOH 1/fs VIH LRCK VIL tLRH tLRL tBCK VIH BCLK VIL tBCKH tBCKL Figure 2. System Clock (Slave Mode) 019000890-E-01 2022/01 - 19 - [AK5704] Parameter LRCK Frequency (Master mode) Normal mode (TDM[1:0] bits = “00”) Frequency Duty Cycle TDM128 mode (TDM[1:0] bits = “01”) Frequency High Time TDM256 mode (TDM[1:0] bits = “10”) Frequency High Time TDM512 mode (TDM[1:0] bits = “11”) Frequency High Time BCLK Frequency (Master mode) Normal mode (TDM[1:0] bits = “00”) Frequency (BCKO bit = “0”) (BCKO bit = “1”) BCLK Duty TDM128 mode (TDM[1:0] bits = “01”) Frequency BCLK Duty TDM256 mode (TDM[1:0] bits = “10”) Frequency BCLK Duty TDM512 mode (TDM[1:0] bits = “11”) Frequency BCLK Duty Symbol Min. Typ. Max. Unit fs Duty 8 - 50 192 - kHz % fs tLRH 8 - 1/4fs 192 - kHz ns fs tLRH 8 - 1/8fs 96 - kHz ns fs tLRH 8 - 1/16fs 48 - kHz ns 1/tBCK 1/tBCK dBCK - 32fs 64fs 50 - Hz Hz % 1/tBCK dBCK - 128fs 50 - Hz % 1/tBCK dBCK - 256fs 50 - Hz % 1/tBCK dBCK - 512fs 50 - Hz % 1/fs 50%TVDD LRCK tLRH Duty = tLRH x fs x 100 tBCK 50%TVDD BCLK tBCKH tBCKL Duty = tBCKH / tBCK x 100 tBCKL / tBCK x 100 Figure 3.System Clock (Master Mode) 019000890-E-01 2022/01 - 20 - [AK5704] Parameter Symbol Min. Typ. Audio Interface Timing (Slave mode) Normal mode (TDM[1:0] bits = “00”, DIF1 bit = “0”) LRCK Edge to BCLK “↑” (Note 27) tLRB 25 BCLK “↑” to LRCK Edge (Note 27) tBLR 25 LRCK to SDTO (MSB) (Except I2S Mode) tLRS BCLK “↓” to SDTO1/2 (Note 28) tBSD PCM mode (TDM[1:0] bits = “00” , DIF1 bit = “1”) LRCK Edge to BCLK “↑” (Note 27) tLRB 25 BCLK “↑” to LRCK Edge (Note 27) tBLR 25 BCLK “↑” to SDTO1/2 (Note 27) tBSDD 5 TDM128 mode (TDM[1:0] bits = “01”) LRCK Edge to BCLK “↑” (Note 27) tLRB 16 BCLK “↑” to LRCK Edge (Note 27) tBLR 16 BCLK “↑” to SDTO1 (Note 27) tBSDD 5 TDMIN Hold Time tSDH 5 TDMIN Setup Time tSDS 5 TDM256 mode (TDM[1:0] bits = “10”) LRCK Edge to BCLK “↑” (Note 27) tLRB 16 BCLK “↑” to LRCK Edge (Note 27) tBLR 16 BCLK “↑” to SDTO1 (Note 27) tBSDD 5 TDMIN Hold Time tSDH 5 TDMIN Setup Time tSDS 5 TDM512 mode (TDM[1:0] bits = “11”) LRCK Edge to BCLK “↑” (Note 27) tLRB 16 BCLK “↑” to LRCK Edge (Note 27) tBLR 16 BCLK “↑” to SDTO1 (Note 27) tBSDD 5 TDMIN Hold Time tSDH 5 TDMIN Setup Time tSDS 5 Note 27. When the polarity of BCLK is inverted, delay time starts from BCLK “↓”. Note 28. When the polarity of BCLK is inverted, delay time starts from BCLK “↑”. Max. Unit 25 25 ns ns ns ns 35 ns ns ns 35 - ns ns ns ns ns 35 - ns ns ns ns ns 35 - ns ns ns ns ns VIH LRCK VIL tBLR tLRB VIH BCLK VIL tLRS tBSD SDTO1/2 50%TVDD Figure 4. Audio Interface Timing (Normal & Slave Mode: BCKP bit = “0”) 019000890-E-01 2022/01 - 21 - [AK5704] VIH LRCK VIL tBLR tLRB VIH BCLK VIL tLRS tBSD SDTO1/2 50%TVDD Figure 5. Audio Interface Timing (Normal & Slave Mode: BCKP bit = “1”) VIH LRCK VIL tBLR tLRB VIH BCLK VIL tBSDD SDTO1/2 50%TVDD Figure 6. Audio Interface Timing (PCM & Slave Mode: BCKP bit = “0”) VIH LRCK VIL tBLR tLRB VIH BCLK VIL tBSDD SDTO1/2 50%TVDD Figure 7. Audio Interface Timing (PCM & Slave Mode: BCKP bit = “1”) 019000890-E-01 2022/01 - 22 - [AK5704] VIH LRCK VIL tBLR tLRB VIH BCLK VIL tBSDD SDTO1 50%TVDD tSDH tSDS VIH TDMIN VIL Figure 8. Audio Interface Timing (TDM & Slave mode: BCKP bit = “0”) VIH LRCK VIL tBLR tLRB VIH BCLK VIL tBSDD SDTO1 50%TVDD tSDH tSDS VIH TDMIN VIL Figure 9. Audio Interface Timing (TDM & Slave Mode: BCKP bit = “1”) 019000890-E-01 2022/01 - 23 - [AK5704] Min. Typ. Parameter Symbol Audio Interface Timing (Master mode) Normal mode (TDM[1:0] bits = “00”) BCLK “↓” to LRCK Edge (Note 29) tMBLR −20 BCLK “↓”to SDTO1/2 (Note 29) tBSD −20 TDM128 mode (TDM[1:0] bits = “01”) BCLK “↓” to LRCK Edge (Note 29) tMBLR −10 BCLK “↓” to SDTO1/2 (Note 29) tBSD −10 TDMIN Hold Time tSDH 5 TDMIN Setup Time tSDS 5 TDM256 mode (TDM[1:0] bits = “10”) −10 BCLK “↓” to LRCK Edge (Note 29) tMBLR BCLK “↓” to SDTO1 (Note 29) tBSD −10 TDMIN Hold Time tSDH 5 TDMIN Setup Time tSDS 5 TDM512 mode (TDM[1:0] bits = “11”) BCLK “↓” to LRCK Edge (Note 29) tMBLR −10 BCLK “↓” to SDTO1 (Note 29) tBSD −10 TDMIN Hold Time tSDH 5 TDMIN Setup Time tSDS 5 Note 29. When the polarity of BCLK is inverted, delay time starts from BCLK “↑”. LRCK Max. Unit 20 20 ns ns 10 10 - ns ns ns ns 10 10 - ns ns ns ns 10 10 - ns ns ns ns 50%TVDD tMBLR 50%TVDD BCLK tBSD 50%TVDD SDTO1 tSDS tSDH VIH TDMIN VIL Figure 10. Audio Interface Timing (Master mode: BCKP bit = “0”) LRCK 50%TVDD tMBLR 50%TVDD BCLK tBSD 50%TVDD SDTO1 tSDS tSDH VIH TDMIN VIL Figure 11. Audio Interface Timing (Master mode: BCKP bit = “1”) 019000890-E-01 2022/01 - 24 - [AK5704] Parameter Symbol Digital Audio Interface Timing: CL = 100 pF DMCLK1/2 Output Timing Period tSCK Rising Time tSRise Falling Time tSFall Duty Cycle dSCK Audio Interface Timing (DMCLK1/2, DMDAT1/2 pins) DMDAT1/2 Setup Time tDMS DMDAT1/2 Hold Time tDMH Min. Typ. Max. Unit 45 1/(64fs) 50 10 10 55 ns ns ns % 50 0 - - ns ns tSCK 65%AVDD DMCLKx 50%AVDD 35%AVDD tSCKL tSRise tSFall dSCK = 100 x tSCKL / tSCK Figure 12. DMCLK1/2 Output Timing VOH2 DMCLKx VOL2 tDMS tDMH VIH2 DMDATx Lch @DCLKPx bit = “1” VIL2 tDMS tDMH VIH2 DMDATx VIL2 Rch @DCLKPx bit = “1” Figure 13. Audio Interface Timing 019000890-E-01 2022/01 - 25 - [AK5704] Parameter Symbol Min. Typ. Control Interface Timing: (Note 30) SCL Clock Frequency fSCL Bus Free Time Between Transmissions tBUF 1.3 Start Condition Hold Time (prior to first clock pulse) tHD:STA 0.6 Clock Low Time tLOW 1.3 Clock High Time tHIGH 0.6 Setup Time for Repeated Start Condition tSU:STA 0.6 SDA Hold Time from SCL Falling (Note 31) tHD:DAT 0 SDA Setup Time from SCL Rising tSU:DAT 0.1 Rise Time of Both SDA and SCL Lines tR Fall Time of Both SDA and SCL Lines tF Setup Time for Stop Condition tSU:STO 0.6 Capacitive Load on Bus Cb Pulse Width of Spike Noise Suppressed by Input Filter tSP 0 2 Note 30. I C-bus is a registered trademark of NXP B.V. Note 31. Data must be held long enough to bridge the 300ns-transition time of SCL. Max. Unit 400 0.3 0.3 400 50 kHz μs μs μs μs μs μs μs μs μs μs pF ns VIH SDA VIL tBUF tLOW tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop Start tHD:DAT tSU:DAT tSU:STA Start Figure 14. I2C Bus Mode Timing 019000890-E-01 tSU:STO Stop 2022/01 - 26 - [AK5704] Parameter Symbol Min. Typ. Max. Unit Power-down & Reset Timing PDN Accept Pulse Width (Note 32) tPDN 1 ms PDN Reject Pulse Width (Note 32) tRPD 50 ns PMADxA/B bit = “1” to SDTOx valid (Note 33) ADRST[2:0] bits = “000” tPDV 1059 1/fs ADRST[2:0] bits = “001” tPDV 267 1/fs ADRST[2:0] bits = “010” tPDV 2115 1/fs ADRST[2:0] bits = “011” tPDV 531 1/fs ADRST[2:0] bits = “100” tPDV 4230 1/fs ADRST[2:0] bits = “101” tPDV 8 1/fs ADRST[2:0] bits = “110” tPDV 16 1/fs ADRST[2:0] bits = “111” tPDV 32 1/fs PMDMxA/B bit = “1” to SDTOx valid (Note 34) ADRST[2:0] bits = “000” tPDV 1059 1/fs ADRST[2:0] bits = “001” tPDV 267 1/fs ADRST[2:0] bits = “010” tPDV 2115 1/fs ADRST[2:0] bits = “011” tPDV 531 1/fs ADRST[2:0] bits = “100” tPDV 4230 1/fs ADRST[2:0] bits = “101” tPDV 8 1/fs ADRST[2:0] bits = “110” tPDV 16 1/fs ADRST[2:0] bits = “111” tPDV 32 1/fs Note 32. The PDN pin must held “L” for longer period the or equal to tPDN period. The AK5704 will not be reset by the “L” pulse shorter than or equal to 50nsec. Note 33. This is the count of LRCK “↑” from PMADxA/B bit = “1”. Note 34. This is the count of LRCK “↑” from PMDMxA/B bit = “1”. tPDN PDN VIL tRPD Figure 15. Power Down & Standby PMADxA/B bit PMDMxA/B bit tPDV SDTOx 50%TVDD Figure 16. ADC1/2, DMIC1/2 Power Up Timing 019000890-E-01 2022/01 - 27 - [AK5704] 9. Functional Descriptions 9.1. Internal Pull-down Pin When the PDN pin = “H”, digital pins shown in Table 1 can set internal pull-down resistor to ON/OFF by PSW0N, PSW1N, PSW2N bits. The pull-down resistor is ON and the control register is “0” at default setting. The pull-down resistor setting should be made according to external conditions. Table 1. Internal Pull-down Pin Power Control bit Pin Name I/O Pin Name Domain (Note 35) CAD I TVDD DMCLK1 SCL I TVDD DMDAT1 SDA I/O TVDD DMCLK2 MCKI I TVDD DMDAT2 MCKO O TVDD PSW0N BCLK I/O TVDD PSW1N LRCK I/O TVDD PSW1N TDMIN/SDTO2 I/O TVDD PSW2N SDTO1 O TVDD PSW0N PDN I TVDD WINTN O TVDD Note 35. “-”: There is no pull-down resistor. I/O O I O I Power Domain AVDD AVDD AVDD AVDD Control bit (Note 35) - 9.2. LDO Circuit The PDN pin must be “L” upon power-up, and should be changed to “H” after all power supplies are supplied. Then LDO12 will be powered up. LDO12 has an overvoltage protection circuit. This overvoltage protection circuit powers the LDO12 down when the power supply becomes unstable by an instantaneous power failure, etc. during operation. The LDO12 circuit will not return to normal operation until being reset by the PDN pin (“L” → “H”) after removing the problems. 019000890-E-01 2022/01 - 28 - [AK5704] 9.3. System Clock The AK5704 is operated by a clock generated by PLL or MCKI supplied from external. MCKI frequency will be 128fs, 256fs, 512fs or 1024fs. The master clock is set by CM[1:0] bits (Table 3) and the sampling frequency is set by FS[3:0] bits (Table 4). When changing the master clock or sampling frequency, set PMAD1A/B = PMAD2A/B = PMDM1A/B = PMDM2A/B bits = “0” and VREF bit = “1”. If the clock is stopped at PMADx bit = “1”, VREF bit should be set to “1”. Table 2. Clock Mode Setting (x: Do not care, N/A: Not available) PMPLL bit Mode PLL Master Mode 1 MSN bit 1 PLS bit 0 PLL Slave Mode (Clock Source: MCKI pin) 1 0 0 PLL Slave Mode (Clock Source: BCLK pin) 1 0 1 EXT Master Mode 0 1 x EXT Slave Mode 0 0 x CM[1:0] bits 00 01 10 11 MCKI pin Input BCLK pin LRCK pin Output (Table 6) Output (Table 4) Input (≥ 32fs) Input (Table 4) GND Input (Table 14, Table 15) Input (Table 4) Input (Table 3) Input (Table 3) Output (Table 6) Input (≥ 32fs) Output (Table 4) Input (Table 4) (Table 10, Table 11, Table 12, Table 13) Input (Table 10, Table 11, Table 12, Table 13) Table 3. Setting of Master Clock Frequency Master Clock Frequency Sampling Frequency Range 256fs 8 to 96 kHz 512fs 8 to 48 kHz 1024fs 8 to 24 kHz 128fs 176.4 to 192 kHz 019000890-E-01 MCKOE bit MCKO pin 0 “L” Output 1 Output (Table 5) 1 Output (Table 5) 0 1 0 1 0 1 “L” Output Output (Table 5) “L” Output N/A “L” Output N/A (default) 2022/01 - 29 - [AK5704] Table 4. Setting of Sampling Frequency (N/A: Not available) FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency 0 0 0 0 8 kHz 0 0 0 1 11.025 kHz 0 0 1 0 12 kHz 0 0 1 1 N/A 0 1 0 0 16 kHz 0 1 0 1 22.05 kHz 0 1 1 0 24 kHz 0 1 1 1 N/A 1 0 0 0 32 kHz 1 0 0 1 44.1 kHz 1 0 1 0 48 kHz (default) 1 0 1 1 N/A 1 1 0 0 88.2 kHz 1 1 0 1 96 kHz 1 1 1 0 176.4 kHz 1 1 1 1 192 kHz Note 36. Sampling frequency has an error according to PLL division ratio. PLD[15:0], PLM[15:0] bits should be set with accuracy. 9.4. PLL The built-in PLL generates master clock for internal operation from the clock source input to the MCKI pin or the BCLK pin. PLL starts to operate when PMPLL bit = “1”. 1. PLL Output Frequency (MCKO pin) The PLL generates master clock for internal operation and outputs frequency below from the MCKO pin. Table 5. MCKO Output MCKO pin Sampling Frequency CM[1:0] bits Range MCKOE bit = “0” MCKOE bit = “1” 00 “L” Output 256fs 8 to 96 kHz (default) 01 “L” Output 512fs 8 to 48 kHz 10 “L” Output 1024fs 8 to 24 kHz 11 “L” Output 128fs 176.4 to 192 kHz Note 37. When CM[1:0] bits = “01”, fs=32kHz is not available. When CM[1:0] bits = “10”, fs=16kHz is not available. 2. BCLK Output Frequency When PLL Master Mode (MSN bit = “1”) is used, the following frequencies is output from the BCLK pin. Table 6. BCLK Output (x: Do not care) BCKO bit BCLK pin Sampling Frequency Range 0 32fs 8 to 192 kHz (default) 00 1 64fs 8 to 192 kHz 01 x TDM128fs 8 to 192 kHz 10 x TDM256fs 8 to 96 kHz 11 x TDM512fs 8 to 48 kHz Note 38. When TDM[1:0] bits = “11”, the setting of CM[1:0] bits = “00” is not available. TDM[1:0] bits 019000890-E-01 2022/01 - 30 - [AK5704] 3. Internal Block Diagram of PLL MCKI 60kHz to 640kHz 1 (PLD+1) BCLK PLL Analog PLLCLK Reference Divider MCKO Feedback PLS 1 (PLM+1) 1 2 Figure 17. PLL Block Diagram PLL clock source is selected by PLS bit. Table 7. PLL Clock Source Select PLS bit Clock Source 0 MCKI pin (default) 1 BCLK pin (3-1) PLL Reference Clock Divider (PLD) The PLL can set the division ratio of the reference clock in 16 bits. The input clock is used as PLL reference clock by dividing by (PLDx + 1). Table 8. PLL Reference Clock Divider PLD[15:0] bits Division Ratio 0000H 1 (default) 0001H to FFFFH 1/(PLD+1) Note 39. The reference clock should be set in the range from 60kHz to 640kHz after divided by PLD. (3-2) PLL Feedback Clock Divider (PLM) The division ratio of feedback clock can be set freely in 16 bits. PLLCLK is divided by ((PLM+1) x 2) and used as a PLL feedback clock. The feedback clock is fixed to “L” without dividing when PLM = 0000H. Table 9. PLL Feedback Clock Divider PLM[15:0] bits Division Ratio 0000H Clock Stop (default) 0001H to FFFFH 1/((PLM+1) x 2) 4. Adaptive Frequencies MCKI pin: 11.2896/22.5792MHz, 12.288/24.576MHz, 9.6/19.2MHz, 12/24MHz, 13/26MHz, 13.5/27MHz, 16MHz BCLK pin: 32fs, 64fs, 128fs, 256fs, 512fs fs: 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz 019000890-E-01 2022/01 - 31 - [AK5704] 5. Example of PLL Frequency Setting 5.1. PLL Reference Source: MCKI (PMPLL bit = “1”, MSN bit = “0”, “1”, PLS bit = “0”) Table 10. PLL Frequency Setting Example (PLL reference source: MCKI) (1) MCKI [MHz] 11.2896 12.288 22.5792 24.576 12 Note 40. fs [kHz] 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 PLD [15:0] bits PLM [15:0] bits 0092H 031FH 001FH 0092H 0092H 018FH 003FH 0092H 0018H 007FH 007CH 024BH FS [3:0] bits 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 MCKO Frequency Error CM[1:0] bits CM[1:0] bits CM[1:0] bits CM[1:0] bits [ppm] = “00” = “01” = “10” = “11” 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 “-”: Not available 019000890-E-01 2022/01 - 32 - [AK5704] Table 11. PLL Frequency Setting Example (PLL reference source: MCKI) (2) MCKI [MHz] 16 24 19.2 Note 41. fs [kHz] 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 PLD [15:0] bits PLM [15:0] bits 0018H 005FH 007CH 01B8H 0031H 007FH 007CH 0125H 0031H 009FH 0031H 0092H FS [3:0] bits 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 MCKO Frequency Error CM[1:0] bits CM[1:0] bits CM[1:0] bits CM[1:0] bits [ppm] = “00” = “01” = “10” = “11” 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 “-”: Not available 019000890-E-01 2022/01 - 33 - [AK5704] Table 12. PLL Frequency Setting Example (PLL reference source: MCKI) (3) MCKI [MHz] 9.6 13 26 Note 42. fs [kHz] 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 PLD [15:0] bits PLM [15:0] bits 000EH 005FH 0018H 0092H 0053H 018CH 0025H 00A4H 0144H 02FFH 004BH 00A4H FS [3:0] bits 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 MCKO Frequency Error CM[1:0] bits CM[1:0] bits CM[1:0] bits CM[1:0] bits [ppm] = “00” = “01” = “10” = “11” 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 7.750 256fs 512fs 1024fs 7.750 256fs 512fs 7.750 256fs 512fs 1024fs 7.750 256fs 7.750 256fs 512fs 7.750 256fs 7.750 128fs 7.750 256fs 512fs 1024fs -11.189 256fs 512fs 1024fs -11.189 256fs 512fs -11.189 256fs -11.189 128fs -11.189 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs -11.189 256fs 512fs 1024fs -11.189 256fs 512fs -11.189 256fs -11.189 128fs -11.189 “-”: Not available 019000890-E-01 2022/01 - 34 - [AK5704] Table 13. PLL Frequency Setting Example (PLL reference source: MCKI) (4) MCKI [MHz] 13.5 27 Note 43. fs [kHz] 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 PLD [15:0] bits PLM [15:0] bits 00E0H 03FFH 00B5H 02F8H 00E0H 01FFH 0181H 0326H FS [3:0] bits 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 MCKO Frequency Error CM[1:0] bits CM[1:0] bits CM[1:0] bits CM[1:0] bits [ppm] = “00” = “01” = “10” = “11” 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs -3.504 256fs 512fs 1024fs -3.504 256fs 512fs -3.504 256fs -3.504 128fs -3.504 256fs 512fs 1024fs 0 256fs 512fs 1024fs 0 256fs 512fs 0 256fs 512fs 1024fs 0 256fs 0 256fs 512fs 0 256fs 0 128fs 0 256fs 512fs 1024fs 3.304 256fs 512fs 1024fs 3.304 256fs 512fs 3.304 256fs 3.304 128fs 3.304 “-”: Not available 019000890-E-01 2022/01 - 35 - [AK5704] 5.2. PLL Reference Source: BCLK [Stereo Mode] (PMPLL bit = “1”, MSN bit = “0”, PLS bit = “1”, TDM[1:0] bits = “00”) Table 14. PLL Frequency Setting Example (PLL reference source: BCLK [Stereo Mode]) fs [kHz] 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 Note 44. BCLK 32fs 64fs BCLK [MHz] PLD [15:0] bits PLM [15:0] bits FS [3:0] bits 0.256 0.384 0.512 0.768 1.024 1.536 3.072 6.144 0.3528 0.7056 1.4112 2.8224 5.6448 0.512 0.768 1.024 1.536 2.048 3.072 6.144 12.288 0.7056 1.4112 2.8224 5.6448 11.2896 0000H 0000H 0000H 0001H 0001H 0003H 0007H 000FH 0000H 0001H 0003H 0007H 000FH 0000H 0001H 0001H 0003H 0003H 0007H 000FH 001FH 0001H 0003H 0007H 000FH 001FH 00EFH 009FH 0077H 009FH 0077H 009FH 009FH 009FH 009FH 009FH 009FH 009FH 009FH 0077H 009FH 0077H 009FH 0077H 009FH 009FH 009FH 009FH 009FH 009FH 009FH 009FH 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 MCKO CM[1:0] bits CM[1:0] bits CM[1:0] bits CM[1:0] bits = “00” = “01” = “10” = “11” 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 512fs 1024fs 256fs 256fs 512fs 256fs 128fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 128fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 512fs 1024fs 256fs 256fs 512fs 256fs 128fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 128fs “-”: Not available 019000890-E-01 2022/01 - 36 - [AK5704] 5.3. PLL Reference Source: BCLK [TDM Mode] (PMPLL bit = “1”, MSN bit = “0”, PLS bit = “1”, TDM[1:0] bits = “01”, “10”, “11”) Table 15. PLL Frequency Setting Example (PLL reference source: BCLK [TDM Mode]) fs [kHz] 8 12 16 24 32 48 96 192 11.025 22.05 44.1 88.2 176.4 8 12 16 24 32 48 96 11.025 22.05 44.1 88.2 8 12 16 24 32 48 11.025 22.05 44.1 Note 45. BCLK 128fs 256fs 512fs BCLK [MHz] 1.024 1.536 2.048 3.072 4.096 6.144 12.288 24.576 1.4112 2.8224 5.6448 11.2896 22.5792 2.048 3.072 4.096 6.144 8.192 12.288 24.576 2.8224 5.6448 11.2896 22.5792 4.096 6.144 8.192 12.288 16.384 24.576 5.6448 11.2896 22.5792 TDM [1:0] bits 01 10 11 PLD [15:0] bits PLM [15:0] bits FS [3:0] bits 0001H 0003H 0003H 0007H 0007H 000FH 001FH 003FH 0003H 0007H 000FH 001FH 003FH 0003H 0007H 0007H 000FH 000FH 001FH 003FH 0007H 000FH 001FH 003FH 0007H 000FH 000FH 001FH 001FH 003FH 000FH 001FH 003FH 0077H 009FH 0077H 009FH 0077H 009FH 009FH 009FH 009FH 009FH 009FH 009FH 009FH 0077H 009FH 0077H 009FH 0077H 009FH 009FH 009FH 009FH 009FH 009FH 0077H 009FH 0077H 009FH 0077H 009FH 009FH 009FH 009FH 0000 0010 0100 0110 1000 1010 1101 1111 0001 0101 1001 1100 1110 0000 0010 0100 0110 1000 1010 1101 0001 0101 1001 1100 0000 0010 0100 0110 1000 1010 0001 0101 1001 MCKO CM[1:0] bits CM[1:0] bits CM[1:0] bits CM[1:0] bits = “00” = “01” = “10” = “11” 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 512fs 1024fs 256fs 256fs 512fs 256fs 128fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 128fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 512fs 1024fs 256fs 256fs 512fs 256fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs 256fs 512fs 1024fs 256fs 256fs 512fs 256fs 512fs 1024fs 256fs 512fs 1024fs 256fs 512fs - “-”: Not available 019000890-E-01 2022/01 - 37 - [AK5704] 9.5. Audio Interface Format Audio interface formats are selectable with the MSN, TDM[1:0] and DIF[1:0] bits. In all modes the serial data format is MSB first, 2’s complement. Audio interface formats can be used in both master and slave modes. In master mode (MSN bit = “1”), the SDTO1/2 pins are clocked out on the falling edge (rising edge when BCKP bit = “1”) of BCLK. Normal output in slave mode (TDM[1:0] bits = “00”, DIF[1:0] bits = “00”, “01”, MSN bit = “0”), the SDTO1/2 pins are clocked out on the falling edge (rising edge when BCKP bit = “1”) of BCLK. In other conditions (PCM and TDM Mode), the data is clocked out on the prior rising edge (falling edge when BCKP bit = “1”) of BCLK to compensate for some delay that renders the edge of data transition near BCLK falling edge. The TDMIN pin and SDTO2 pin are shared. SDTO2E bit is set to “1” to enable the SDTO2 pin. BCLK edge polarity can be set by BCKP bit. SDTO data length is set by DLC[1:0] bits. Table 16. Audio Interface Format (Stereo Mode) Mode 0 1 2 3 4 5 6 7 MSN bit 0 0 0 0 1 1 1 1 Mode 8 9 10 11 12 13 14 15 MSN bit 0 0 0 0 1 1 1 1 TDM[1:0] bits 00 00 00 00 00 00 00 00 DIF[1:0] bits 00 01 10 11 00 01 10 11 SDTO1/2 pin I2S compatible MSB justified PCM Short Frame PCM Long Frame I2S compatible MSB justified PCM Short Frame PCM Long Frame BCLK  32fs  32fs  32fs  32fs 32fs or 64fs 32fs or 64fs 32fs or 64fs 32fs or 64fs I I I I O O O O Figure Figure 18 Figure 19 Figure 20 Figure 21 Figure 18 Figure 19 Figure 20 Figure 21 (default) Table 17. Audio Interface Format (TDM128 Mode, N/A: Not available) TDM[1:0] bits 01 01 01 01 01 01 01 01 DIF[1:0] bits 00 01 10 11 00 01 10 11 SDTO1 pin I2S compatible MSB justified N/A N/A I2S compatible MSB justified N/A N/A BCLK 128fs 128fs 128fs 128fs - I I O O - Figure Figure 22 Figure 23 Figure 22 Figure 23 - Note 46. MCKI frequency needs more than twice BCLK frequency in case of EXT Master Mode. Table 18. Audio Interface Format (TDM256 Mode, N/A: Not available) Mode 16 17 18 19 20 21 22 23 MSN bit 0 0 0 0 1 1 1 1 TDM[1:0] bits 10 10 10 10 10 10 10 10 DIF[1:0] bits 00 01 10 11 00 01 10 11 SDTO1 pin I2S compatible MSB justified N/A N/A I2S compatible MSB justified N/A N/A BCLK 256fs 256fs 256fs 256fs - I I O O - Figure Figure 24 Figure 25 Figure 24 Figure 25 - Note 47. MCKI frequency needs more than twice BCLK frequency in case of EXT Master Mode. 019000890-E-01 2022/01 - 38 - [AK5704] Table 19. Audio Interface Format (TDM512 Mode, N/A: Not available) Mode 24 25 26 27 28 29 30 31 MSN bit 0 0 0 0 1 1 1 1 TDM[1:0] bits 11 11 11 11 11 11 11 11 DIF[1:0] bits 00 01 10 11 00 01 10 11 SDTO1 pin I2S compatible MSB justified N/A N/A I2S compatible MSB justified N/A N/A BCLK 512fs 512fs 512fs 512fs - I I O O - Figure Figure 26 Figure 27 Figure 26 Figure 27 - Note 48. MCKI frequency needs more than twice BCLK frequency in case of EXT Master Mode. BCKP bit 0 1 Table 20. BCLK Edge BCLK edge referenced to LRCK edge Falling Edge Rising Edge (default) Table 21. Data Length Setting (N/A: Not available) DLC[1:0] bits SDTO Data Length 00 24-bit Linear (default) 01 16-bit Linear 10 32-bit Linear 11 N/A Note 49. In TDM mode, the data width of 1SLOT is set 32-bits when SDTO data length is selected 24-bits or 32-bits. In TDM mode, the data width of 1SLOT is set 16-bits when SDTO data length is selected 16-bits. 019000890-E-01 2022/01 - 39 - [AK5704] LRCK BICK (32fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) Ach Data (MSB First) Bch Data (MSB First) Next Ach Data Next Bch Data Ach Data (MSB First) “L” Bch Data (MSB First) “L” LRCK BICK (64fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) “L” (24-bit) “L” (32-bit) “L” Ach Data (MSB First) Ach Data (MSB First) “L” Bch Data (MSB First) Bch Data (MSB First) Figure 18. Mode 0/4 Timing (Normal mode, I2S Compatible) LRCK BICK (32fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) Ach Data (MSB First) Bch Data (MSB First) Next Ach Data Next Bch Data Ach Data (MSB First) “L” Bch Data (MSB First) “L” LRCK BICK (64fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) “L” (24-bit) “L” (32-bit) Ach Data (MSB First) “L” Ach Data (MSB First) Bch Data (MSB First) “L” Bch Data (MSB First) Figure 19. Mode 1/5 Timing (Normal mode, MSB Justified) 019000890-E-01 2022/01 - 40 - [AK5704] LRCK BICK (32fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) Ach Data (MSB First) Bch Data (MSB First) Next Ach Data Next Bch Data Ach Data (MSB First) “L” Bch Data (MSB First) “L” LRCK BICK (64fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) “L” (24-bit) “L” (32-bit) Ach Data (MSB First) “L” “L” Bch Data (MSB First) Ach Data (MSB First) Bch Data (MSB First) Figure 20. Mode 2/6 Timing (Normal mode, PCM Short Frame) LRCK(Slave) “H” or “L” “H” or “L” LRCK(Master) BICK (32fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) Ach Data (MSB First) Bch Data (MSB First) Next Ach Data Next Bch Data “H” or “L” LRCK(Slave) LRCK(Master) BICK (64fs) BCKP bit = “0” BCKP bit = “1” SDTO1/2 (16-bit) “L” (24-bit) “L” (32-bit) Ach Data (MSB First) “L” Bch Data (MSB First) Ach Data (MSB First) Bch Data (MSB First) Ach Data (MSB First) “L” Bch Data (MSB First) Figure 21. Mode 3/7 Timing (Normal mode, PCM Long Frame) 019000890-E-01 2022/01 - 41 - [AK5704] 128 BCLK “H” or “L” LRCK(Slave) LRCK(Master) BICK (128fs) BCKP bit = “0” BCKP bit = “1” SDTO1 #2 (16-bit) ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #2 Data TDMIN (SDTO1 #1) “L” ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Ach ADC2 Bch Next Data “L” #1 Data SDTO1 (24-bit) “L” ADC1 Ach “L” ADC1 Bch ADC1 Ach (32-bit) “L” ADC1 Bch ADC2 Ach “L” ADC2 Bch ADC2 Ach “L” ADC2 Bch Next Data Next Data Figure 22. Mode 8/12 Timing (TDM128 mode, I2S Compatible) 128 BCLK “H” or “L” LRCK(Slave) LRCK(Master) BICK (128fs) BCKP bit = “0” BCKP bit = “1” SDTO1 #2 (16-bit) ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #2 Data TDMIN (SDTO1 #1) “L” ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch #1 Data ADC2 Ach ADC2 Bch Next Data “L” #1 Data SDTO1 (24-bit) (32-bit) “L” ADC1 Ach ADC1 Ach “L” Next Data ADC1 Bch ADC1 Bch “L” ADC2 Ach ADC2 Ach “L” ADC2 Bch “L” Next Data Next Data ADC2 Bch Figure 23. Mode 9/13 Timing (TDM128 mode, MSB Justified) 019000890-E-01 2022/01 - 42 - [AK5704] 256 BCLK “H” or “L” LRCK(Slave) LRCK(Master) BICK (256fs) BCKP bit = “0” BCKP bit = “1” SDTO1 #4 (16-bit) ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #4 Data TDMIN #4 (SDTO1 #3) “L” ADC1 Ach ADC1 Bch “L” ADC1 Ach “L” ADC2 Bch ADC1 Ach ADC1 Bch #3 Data ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch ADC1 Bch “L” ADC2 Ach ADC2 Ach ADC2 Bch ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch “L” ADC1 Bch ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Ach ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch Next Data “L” ADC2 Ach “L” #2 Data TDMIN #2 (SDTO1 #1) ADC1 Ach #1 Data ADC2 Bch “L” ADC2 Ach #2 Data #2 Data #3 Data SDTO1 #2 (24-bit) ADC2 Ach ADC2 Bch “L” “L” Next Data #1 Data ADC2 Ach “L” ADC2 Bch Next Data “L” #1 Data SDTO1 #2 (32-bit) ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #2 Data TDMIN #2 (SDTO1 #1) “L” ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Ach ADC2 Bch Next Data “L” #1 Data Figure 24. Mode 16/20 Timing (TDM256 mode, I2S Compatible) 256 BCLK “H” or “L” LRCK(Slave) LRCK(Master) BICK (256fs) BCKP bit = “0” BCKP bit = “1” SDTO1 #4 (16-bit) ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #4 Data TDMIN #4 (SDTO1 #3) “L” ADC1 Ach ADC1 Bch “L” ADC1 Ach “L” ADC2 Bch ADC1 Ach ADC1 Bch #3 Data ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #3 Data SDTO1 #2 (24-bit) ADC2 Ach “L” ADC2 Ach ADC2 Ach ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch “L” ADC1 Bch ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Ach ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch #2 Data TDMIN #2 (SDTO1 #1) ADC1 Ach Next Data “L” #1 Data ADC2 Bch “L” ADC2 Bch #2 Data #2 Data ADC1 Bch ADC2 Ach ADC2 Ach “L” “L” ADC2 Bch “L” Next Data #1 Data ADC2 Ach “L” ADC2 Bch Next Data “L” #1 Data SDTO1 #2 (32-bit) ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch #2 Data TDMIN #2 (SDTO1 #1) “L” ADC1 Ach ADC1 Bch ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Ach ADC2 Bch “L” Next Data #1 Data Figure 25. Mode 17/21 Timing (TDM256 mode, MSB Justified) 019000890-E-01 2022/01 - 43 - [AK5704] 512 BCLK “H” or “L” LRCK(Slave) LRCK(Master) BICK (512fs) BCKP bit = “0” BCKP bit = “1” SDTO1 #4 (16-bit) TDMIN #4 (SDTO1 #3) “L” ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach #4 Data “L” ADC1 Ach ADC1 Bch ADC2 Ach “L” ADC1 Ach ADC2 Bch ADC2 Bch ADC1 Ach ADC1 Ach ADC1 Bch “L” ADC2 Ach “L” ADC1 Bch ADC2 Ach ADC2 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch ADC2 Ach “L” ADC1 Bch “L” “L” ADC1 Ach ADC1 Bch ADC2 Bch “L” ADC1 Ach “L” ADC1 Ach “L” ADC2 Ach “L” ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch “L” #3 Data ADC2 Ach “L” ADC2 Bch “L” ADC2 Bch ADC1 Ach “L” ADC1 Bch “L” ADC2 Ach “L” ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch Next Data “L” Next Data ADC1 Ach ADC1 Bch ADC2 Bch ADC1 Ach ADC2 Ach ADC1 Bch #3 Data ADC2 Bch “L” ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch “L” ADC2 Ach “L” ADC2 Ach “L” ADC2 Bch “L” Next Data #1 Data “L” ADC2 Bch Next Data “L” #1 Data ADC2 Bch ADC1 Ach ADC1 Bch #3 Data ADC2 LAch “L” #2 Data #2 Data ADC2 Ach ADC1 Bch ADC2 Bch ADC2 Bch ADC1 Bch #4 Data “L” ADC2 Ach #1 Data #3 Data SDTO1 #4 (32-bit) TDMIN #4 (SDTO1 #3) ADC1 Ach ADC1 Bch #1 Data #4 Data TDMIN #4 (SDTO1 #3) ADC1 Ach #2 Data #2 Data ADC1 Bch “L” ADC2 Ach #3 Data #3 Data SDTO1 #4 (24-bit) ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #2 Data ADC2 Ach ADC2 Bch ADC1 Ach ADC1 Bch #2 Data ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Ach ADC2 Bch Next Data “L” #1 Data Figure 26. Mode24/28 Timing (TDM512 mode, I2S Compatible) 512 BCLK “H” or “L” LRCK(Slave) LRCK(Master) BICK (512fs) BCKP bit = “0” BCKP bit = “1” SDTO1 #4 (16-bit) TDMIN #4 (SDTO1 #3) “L” ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach #4 Data “L” ADC1 Ach ADC1 Bch ADC2 Ach “L” ADC1 Ach “L” ADC2 Ach ADC2 Bch ADC1 Ach #3 Data ADC2 Bch ADC1 Ach #3 Data SDTO1 #4 (24-bit) ADC1 Bch ADC1 Bch “L” ADC2 Ach “L” ADC2 Ach ADC2 Bch ADC2 Ach ADC2 Bch ADC1 Ach ADC2 Bch ADC1 Bch ADC2 Ach “L” “L” ADC1 Bch “L” ADC2 Ach ADC1 Ach ADC1 Bch ADC2 Ach “L” ADC1 Ach ADC1 Ach ADC1 Bch ADC2 Ach #3 Data ADC2 Bch ADC2 Bch “L” ADC1 Bch “L” ADC2 Ach “L” ADC2 Bch “L” ADC1 Ach “L” ADC1 Bch “L” #3 Data “L” ADC2 Bch “L” ADC1 Ach ADC2 Bch “L” ADC1 Bch “L” ADC2 Ach “L” ADC2 Bch “L” ADC1 Ach Next Data “L” Next Data ADC1 Ach ADC1 Bch ADC2 Ach ADC1 Ach ADC1 Bch ADC2 Ach ADC2 Ach “L” ADC2 Bch “L” ADC1 Ach “L” “L” ADC1 Bch “L” ADC2 Ach ADC1 Bch “L” ADC2 Ach “L” ADC2 Bch “L” Next Data #1 Data “L” ADC2 Bch Next Data “L” #1 Data ADC2 Bch ADC1 Ach #3 Data ADC2 Bch “L” #2 Data #2 Data #4 Data “L” ADC2 Ach #1 Data #3 Data SDTO1 #4 (32-bit) TDMIN #4 (SDTO1 #3) ADC1 Ach ADC1 Bch #1 Data #4 Data TDMIN #4 (SDTO1 #3) ADC1 Ach #2 Data #2 Data ADC1 Bch ADC1 Bch ADC1 Bch ADC2 Ach ADC2 Bch ADC1 Ach #2 Data ADC2 Bch #2 Data ADC1 Ach ADC1 Bch ADC2 Ach ADC1 Bch ADC2 Ach ADC2 Bch Next Data #1 Data ADC2 Bch “L” Next Data #1 Data Figure 27. Mode 25/29 Timing (TDM512 mode, MSB Justified) 019000890-E-01 2022/01 - 44 - [AK5704] Cascade Connection in TDM Mode The AK5704 supports a cascade connection of four devices in TDM modes. Figure 28 shows a connection example. All A/D converted data of connected AK5704’s is output from the SDTO1 pin of the last AK5704 via cascade connection. When the data length is 24-bits (DLC[1:0] bits = “00”) or 32-bits (DLC[1:0] bits = “10”), the AK5704 supports up to 4ch outputs in TDM128 mode, 8ch outputs in TDM256 mode and 16ch outputs in TDM512 mode (Figure 28). When DLC[1:0] bits = “01”(16-bits), the AK5704 supports up to 8ch outputs in TDM128 mode, 16ch outputs in TDM256 mode and 16ch outputs in TDM512 mode. AK5704 #1 512fs MCLK ~48kHz LRCK 512fs BICK TDMIN SDTO1 GND Slave mode AK5704 #1 256fs MCLK ~96kHz LRCK 256fs BICK AK5704 #2 TDMIN MCLK GND SDTO1 BICK Slave mode AK5704 #3 TDMIN LRCK BICK SDTO1 Slave mode AK5704 #2 MCLK TDMIN LRCK MCLK 8ch TDM BICK SDTO1 TDMIN LRCK SDTO1 Slave mode Slave mode AK5704 #4 TDM256 MCLK TDMIN LRCK BICK 16ch TDM SDTO1 Slave mode TDM512 Figure 28. Cascade Connection 019000890-E-01 2022/01 - 45 - [AK5704] 9.6. Synchronization with audio system (SYNCDET) The AK5704 has a SYNCDET circuit for phase synchronization of the data output since it is assumed that multiple AK5704’s will be used in TDM mode. When the clock frequency is changed during operation, phase mismatch may occur between external LRCK and data transferring clock that has the same frequency as the internal LRCK generated from external LRCK. The SYNCDET circuit resets the internal counter and adjusts the phase between LRCK and FsCLK automatically. Therefore, there’s a possibility that pop noise occurs. To prevent pop noise, the following methods are recommended: (1) Clock mode must be changed when PMAD1A/B = PMAD2A/B = PMDM1A/B = PMDM2A/B = PMPFIL1 = PMPFIL2 bits = “0”. (2) Stable clock must be supplied during operation (PDN pin = “H”). 019000890-E-01 2022/01 - 46 - [AK5704] 9.7. MIC/LINE Input The AK5704 supports both single-ended (Pseudo-Differential) and full-differential modes for analog input. When MDIF1A, MDIF1B, MDIF2A, MDIF2B bits = “0” (default), each input pin is in single-ended mode. When MDIF1A, MDIF1B, MDIF2A, MDIF2B bits = “1”, each input pin is in full-differential mode. In single-ended mode, the signal should be input to the AINxA/B+ pins and the AINxA/B- pins should be connected to the ground via a capacitor in series (Figure 29). All input pins are in single-ended mode (MDIF1A = MDIF1B = MDIF2A = MDIF2B bits = “0”) and AINCOM bit = “1”, only one capacitor is connected to the ground. AINxA/B- pins should be shorted all and connected to the ground via a capacitor in series (Figure 31). MDIF1A bit MDIF1B bit 0 0 0 1 1 0 1 1 Table 22. AIN1 Input Select AIN1A AIN1B AIN1A+ pin (Single-ended) AIN1B+ pin (Single-ended) AIN1A+ pin (Single-ended) AIN1B+/- pins (Full-differential) AIN1A+/- pins (Full-differential) AIN1B+ pin (Single-ended) AIN1A+/- pins (Full-differential) AIN1B+/- pins (Full-differential) MDIF2A bit MDIF2B bit 0 0 0 1 1 0 1 1 Table 23. AIN2 Input Select AIN2A AIN2B AIN2A+ pin (Single-ended) AIN2B+ pin (Single-ended) AIN2A+ pin (Single-ended) AIN2B+/- pins (Full-differential) AIN2A+/- pins (Full-differential) AIN2B+ pin (Single-ended) AIN2A+/- pins (Full-differential) AIN2B+/- pins (Full-differential) (default) (default) AK5704 MPWR1 pin 2.2k AIN1A+ pin MIC-Amp 1 AIN1A- pin VSS1 Figure 29. Connection Example for Single-ended Microphone Input (AINCOM bit = “0”) AK5704 MPWR1 pin 1k MIC-Amp 1 AIN1A+ pin AIN1A- pin 1k VSS1 Figure 30. Connection Example for Full-differential Microphone Input 019000890-E-01 2022/01 - 47 - [AK5704] AK5704 MPWR1 pin 2.2k MIC-Amp 1 AIN1A+ pin AIN1A- pin VSS1 2.2k MIC-Amp 1 AIN1B+ pin AIN1B- pin VSS1 MPWR2 pin 2.2k MIC-Amp 2 AIN2A+ pin AIN2A- pin VSS1 2.2k MIC-Amp 2 AIN2B+ pin AIN2B- pin VSS1 VSS1 Figure 31. Connection Example for Single-ended Microphone Input (AINCOM bit = “1”) 019000890-E-01 2022/01 - 48 - [AK5704] 9.8. Microphone Amplifier Gain The AK5704 has gain amplifiers for microphone input. The gain of four microphone amplifiers can be independently selected by MG1A[3:0], MG1B[3:0], MG2A[3:0] and MG2B[3:0] bits. The volume is changed immediately by setting these bits. AK5704 MIC-Amp 1 Ach AIN1A+ pin AIN1A- pin ADC1 Ach MG1A[3:0] bits MIC-Amp 1 Bch AIN1B+ pin AIN1B- pin ADC1 Bch MG1B[3:0] bits MIC-Amp 2 Ach AIN2A+ pin AIN2A- pin ADC2 Ach MG2A[3:0] bits MIC-Amp 2 Bch AIN2B+ pin AIN2B- pin ADC2 Bch MG2B[3:0] bits Figure 32. MIC Input Volume Setting MG1A3 bit MG1B3 bit MG2A3 bit MG2B3 bit 0 0 0 0 0 0 0 0 1 1 1 Table 24. MIC Amplifier 1/2 Gain (N/A: Not available) MG1A2 bit MG1A1 bit MG1A0 bit MG1B2 bit MG1B1 bit MG1B0 bit Gain MG2A2 bit MG2A1 bit MG2A0 bit MG2B2 bit MG2B1 bit MG2B0 bit 0 0 0 0 dB 0 0 1 +3 dB 0 1 0 +6 dB 0 1 1 +9 dB 1 0 0 +12 dB 1 0 1 +15 dB 1 1 0 +18 dB 1 1 1 +21 dB 0 0 0 +24 dB 0 0 1 +27 dB 0 1 0 +30 dB Others N/A 019000890-E-01 (default) 2022/01 - 49 - [AK5704] 9.9. Microphone Power The AK5704 has two microphone power supplies. They can be powered up at the same time. Output voltage of MPWR1/2 are common setting by MICL[1:0] bits. PMMPx bit controls output status. When PMMPx bit is “1”, microphone power is output. When PMMPx bit is “0”, the MPWRx pin becomes power-down state (Hi-Z). The load resistance is minimum 650Ω for each MPWR1/2 pin. Any capacitor must not be connected directly to the MPWR1/2 pins. The AK5704 has a MIC power direct mode for the MPWR1/2 pins. The AVDD voltage is directly output from the MPWR1/2 pin via the internal switch (ON resistance: typ. 37Ω, max. 62Ω) by setting MICL[1:0] bits = “11”. In MIC power direct mode (MICL[1:0] bits = “11”), PMMP1/2 bit controls ON/OFF of the internal switch. This power-up timer will not work in MIC power direct mode. Set MICL[1:0] bits before power-on of the corresponding MPWR pin (there is no time limitation). When a MPWR pin is ON, the setting of corresponding MICL[1:0] bits should not be changed. When using a microphone power, the power-up sequence below should be followed to reduce DC offset (pop noise). 1. MIC Power ON 2. MIC Amplifier/ADC ON Table 25. MIC Power Output Voltage MICL[1:0] bits MPWR1/2 Output Level (Typ.) 00 2.8 V (default) 01 2.5 V 10 1.8 V 11 Direct Mode (AVDD) Note 50. When AVDD=1.7~1.9V, the setting of MICL[1:0] bits = "11" is only available. Table 26. MIC Power Output Status PMMP1/2 bits MPWR1/2 pins 0 Hi-z (default) 1 Output 019000890-E-01 2022/01 - 50 - [AK5704] 9.10. MIC Input Start-Up Time The microphone input circuit can be powered-up/down by PMAIN1A/B and PMAIN2A/B bits. The initialization cycle starts by setting PMAINxA/B bit to “1”. An acceleration circuit, which shortens the charging time of an input capacitor, starts operation when the microphone input circuit is powered up. The initialization cycle can be set by AIRST[2:0] bits (Table 27) and this setting is common for all channels. Although it depends on the condition of microphone characteristic and external circuit, the initialization cycle should be set to longer than 13.7 ms when a capacitor for AC-coupling is 1 µF ± 50%. The initialization cycle should be set to longer than 6.8 ms when a capacitor for AC-coupling is 0.47 µF ± 50%. AIRST[2:0] bits 000 001 010 011 100 101 110 111 9.11. Table 27. AINxA/B Start-Up Time (N/A: Not available) Start-Up Time Cycle fs = 16 kHz fs = 48 kHz fs = 96 kHz fs = 192 kHz 656/fs 41.0ms 13.7ms 6.8ms 3.4ms 164/fs 10.3ms 3.4ms 1.7ms 0.9ms 1312/fs 82.0ms 27.3ms 13.7ms 6.8ms 328/fs 20.5ms 6.8ms 3.4ms 1.7ms 2624/fs 164ms 54.7ms 27.3ms 13.7ms 128/fs 8.0ms N/A 256/fs 16.0ms N/A 512/fs 32.0ms N/A (default) ADC1/2 Initialization Cycle The ADC1/2 enters an initialization cycle after PMAD1A, PMAD1B, PMAD2A or PMAD2B bit is changed from “0” to “1” when all of these bits are “0”. The initialization cycle time is set by ADRST[2:0] bits (Table 28). During the initialization cycle, the ADC1/2 digital data output of both channels are forced to “0” in 2’s complement. The ADC output reflects the analog input signal after the initialization cycle is complete. When using a digital microphone, the initialization cycle is the same as ADC’s. Note 51. The initial data of ADC1/2 has offset data that depends on the condition of the microphone and the cut-off frequency of HPF. If this offset is not small, make initialization cycle longer or do not use the initial data of ADC1/2. Table 28. ADC1/2 Initialization Cycle (N/A: Not available) Initialization Cycle ADRST[2:0] bits Cycle fs = 16 kHz fs = 48 kHz fs = 96 kHz fs = 192 kHz 000 1059/fs 66.2ms 22.1ms 11.0ms 5.5ms (default) 001 267/fs 16.7ms 5.6ms 2.8ms 1.4ms 010 2115/fs 132.2ms 44.1ms 22.0ms 11.0ms 011 531/fs 33.2ms 11.1ms 5.5ms 2.8ms 100 4230/fs 528.8ms 88.1ms 44.1ms 22.0ms 101 8/fs 0.5ms N/A 110 16/fs 1.0ms N/A 111 32/fs 2.0ms N/A Note 52. When ADRST[2:0] bits = “101” and “110”, the initial data includes unstable data. The initial data of ADC1/2 (the length of Group Delay of ADC Digital Filter) should not be used. 019000890-E-01 2022/01 - 51 - [AK5704] 9.12. Mono/Stereo Mode MONON bit and PMAD1A/B bits set mono/stereo operation of the ADC1. MONON bit and PMAD2A/B bits set mono/stereo operation of the ADC2. When changing ADC operation and analog/digital microphone, PMAD1A/B (PMAD2A/B) and PMDM1A/B (PMDM2A/B) bits must be set “0” at first. When DMIC1 bit is = “0”, PMDM1A/B bit settings are ignored. When DMIC2 bit = “0”, PMDM2A/B bits setting are ignored. When DMIC1 bit is = “1”, PMAD1A/B bit settings are ignored. When DMIC2 bit = “1”, PMAD2A/B bits setting are ignored. Table 29. ADC1 Mono/Stereo Select (Analog Microphone) (x: Do not care) MONON bit PMAD1A bit PMAD1B bit ADC1 Ach data ADC1 Bch data x 0 0 “0” data “0” data (default) 0 0 1 “0” data AIN1B Input Signal 0 1 0 AIN1A Input Signal “0” data 1 0 1 AIN1B Input Signal AIN1B Input Signal 1 1 0 AIN1A Input Signal AIN1A Input Signal x 1 1 AIN1A Input Signal AIN1B Input Signal Table 30. ADC2 Mono/Stereo Select (Analog Microphone) (x: Do not care) MONON bit PMAD2A bit PMAD2B bit ADC2 Ach data ADC2 Bch data x 0 0 “0” data “0” data (default) 0 0 1 “0” data AIN2B Input Signal 0 1 0 AIN2A Input Signal “0” data 1 0 1 AIN2B Input Signal AIN2B Input Signal 1 1 0 AIN2A Input Signal AIN2A Input Signal x 1 1 AIN2A Input Signal AIN2B Input Signal MONON bit x 0 0 1 1 x MONON bit x 0 0 1 1 x Table 31. DMIC1 Mono/Stereo Select (Digital Microphone) (x: Do not care) ADC1 Ach data ADC1 Bch data PMDM1A bit PMDM1B bit 0 0 “0” data “0” data 0 1 “0” data DMIC1 Bch Input Signal 1 0 “0” data DMIC1 Ach Input Signal 0 1 DMIC1 Bch Input Signal DMIC1 Bch Input Signal 1 0 DMIC1 Ach Input Signal DMIC1 Ach Input Signal 1 1 DMIC1 Ach Input Signal DMIC1 Bch Input Signal Table 32. DMIC2 Mono/Stereo Select (Digital Microphone) (x: Do not care) ADC2 Ach data ADC2 Bch data PMDM2B bit 0 0 “0” data “0” data 0 1 “0” data DMIC2 Bch Input Signal 1 0 “0” data DMIC2 Ach Input Signal 0 1 DMIC2 Bch Input Signal DMIC2 Bch Input Signal 1 0 DMIC2 Ach Input Signal DMIC2 Ach Input Signal 1 1 DMIC2 Ach Input Signal DMIC2 Bch Input Signal (default) PMDM2A bit 019000890-E-01 (default) 2022/01 - 52 - [AK5704] 9.13. Digital Microphone 1. Connection to Digital Microphone When DMIC1 bit is set to “1”, the AIN1A+ pin and the AIN1B+ pin become the DMDAT1 (digital microphone data input) pin and the DMCLK1 (digital microphone clock supply) pin, respectively. When DMIC2 bit is set to “1”, the AIN2A+ pin and the AIN2B+ pin become the DMDAT2 (digital microphone data input) pin and the DMCLK2 (digital microphone clock supply) pin, respectively. DMCLK2 is the same clock (64fs) as DMCLK1. The same power supply as AVDD must be provided to the digital microphone. The Figure 33 and Figure 34 show stereo/mono connection examples. By dividing the master clock to 64fs with divider, the DMCLK1 (DMCLK2) signal is output from the AK5704, and the digital microphone outputs 1bit data, which is generated by Modulator, to DMDAT1 (DMDAT2). PMDM1A/B (PMDM2A/B) bits control power up/down of the digital block (Decimation Filter and HPF). PMAD1A/B (PMDM2A/B) bits settings do not affect the digital microphone power management. The DCLKE1 (DCLKE2) bit controls ON/OFF of the output clock from the DMCLK1 (DMCLK2) pin. When the AK5704 is power-up (PDN pin = “H”), external pull-down resistor (R) should be connected to the DMDAT1 (DMDAT2) pin to avoid floating state. Note that when using the digital microphone it does not support quad speed mode (fs ≥ 128 kHz). AVDD VDD AMP AK5704 DMCLK1 (64fs)  CODEC Master Clock Divider 100 k Modulator DMDAT1 Ach Decimation Filter HPF ADC1 Output Data R VDD AMP  Modulator Bch Figure 33. Connection Example of Stereo Digital Microphone (DMIC1 bit = “1”) AVDD AK5704 VDD AMP DMCLK1 (64fs)  100 k Modulator DMDAT1 Ach CODEC Master Clock Divider Decimation Filter HPF ADC1 Output Data R Figure 34. Connection Example of Monaural Digital Microphone (DMIC1 bit = “1”) 019000890-E-01 2022/01 - 53 - [AK5704] 2. Interface The input data channel of the DMDAT1 (DMDAT2) pin is set by DCLKP1 (DCLKP2) bit. When DCLKP1 (DCLKP2) bit = “0”, Ach data is input to the Decimation Filter if DMCLK1 (DMCLK2) signal = “L”, Bch data is input if DMCLK1 (DMCLK2) signal = “H”. When DCLKP1 (DCLKP2) bit = “1”, Bch data is input to the Decimation Filter if DMCLK1 (DMCLK2) signal = “L”, Ach data is input if DMCLK1 (DMCLK2) signal = “H”. The DMCLK1 (DMCLK2) pin outputs “L” when DCLKE1 (DCLKE2) bit = “0”. DMCLK supports only 64fs and outputs same frequency. The DMCLK1 (DMCLK2) pin outputs 64fs clock when DCLKE1 (DCLKE2) bit = “1”. In this case, necessary clocks must be supplied to the AK5704 for ADC operation. The output data through “the Decimation and Digital Filters” is the negative full-scale with 0% 1’s density of 1bit output data and positive full-scale with the 100% 1’s density of 1bit output data. Table 33. Digital MIC Data Input/Output Timing DCLKP1/2 bit DMCLK1/2 pin= “H” DMCLK1/2 pin= “L” 0 B ch A ch 1 A ch B ch (default) DMCLK1/2 (64fs) DMDAT1/2 (Ach) Valid Data Valid Data Valid Data DMDAT1/2 (Bch) Valid Data Valid Data Valid Data Valid Data Valid Data Figure 35. Digital MIC Data Input/Output Timing (DCLKP1/2 bit = “0”) DMCLK1/2 (64fs) DMDAT1/2 (Ach) DMDAT1/2 (Bch) Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Figure 36. Digital MIC Data Input/Output Timing (DCLKP1/2 bit = “1”) 019000890-E-01 2022/01 - 54 - [AK5704] 9.14. Digital Block The digital block consists of the blocks shown in Figure 37. When PMPFIL1 bit = “1”, the programmable filter 1 consisting of MIX1, HPF1, LPF1 and ALC1 is powered up. When PMPFIL1 and PMPFIL2 bits = “1”, the programmable filter 2 consisting of MIX2, HPF2, LPF2 and ALC2 is powered up. When PFTHR1, PFTHR2 bit = “1”, the MIX1/2 output data bypasses HPF1/2 and LPF1/2 and is input to ALC1/2. When PFSDO1, PFSDO2 bit = “0”, the output data of MIC sensitivity Adjustment bypasses programmable filter 1/2 and outputs to SDTO1/2. PMAD1A/B bit or PMDM1A/B bit PMAD2A/B bit or PMDM2A/B bit ADC2 ADC1 DLY1A/B[5:0] bits DLY2A/B[5:0] bits (Delay) 1st Order HPFAD1N bit HPFC1 bit HPFAD2N bit HPFC2 bit HPF MIC Sensitivity Adjustment MS1A/B[7:0] bits MS2A/B[7:0] bits PMPFIL1 bit (Delay) 1st Order HPF MIC Sensitivity Adjustment PMPFIL2 bit MIX1 MIX1 bit 2nd Order HPF11/2 bits HPF21/2 bits HPF1 2nd Order LPF11/2 bits LPF21/2 bits LPF1 “0” PFTHR1 bit “1” “0” “1” VADSEL bit ALC1 ALC1 bit MIX2 MIX2 bit HPF2 2nd Order LPF2 “0” PFTHR2 bit ALC2 bit ALC4 bit (Volume) 2nd Order “1” ALC2 (Volume) PMVAD bit “0” “1” VADOE bit “0” VADO (VDLY) VAD “1” “1” PFSDO1 bit SDTO1 (1) (2) (3) (4) (5) (6) (7) “0” PFSDO2 bit WINTN pin SDTO2 ADC1/2: Includes the Digital Filter (LPF) and the Programmable Phase Adjustment. HPF: High Pass Filter for ADC. MIC Sensitivity Adjustment: Microphone Sensitivity Adjustment. MIX1/2: Mixer for Monaural Selection. HPF1/2: 2nd order High Pass Filter. LPF1/2: 2nd order Low Pass Filter. ALC1/2(Volume): Digital Volume with ALC Function. Figure 37. Digital Block Path Select 019000890-E-01 2022/01 - 55 - [AK5704] 9.14.1. Programmable Phase Adjustment Output data is independently delayed in state of 64/fs (1/32fs) before the Decimation Filter to adjust the phase shift of each 4ch analog inputs into 4ch ADC. Setting resolution of delay amount is 1/64fs (1/32fs) and setting range is from 1/64fs (1/32fs) to 64/64fs (32/32fs). Delay function of AIN1A channel, AIN1B channel, AIN2A channel and AIN2B channel are independently controlled ON/OFF by DLY1AE bit, DLY1BE bit, DLY2AE bit and DLY2BE bits, respectively. When DLYxxE bit = “0”, data delay is disable. When DLYxxE bit = “1”, data delay is enable. DLY1A[5:0] bits: DLY1B[5:0] bits: DLY2A[5:0] bits: DLY2B[5:0] bits: Setting the amount of delay for AIN1A channel. Setting the amount of delay for AIN1B channel. Setting the amount of delay for AIN2A channel. Setting the amount of delay for AIN2B channel. 64fs or 32fs  Modulator Delay 1fs AIN1B Input Decimation Filter DLY1AE bit, DLY1A5-0 bits 64fs or 32fs Decimation  Modulator Delay Filter 1fs AIN2A Input DLY1BE bit, DLY1B5-0 bits 64fs or 32fs Decimation  Modulator Delay Filter 1fs AIN2B Input DLY2AE bit, DLY2A5-0 bits 64fs or 32fs Decimation  Modulator Delay Filter AIN1A Input 1fs DLY2BE bit, DLY2B5-0 bits Figure 38. Programmable Phase Adjustment Table 34. Programmable Phase Adjustment Setting (N/A: Not available) Delay DLY1A[5:0] bits DLY1B[5:0] bits Except fs=176.4kHz, DLY2A[5:0] bits fs=176.4kHz, 192kHz DLY2B[5:0] bits 192kHz 00H 1/64fs 1/32fs (default) 01H 2/64fs 2/32fs 02H 3/64fs 3/32fs : : : 1FH 32/64fs 32/32fs : : : 3DH 62/64fs N/A 3EH 63/64fs N/A 3FH 64/64fs N/A 019000890-E-01 2022/01 - 56 - [AK5704] 9.14.2. High Pass Filter (ADC1/2) A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the ADC input. The cut-off frequencies (fc) of the HPF are set by HPF1C[1:0] bits (ADC1), HPF2C[1:0] bits (ADC2). HPFAD1N, HPFAD2N bit controls the ON/OFF of the each HPF (HPF ON is recommended). It is proportional to the sampling frequency (fs) and the default value is 3.7Hz (@fs = 48kHz). HPF1C[1:0] bits HPF2C[1:0] bits 00 01 10 11 Table 35. ADC1/2 HPF Cut-off Frequency fc fs = 16 kHz fs = 48 kHz fs = 96 kHz fs = 192 kHz 1.2 Hz 3.7 Hz 7.4 Hz 14.8 Hz (default) 4.9 Hz 14.8 Hz 29.6 Hz 59.2 Hz 19.7 Hz 59.2 Hz 118.4 Hz 236.8 Hz 0.31 Hz 0.93 Hz 1.85 Hz 3.7 Hz The cut-off frequencies during initialization cycle will be high (Table 36) at FSTHPFAD1N = FSTHPFAD2N bit = “0” (default). When FSTHPFAD1N = FSTHPFAD2N bit = “1”, the setting of HPF1C[1:0] and HPF2C[1:0] bits are valid. Table 36. ADC1/2 HPF Cut-off Frequency at Initialization Cycle (x: Do not care) FSTHPFAD1N bit HPF1C[1:0] bits fs = fs = fs = fs = FSTHPFAD2N bit HPF2C[1:0] bits 16 kHz 48 kHz 96 kHz 192 kHz 0 xx 59.2 Hz 118.4 Hz 236.8 Hz 473.6 Hz (default) 00 1.2 Hz 3.7 Hz 7.4 Hz 14.8 Hz 01 4.9 Hz 14.8 Hz 29.6 Hz 59.2 Hz 1 10 19.7 Hz 59.2 Hz 118.4 Hz 236.8 Hz 11 0.31 Hz 0.93 Hz 1.85 Hz 3.7 Hz 9.14.3. ADC1/2 Digital Filter The AK5704 has two types digital filter for ADC1/2 (Table 37). Short delay sharp roll-off filter or voice filter of ADC1/2 can be selected by ADVF bit. When voice filter is selected by ADVF bit = “1”, the maximum sampling frequency (fs) is 48kHz. If ADVF bit = “1” and the sampling frequency of ADC1/2 is 96kHz or 192kHz, the short delay sharp roll-off filter is selected automatically. Table 37. ADC1/2 Digital Filter Selection ADVF bit Digital Filter 0 Short Delay Sharp Roll-Off Filter (default) 1 Voice Filter 019000890-E-01 2022/01 - 57 - [AK5704] 9.14.4. Microphone Sensitivity Adjustment The AK5704 has linear microphone sensitivity adjustment function including mute controlled by MS1A/B[7:0], MS2A/B[7:0] bits to adjust the variation of the microphone sensitivity input to the AIN1A/B and AIN2A/B pins. MS1A/B[7:0], MS2A/B[7:0] bits must be set when PMAD1A/B, PMAD2A/B bits = “0”. MS1A[7:0] bits: MS1B[7:0] bits: MS2A[7:0] bits: MS2B[7:0] bits: Adjusting the microphone sensitivity for AIN1A channel. Adjusting the microphone sensitivity for AIN1B channel. Adjusting the microphone sensitivity for AIN2A channel. Adjusting the microphone sensitivity for AIN2B channel. Table 38. Microphone Sensitivity Adjustment MS1A[7:0] bits MS1B[7:0] bits MS2A[7:0] bits MS2B[7:0] bits 00H 01H 02H : 7EH 7FH 80H 81H 82H : FDH FEH FFH MS_DATA GAIN (dB) Calculation 0 1 2 : 126 127 128 129 130 : 253 254 255 Mute -42.144 -36.124 : -0.137 -0.068 0.000 +0.068 +0.135 : +5.918 +5.952 +5.987 - 20 log10(MS_DATA/128) (default) 9.14.5. Monaural (MIX) Selection ADC1/2 output data can be mixed to monaural by controlling MIX1/2 bits. ALC (ALC1/2 or ALC4 bit = “1”) or digital volume (ALC1/2 = ALC4 bits = “0”) operates for the data in Table 39. MIXx bit 0 1 Table 39. ADCx Monaural (MIX) Selection (x=1, 2) MONON bit Ach Output Data Bch Output Data 0 ADCx Ach ADCx Bch 1 ADCx Ach ADCx Bch 0 (ADCx Ach+ADCx Bch)/2 “0” data 1 (ADCx Ach+ADCx Bch)/2 (ADCx Ach+ADCx Bch)/2 019000890-E-01 (default) 2022/01 - 58 - [AK5704] 9.14.6. High Pass Filter (HPF1/2) This is composed with double 1st order HPF. The coefficient of HPF11/2 (HPF21/2) is set by FH1A[15:0], FH1B[15:0] bits (FH2A[15:0], FH2B[15:0] bits). HPF11/2 bits (HPF21/2 bits) control ON/OFF of the HPF11/2 (HPF21/2). When the HPF11/2 (HPF21/2) is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when HPF11/2 = HPF21/2 bits = “0”. The HPF11/2 (HPF21/2) starts operation 4/fs (max) after when HPF11/2 = HPF21/2 bits = “1” is set. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 53) HPF: FHxA[15:0] bits =A, FHxB[15:0] bits =B (MSB=FHxA15, FxB15; LSB=FHxA0, FHxB0) 1 / tan (fc/fs) 1 − 1 / tan (fc/fs) A= , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer Function 1 − z −1 H(z) = A 1 + Bz −1 The cut-off frequency must be set as bellow. fc/fs  0.000029 (fc min = 5.6Hz at 192kHz) 9.14.7. Low Pass Filter (LPF1/2) This is composed with double 1st order LPF. The coefficient of LPF11/2 (LPF21/2) is set by FL1A[15:0], FL1B[15:0] bits (FL2A[15:0], FL2B[15:0] bits). LPF11/2 bits (LPF21/2 bits) control ON/OFF of the LPF11/2 (LPF21/2). When the LPF11/2 (LPF21/2) is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when LPF11/2 = LPF21/2 bits = “0”. The LPF11/2 (LPF21/2) starts operation 4/fs (max) after when LPF11/2 = LPF21/2 bits = “1” is set. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 53) LPF: FLxA[15:0] bits =A, FLxB[15:0] bits =B (MSB=FLxA15, FLxB15; LSB=FLxA0, FLxB0) 1 1 − 1 / tan (fc/fs) A= , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 The cut-off frequency must be set as bellow. 0.0125 ≤ fc/fs < 0.5 (fc min = 2.4kHz at 192kHz) Note 53. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)] X = (Real number of filter coefficient calculated by the equations above) x 215 019000890-E-01 2022/01 - 59 - [AK5704] 9.14.8. ALC Operation The ALC (Automatic Level Control) is operated by ALC1 (2ch) block when ALC1 bit is “1” and operated by ALC2 (2ch) block when ALC2 bit is “1”. In this case, both Ach and Bch VOL values are changed together. When ALC4 bit = “0” and ALC1 = ALC2 bits = “1”, ALC of ADC1 and ADC2 are independently operated. When ALC4 bit = “1” regardless of ALC1 and ALC2 bits, ALC is operated for all 4ch of the ADC1 and ADC2. In this case, the VOL value is always changed in common with all channels. 4ch Link ALC is operated by the register setting of ADC1 (LMTH1[1:0], RGAIN1[2:0], REF1[7:0], RFST1[1:0] and ATTLIM1 bits). In this case, ALC setting of ADC2 (LMTH2[1:0], RGAIN2[2:0], REF2[7:0] and RFST2[1:0] bits) is invalid, but ATTLIM2 bit should be set to “0”. The ALC block consists of these blocks shown below. ALC limiter detection level and ALC recovery wait counter reset level are monitored at Level Detection 2 block after EQ block. The Level Detection 1 block also monitors clipping detection level (+0.53dBFS). ALC limiter gives priority to Level Detection 1. ALC Control Level Detection 2 EQ Level Detection 1 Output Input Volume Figure 39. ALC Block The polar (fc1) and the zero-point (fs2) frequencies of EQ block are dependent on the sampling frequency. The coefficient is changed automatically according to the sampling frequency range setting. When ALCEQ bit is OFF (ALCEQ bit = “1”), the level detection is not executed on EQ block. Table 40. ALCEQ Frequency Setting Sampling Frequency Polar Frequency Zero-point Frequency Range (fc1) (fc2) 150Hz @ fs=8kHz 100Hz @ fs=8kHz 8kHz  fs  12kHz 150Hz @ fs=16kHz 100Hz @ fs=16kHz 12kHz < fs  24kHz 150Hz @ fs=48kHz 100Hz @ fs=48kHz 24kHz < fs  48kHz 150Hz @ fs=96kHz 100Hz @ fs=96kHz 48kHz < fs  96kHz 150Hz @ fs=192kHz 100Hz @ fs=192kHz 96kHz < fs  192kHz fs: Sampling frequency fc1: Polar frequency fc2: Zero-point frequency K/20 A = 10 1 − 1 / tan (fc1/fs) 1 + 1 / tan (fc2/fs) x , B= 1 + 1 / tan (fc1/fs) K/20 , C = 10 1 + 1 / tan (fc1/fs) 1 − 1 / tan (fc2/fs) x 1 + 1 / tan (fc1/fs) Transfer function A + Cz −1 H(z) = 1 + Bz −1 019000890-E-01 2022/01 - 60 - [AK5704] [ALCEQ: First order zero pole high pass filter] Gain [dB] 0dB -3.5dB 150Hz (fc1) 100Hz (fc2) Frequency [Hz] Note 54. Black: Diagrammatic Line, Red: Actual Line Figure 40. ALCEQ Frequency Response (fs = 48kHz) 1. ALC Limiter Operation During 2ch Link ALC limiter operation, when either A or B channel output level exceeds the ALC limiter detection level (Table 42), the VOL1/2 value (same value for both A and B) is attenuated automatically according to the output level (Table 43). During 4ch Link ALC limiter operation, when either A or B channel output level of ADC1 or ADC2 exceeds the ALC limiter detection level (Table 42), the VOL1/2 value (same value for both A and B) is attenuated automatically according to the output level (Table 43). This attenuation is repeated for sixteen times once ALC limiter operation is executed. After completing the attenuate operation, unless ALC operation is changed to manual mode, the operation repeats when the input signal level exceeds ALC limiter detection level. When ATTLMT1/2 bit = “1”, VOL value is attenuated to 0dB if the volume is over ALC limiter detection level. In this case, attenuation under 0dB is not executed. The reference level and the input digital volume must be set to a value more than 0dB. When ATTLMT1/2 bit = “0” (default), normal attenuation is executed without volume limitation. When ALC 4ch Link Mode is selected (ALC4 bit = “1”), it is controlled by ATTLIM1 bit and ATTLIM2 bit should be set to “0”. Table 41. ALC Mode (x: Do not care) ALC4 ALC2 ALC1 ALC2 ALC1 Mode bit bit bit Operation Operation 0 0 0 0 Manual Manual (default) 1 0 0 1 Manual 2ch Link 2 0 1 0 2ch Link Manual 3 0 1 1 2ch Link 2ch Link 4 1 x x 4ch Link Note 55. ALC4 bit must be set when ALC1 = ALC2 bits = “0” or PMAD1A = PMAD1B = PMAD2A = PMAD2B bits = “0”. When ALC4 bit = “1”, only either ADC1 or ADC2 must not be power down. Table 42. ALC Limiter Detection Level/ Recovery Counter Reset Level LMTH1[1:0] bits LMTH2[1:0] bits 00 01 10 11 ALC Limiter Detection Level ALC Recovery Counter Reset Level ALC Output  −2.5dBFS ALC Output  −4.1dBFS ALC Output  −6.0dBFS ALC Output  −8.5dBFS −2.5dBFS > ALC Output  −4.1dBFS −4.1dBFS > ALC Output  −6.0dBFS −6.0dBFS > ALC Output  −8.5dBFS −8.5dBFS > ALC Output  −12dBFS 019000890-E-01 (default) 2022/01 - 61 - [AK5704] Table 43. ALC Limiter ATT Step Output Level +0.53dBFS  Output Level (Level Detection 1) –1.16dBFS  EQ Output Level (Level Detection 2) < +0.53dBFS LM-LEVEL  EQ Output Level (Level Detection 2) < –1.16dBFS ATT Step [dB] 0.38148 0.06812 0.02548 2. ALC Recovery Operation ALC recovery operation waits for the WTM[1:0] bits (Table 44) to be set after completing ALC limiter operation. If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 42) during the wait time, ALC recovery operation is executed. The VOL value is automatically incremented by the setting value of RGAIN1/2[2:0] bits (Table 45) up to the set reference level (Table 46) in every sampling. When the VOL value exceeds the reference level (REF values), the VOL values are not increased. The recovery speed gets slower when the VOL peak level exceeds -12dBFS to make the recovery speed for low VOL level faster relatively. When “ALC recovery waiting counter reset level  Output Signal < ALC limiter detection level” during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When “ALC recovery waiting counter reset level > Output Signal”, the waiting timer of ALC recovery operation starts. ALC operations correspond to the impulse noise. When FRN bit = “0”, the impulse noise is input, the ALC recovery operation becomes faster than a normal recovery operation. When large noise is input to a microphone instantaneously, the quality of small level in the large noise can be improved by this fast recovery operation. The speed of fast recovery operation is set by RFST1/2[1:0] bits (Table 47). Limiter amount of Fast recovery is set by FRATT[1:0] bits (Table 48). When FRN bit = “1”, the fast recovery does not operate though the impulse noise is input. Table 44. ALC Recovery Operation Waiting Period WTM[1:0] bits ALC Recovery Cycle 128/fs (default) 00 512/fs 01 2048/fs 10 8192/fs 11 Table 45. ALC Recovery Gain Step RGAIN1[2:0] bits Gain Change GAIN Step [dB] RGAIN2[2:0] bits Timing 000 0.00212 1/fs 001 0.00106 1/fs 010 0.00106 4/fs 011 0.00106 8/fs 100 0.00106 16/fs 101 0.00106 32/fs 110 0.00106 64/fs 111 0.00106 128/fs 019000890-E-01 (default) 2022/01 - 62 - [AK5704] Table 46. Reference Level of ALC Recovery Operation REF1[7:0] bits GAIN [dB] Step REF2[7:0] bits F1H +36.0 E0H +35.625 EFH +35.25 : : E1H +30.0 (default) : : 0.375 dB 92H +0.375 91H 0.0 90H –0.375 : : 06H –52.125 05H –52.5 04H ~ 00H MUTE Table 47. Fast Recovery Speed Setting (FRN bit = “0”) RFST1[1:0] bits Fast Recovery Gain Step RFST2[1:0] bits [dB] 00 0.000265 (default) 01 0.00106 10 0.00424 11 0.01696 Table 48. Fast Recovery Reference Volume Attenuation Step ATT Step [dB] ATT Switch Timing FRATT[1:0] bits -0.00106 4/fs (default) 00 -0.00106 16/fs 01 -0.00106 64/fs 10 -0.00106 256/fs 11 019000890-E-01 2022/01 - 63 - [AK5704] 3. Example of ALC Setting Table 49 shows the examples of the ALC setting. Register Name LMTH1/2[1:0] WTM[1:0] REF1/2[7:0] IV1A/B[7:0], IV2A/B[7:0] RGAIN1/2[2:0] RFST1/2[1:0] ALCEQN ALC1/2 Table 49. Example of the ALC Setting fs=16kHz Comment Data Operation Limiter detection Level 01 −4.1dBFS Recovery waiting period 01 32ms Maximum gain at recovery operation E1H +30dB fs=48kHz Data Operation 01 −4.1dBFS 10 42.7ms E1H +30dB Gain of IVOL E1H +30dB E1H +30dB Recovery GAIN Fast Recovery GAIN ALC EQ disable ALC enable 001 11 0 1 0.00106dB 0.01696dB Enable Enable 010 10 0 1 0.00106dB(4/fs) 0.00424dB Enable Enable 4. Example of registers set-up sequence of ALC operation The following registers must not be changed during ALC operation. These bits must be changed after ALC operation is stopped by ALC1/2 = ALC4 bits = “0”. ・FRN, WTM[1:0], FRATT[1:0], ALCEQN, LMTH1/2[1:0], RFST1/2[1:0] and RGAIN1/2[2:0] bits The reference level can be changed during ALC operation. If the reference level is reduced the volume level is changed by soft transition in 0.02548dB/fs step. The volume is also changed by soft transition to the IVOL setting value (IV1A/B[7:0], IV2A/B[7:0] bits) until manual mode starts after ALCx bit is set to “0”. Do not change the REF value during soft transition when REF1/2[7:0] bits are set to 00H (MUTE). When changing ALC operation channels, finish all ALC operations at first (ALC4 = ALC2 = ALC1 bits= “0”) and write ALCx bit = “1”. In this case, ALCx bit writing must be made with an interval of 2/fs. It is recommended that ALC operation is enabled after transition time since the volume changes to the IVOL setting value by soft transition when ALC operation is finished. The reference level and IVOL must be set to a value more than 0dB when ATTLMT1/2 bits = “1”. Example: Recovery Wait Time = 42.7ms@48kHz ALCEQN bit = “0” Maximum Gain = +30.0dB Limiter Detection Level = −4.1dBFS Fast Recovery Step = 0.00424 dB Recovery Gain = 0.00106 dB (4/fs) ALC1 bit = “1” Manual Mode WR (WTM[1:0], ALCEQN) WR (IV1A/B[7:0]) (1) Addr=26H Data=42H * The value of IVOL should be the same or smaller than REF’s (2) Addr=27H,28H, Data=E1H WR (REF1[7:0]) (3) Addr=29H, Data=E1H WR (LMTH1[1:0], RFST1[1:0], RGAIN1[2:0]) (4) Addr=2AH, Data=A9H WR (ALC1 = “1”) (5) Addr=25H, Data=01H ALC Operation Figure 41. ALC Operation Setting Sequence 019000890-E-01 2022/01 - 64 - [AK5704] 9.14.9. Input Digital Volume (Manual Mode) The input digital volume becomes manual mode when ALC4 = ALC2 = ALC1 bits= “0”. This mode is used in the cases shown below. 1. After exiting reset state, when setting up the registers for ALC operation (LMTH1/2 bits and etc.) 2. When the registers for ALC operation (Limiter period, Recovery period and etc.) are changed. For example; when the sampling frequency is changed. 3. When IVOL is used as a manual volume control. IV1A/B[7:0] and IV2A/B[7:0] bits set the gain of the digital input volume (Table 50). 1Ach and 1Bch volumes are set individually by IV1A[7:0] and IV1B[7:0] bits when IVOL1C bit = “0”. IV1A[7:0] bits control both 1Ach and 1Bch volumes together when IVOL1C bit = “1”. 2Ach and 2Bch volumes are set individually by IV2A[7:0] and IV2B[7:0] bits when IVOL2C bit = “0”. IV2A[7:0] bits control both 2Ach and 2Bch volumes together when IVOL2C bit = “1”. This volume control has a soft transition function at 0.09375dB/fs (IVTM[1:0] bits = “01”). Therefore, no switching noise occurs during the transition. When IVTM[1:0] bits = “01”, it takes 944/fs from F1H(+36dB) to 05H(-52.5dB). The volume is muted after transitioned to -72dB (208/fs) in the period set by IVTM[1:0] bits when changing the volume from 05H (-52.5dB) to 00H (MUTE). When IV1A/B[7:0] bits and IV2A/B[7:0] bits are set in series, should be set at soft transition time interval. If IV1A/B[7:0] or IV2A/B[7:0] bits are written during PMPFIL1/2 bits = “0”, IVOL operation starts with the written values after PMPFIL1/2 bits are changed to “1”. Table 50. Input Digital Volume Setting IV1A/B[7:0] bits GAIN [dB] Step IV2A/B[7:0] bits F1H +36.0 E0H +35.625 EFH +35.25 : : E1H +30.0 : : 0.375 dB 92H +0.375 91H 0.0 (default) 90H –0.375 : : 06H –52.125 05H –52.5 04H ~ 00H MUTE IVTM[1:0] bits 00 01 10 11 Table 51. Transition Time Setting of Input Digital Volume Transition Time from F1H to 05H (IV1A/B[7:0], IV2A/B[7:0] bits) Setting fs=16kHz fs=48kHz fs=96kHz fs=192kHz 236/fs 14.8ms 4.9ms 2.5ms 1.2ms 944/fs 59ms 19.7ms 9.8ms 4.9ms 1888/fs 118ms 39.3ms 19.7ms 9.8ms 3776/fs 236ms 78.7ms 39.3ms 19.7ms 019000890-E-01 (default) 2022/01 - 65 - [AK5704] ALC1/2 bits ALC1/2 Status “0” “1” “0” Disable Enable Disable IV1/2A7-0 bits E1H(+30dB) IV1/2B7-0 bits C6H(+20dB) Internal IV1/2A E1H(+30dB) Internal IV1/2B C6H(+20dB) E1(+30dB) --> F1(+36dB) (1) E1(+30dB) (2) E1(+30dB) --> F1(+36dB) C6H(+20dB) Figure 42. Example of IVOL value during 2ch ALC (ALC4 bit = “0”) (1) The IV1A and IV2A value becomes the start value if the IV1A and IV1B, IV2A and IV2B are different when an ALC operation starts. The wait time from ALC1/2 bits = “1” to ALC operation start by IV1/2A[7:0] bits is at most recovery time (WTM[1:0] bits). (2) Writing to IV1A/B and IV2A/B registers is ignored during ALC operation. After ALC is disabled, the IVOL changes to each IV1A/B or IV2A/B value by soft transition. When ALC is enabled again, ALC1/2 bits should be set to “1” with an interval more than soft transition time after ALC1/2 bit = “0”. 9.14.10. ALC 4ch Link Mode Sequence Figure 43 shows the 4ch Link ALC Mode sequence at ALC1 = ALC2 bits = “0”, when ALC4 bit = “0” → “1”. (3) ALC4 bit PMPFIL1 bit (5) (1) (7) (2) PMPFIL2 bit ALC1 bit ALC2 bit ADC1 Operation Power Down ADC2 Operation Power Down (6) (4) (4) (4) (4) Manual Mode Manual Mode 4ch Link ALC 4ch Link ALC Manual Mode Manual Mode Power Down Power Down Figure 43. 4ch Link ALC Mode Sequence (ALC4 bit = “1”) (1) Programmable Filter 1 is powered up by PMPFIL1 bit is changed from “0” to “1”. (2) Programmable Filter 2 is powered up by PMPFIL2 bit is changed from “0” to “1”. (3) Both ADC1 and ADC2 start ALC operation together (4ch Link ALC) by changing ALC4 bit from “0” to “1”. At this point the start value of ALC is Ach of ADC1 (IV1A[7:0] bits). (4) When ALC4 bit = “1”, ALC1 bit and ALC2 bit become invalid. But ALC1 and ALC2 bits should be “0”, when ALC4 bit is changed. (5) When ALC4 bit = “1” → “0”, ADC1 and ADC2 become Manual Mode. 2ch link mode can also be set without stopping operation by setting ALC1 and ALC2 bits = “1”. (6) Programmable Filter 2 is powered down by PMPFIL2 bit is changed from “1” to “0”. (7) Programmable Filter 1 is powered down by PMPFIL1 bit is changed from “1” to “0”. 019000890-E-01 2022/01 - 66 - [AK5704] 9.15. Digital Voice Activity Detector The AK5704 has a Voice Activity Detector (VAD) function. VAD operation requires to supply MCKI input and to operate an analog microphone and ADC or a digital microphone. By setting each parameter, an interrupt signal is output to the WINTN pin for the external DSP (SoC) in response to the voice input from MIC. Then, the voice input from MIC is output to the SDTO1 pin. AVDD MCKI (e.g. 4.096MHz) MPWR1 Analog MIC MUX Voice Activity Detector ADC DSP or SoC Interrupt WINTN Signal Digital Filter Buffer SDTO1 or Digital MIC PDM - DCLK Keyword verification Voice Recognition Figure 44. Voice Activity Detector System Block Diagram VAD is a function to detect a large sound in ambient noise. VAD has a delay circuit to save speech data prior to the point which the voice is detected. Programmable Filter 1 AIN1A AIN1B AIN2A AIN2B VAD Block PFTHR1 bit ADC HPF 1A VADINS[1:0] bits VDLYO[15:0] ALC1 (IVOL) HPF1, LPF1 VDLY 16bits Input Sel VADSEL bit Output Selector VAHPF VALPF VADO Serial Data IIRO[17:0] 18bits ABS Comparator VDET Guard VON > Timer ABS[16:0] 17bits NLD NL[16:0] MINTH[16:0] bits NLX[16:0] MAX THX[16:0] MULT(X) NLDTH[11:0] bits Figure 45. Voice Activity Detector Block Diagram 019000890-E-01 2022/01 - 67 - [AK5704] Input signal to ADC1 is selected by VADINS[1:0] bits, and the corresponding microphone input circuit is powered up by setting PMAINx bit = “1”. When the ADC1 and the Programmable Filter 1 are powered up by setting PMAD1A = PMPFIL1 bits = “1”, a signal is input to the VAD circuit. Table 52. ADC1 Input Signal Select VADINS[1:0] bits ADC1 Input Signal 00 AIN1A (default) 01 AIN1B 10 AIN2A 11 AIN2B VAD circuit is powered up by setting PMVAD bit = “1”. When the VAD is powered down, NLD (Noise Level Detector) is also reset the leaning data by resetting the VAD circuit. The default value of NLD part is zero. Each register related to VAD should be set during PMVAD bit = “0” (Do not change the set value during operation.) Table 53. Voice Activity Detector Power Management PMVAD bit VAD Operation 0 Power down (Reset) (default) 1 Normal operation Input signal to VAD circuit is selected by VADSEL bit. Table 54. Select Input Signal for VAD VADSEL bit Input Signal for VAD 0 ADC output (default) 1 HPF/LPF output 9.15.1. VDLY VDLY block outputs the signal according to VDLYO[15:0] bits which is delayed input data. These data are used when the speech data which is before voice detection is necessary for subsequent process. SRAM is used to create delay. SRAM size is 2048word x 16bit. The ON/OFF control of VDLY block is selectable by DLYE bit. Non-delay data is output when this function is disabled. SRAM is initialized when the reset is released. Table 55. VAD Delay Setting DLYE bit Amount of Delay 0 No-delay 2048 sample 1 (128ms @ fs=16kHz) (default) 9.15.2. HPF, LPF In addition to 2nd order HPF and LPF of Programmable Filter 1, 2nd order HPF and LPF are built in for VAD. After passing through HPF and LPF, the output value IIRO [17: 0] is input to the ABS section of the next stage. High Pass Filter (VAHPF) This is composed with double 1st order HPF. The coefficient of VAHPF1/2 is set by VFHA[15:0], VFHB[15:0] bits. VAHPF1 bit (VAHPF2 bit) control ON/OFF of the VAHPF1 (VAHPF2). When the VAHPF1 (VAHPF2) is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when VAHPF1 = VAHPF2 bits = “0”. The VAHPF1 (VAHPF2) starts operation 4/fs (max) after when VAHPF1 = VAHPF2 bits = “1” is set. 019000890-E-01 2022/01 - 68 - [AK5704] fs: Sampling frequency fc: Cut-off frequency Register setting (Note 56) VAHPF: VFHA[15:0] bits =A, VFHB[15:0] bits =B (MSB=VFHA15, VFHB15; LSB=VFHA0, VFHB0) 1 / tan (fc/fs) 1 − 1 / tan (fc/fs) A= , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 The cut-off frequency must be set as bellow. fc/fs  0.000029 (fc min = 5.6Hz at 192kHz) Low Pass Filter (VALPF) This is composed with double 1st order LPF. The coefficient of VALPF1/2 is set by VFLA[15:0], VFLB[15:0] bits. VALPF1 bit (VALPF2 bit) control ON/OFF of the VALPF1 (VALPF2). When the VALPF1 (VALPF2) is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when VALPF1 = VALPF2 bits = “0”. The VALPF1 (VALPF2) starts operation 4/fs (max) after when VALPF1 = VALPF2 bits = “1” is set. When HPF3RD bit is set to “1”, VALPF1 can be changed to HPF. In this case, the coefficient setting is followed VFHA[15:0] and VFHB[15:0] bits. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 56) VALPF: VFLA[15:0] bits =A, VFLB[15:0] bits =B (MSB=VFLA15, VFLB15; LSB=VFLA0, VFLB0) 1 1 − 1 / tan (fc/fs) A= , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 The cut-off frequency must be set as bellow. 0.0125 ≤ fc/fs < 0.5 (fc min = 2.4kHz at 192kHz) Note 56. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)] X = (Real number of filter coefficient calculated by the equations above) x 215 9.15.3. ABS ABS simply calculates an absolute value. 1. If most significant bit of sign bit is 0, all bit except for most significant bit will be directly output. 2. If most significant bit of sign bit is 1, all bit except for most significant bit will be added +1 after bit inverting and output. 019000890-E-01 2022/01 - 69 - [AK5704] 9.15.4. NLD (Noise Level Detector) NLD (Noise Level Detector) detects a noise level of the input signal. Average 1 Average 2 Peakhold Capture T2=T1/2^AT T1=fs / (PT+1) 更新条件 input sync T1 max 1/2^N T2 1/2 T2 NL[16:0] Figure 46. Noise Level Detector Block Diagram The peak value is calculated according to the setting of PT[7:0] bits in the Peak-hold stage. PT[7:0] bits N 00H : 07H : 1FH : FFH Table 56. Peak Value Setting Update Rate Calculating Period [μs] Number of Samples T1 [Hz] @ fs=16kHz N+1 fs/(N+1) 62.5 * (N+1) 1 fs 62.5 : : : 8 fs/8 500 : : : 32 fs/32 2,000 : : : 256 fs/256 16,000 (default) The peak value is calculated according to the setting of AT[3:0] bits in the Average1 and Average2 stage. AT[3:0] bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Average1 Number of Samples 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 Table 57. Average of Peak Value Setting Average 1 Average 2 Total Update Rate Shift Number of Number of T2 [Hz] Amount N Samples Samples 0 2 2 T1/1 1 2 4 T1/2 2 2 8 T1/4 3 2 16 T1/8 4 2 32 T1/16 5 2 64 T1/32 6 2 128 T1/64 7 2 256 T1/128 0 2 512 T1/256 1 2 1024 T1/512 2 2 2048 T1/1024 3 2 4096 T1/2048 4 2 8192 T1/4096 5 2 16384 T1/8192 6 2 32768 T1/16384 7 2 65536 T1/32768 019000890-E-01 (default) 2022/01 - 70 - [AK5704] NL (Noise Level) update execution is determined in the Capture stage. In the following condition, NL is updated. (Noise level reaches to the voice level unless stopping NLD during speech detection. To prevent this, noise level is updated in this condition.) (When VON becomes “1” due to a false detection by sudden increase of noise level, NLD stops updating. To prevent this, noise level is updated in this condition.) * 0xFFFF samples is default setting (VONT bit = “0”). When VONT bit is set to “1”, the number of samples is changed to 0x7FFF (2.048s@16kHz). NL Limiter Function When NL increases following the input signal, there is a possibility that voice activity cannot be detected depending on the setting of NLDTH[11:0] bits. It is an optional function considering such a situation. It can prevent a sudden increase of noise level according to the data limit by NLLIM[1:0] bits at the next NL update. Table 58. Noise Level Limiter Value Setting Noise Level Limiter Value NLLIM[1:0] bits at Next NL Update 00 No-limit (default) 01 +2dB 10 +3dB 11 +4dB 019000890-E-01 2022/01 - 71 - [AK5704] 9.15.5. MAX The minimum noise level is set to MINTH[16:0] bits (unsigned). A larger value of MINTH[16:0] bits (unsigned) and NL[16:0] bits (output level of NLD block, unsigned) is output to NLX[16:0] bits. This setting can prevent the NLD reacts sensitively in a quiet environment. Table 59. Minimum Noise Level Setting MINTH[16:0] bits Minimum Noise Level [dBFS] N 20*log(N/2^17) 00000H -∞ : : 0001FH -72.2 (default) : : 00048H -65.2 : : 10000H -6.0 : : 1FFFFH 0 9.15.6. MULT (X) The speech detection threshold level (THX[16:0] bits) is calculated by multiplying noise level threshold (NLDTH[11:0] bits) by ambient noise level (NLX[16:0] bits) which is determined according to NLD and MAX blocks. Multiplication result outputs 17-bit data. If multiplication result is greater than 17-bit full scale, output data is saturated to 0x1FFFF. Table 60. Noise Level Threshold NLDTH[11:0] bits Noise Level Threshold [dB] N 20*log(N/2^7) 000H -∞ : : 080H +0.0 : : 200H +12.0 : : 7EDH +24.0 : : FFFH +30.1 (default) 9.15.7. Comparator (>) In case of output value of ABS block > THX[16:0] bits, the comparator outputs VDET = “H”. In case of output value of ABS block  THX[16:0] bits, the comparator outputs VDET = “L”. 019000890-E-01 2022/01 - 72 - [AK5704] 9.15.8. Guard Timer The output condition of VON = "H" can be limited by ONGT[7:0] bits which define a number of continuous detection times of VDET = "H". OFFGT[7:0] bits which define a number of continuous detection times of VDET = “L” can set a determined period that keeps VON = "H" after VON = "L" detection. Table 61. On Guard Timer Setting OFFGT[7:0] bits N 00H : 0FH : FFH ONGT[7:0] bits VON↑ Condition A Number of VDET= “H” N 00H 01H 02H : FFH N+1 1 2 3 : 256 (default) Table 62. Off Guard Timer Setting VON↓ Condition Time @ fs = 16kHz [ms] A Number of VDET = “L” (N+1)*2^8 0.0625 * (N+1)*2^8 256 16 : : 4,096 256 : : 65,536 4096 019000890-E-01 (default) 2022/01 - 73 - [AK5704] 9.15.9. Interrupt Output (WINTN pin) The WINTN pin holds “H” output when voice activity is not detected (VON = “L”). When the voice activity is detected (VON = “H”), the WINTN pin output is changed to “L”. 9.15.10. Output Selector VADO output is selectable by setting VAS[2:0] bits or VBS[2:0] bits. VAS[2:0] bits determine Ach output, and VBS[2:0] bits determine Bch output. When VADOE bit is set to “1”, VADO is started to output from the SDTO1 pin. (When VADOE bit = “0” (default), the data of ADC1 or Programmable Filter 1 is output from SDTO1 pin.) Table 63. Output Selector Setting VAS[2:0] bits Ach Output [15:0] VBS[2:0] bits Bch Output [15:0] 000 VDLYO[15:0] VON=0: 0x0000 001 VON=1: VDLYO[15:0] VON=0: 0x0000 010 VON=1: 0x2710 (10000dec) 011 NL[16:1] 100 ABS[16:1] 101 THX[16:1] 110 IIRO[17:2] VDET=0: 0x0000 111 VDET=1: 0x2710 (10000dec) 019000890-E-01 (default) 2022/01 - 74 - [AK5704] 9.16. I2C-bus Control Interface The AK5704 supports the fast-mode I2C Bus (max: 400kHz). Pull-up resistors at the SDA and SCL pins must be connected to (TVDD+0.3)V or less. 1. WRITE Operation Figure 47 shows the data transfer sequence for the I2C Bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 53). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant six bits of the slave address are fixed as “001000” (Figure 48). If the slave address matches that of the AK5704, the AK5704 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 54). A R/W bit value of “1” indicates that the read operation is to be executed, and “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK5704. The format is MSB first, and those most significant 1bit is fixed to zero (Figure 49). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 50). The AK5704 generates an acknowledge after each byte is received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 53). The AK5704 can perform more than one byte write operation per sequence. After receipt of the third byte the AK5704 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. The address counter will “roll over” to 00H and the previous data will be overwritten if the address exceeds “46H” prior to generating a stop condition. The data on the SDA line must remain stable during the HIGH period of the clock. HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW (Figure 55) except for the START and STOP conditions. S T A R T SDA S S T O P R/W="0" Slave Address Sub Address(n) A C K Data(n) A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 47. Data Transfer Sequence at I2C Bus Mode 019000890-E-01 2022/01 - 75 - [AK5704] 0 0 0 A6 D7 D6 1 0 0 0 (CAD must match with CAD pin.) Figure 48. The First Byte CAD R/W A5 A4 A3 A2 Figure 49. The Second Byte A1 A0 D5 D4 D3 D2 Figure 50. The Third Byte D1 D0 2. READ Operation Set the R/W bit = “1” for the READ operation of the AK5704. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. The address counter will “roll over” to 00H and the data of 00H will be read out if the address exceeds “46H” of Register map prior to generating a stop condition. The AK5704 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ. 2-1. CURRENT ADDRESS READ The AK5704 has an internal address counter that maintains the address of the last accessed word incremented by one. Therefore, if the last access (either a read or write) were to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK5704 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK5704 ceases the transmission. S T A R T SDA S S T O P R/W="1" Slave Address Data(n) A C K Data(n+1) MA AC SK T E R Data(n+2) MA AC S K T E R Data(n+x) MA AC S K T E R MA AC SK T E R P MN AA SC T K E R Figure 51. Current Address Read 2-2. RANDOM ADDRESS READ The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit “1”. The AK5704 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK5704 ceases the transmission. 019000890-E-01 2022/01 - 76 - [AK5704] S T A R T SDA S T A R T R/W="0" Slave S Address Sub Address(n) A C K S T O P R/W="1" Slave S Address A C K Data(n) A C K Data(n+1) MA AC S K T E R Data(n+x) MA AC SK T E R MA AC SK T E R P MN A A SC T K E R Figure 52. Random Address Read SDA SCL S P start condition stop condition Figure 53. Start Condition and Stop Condition DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 54. Acknowledge (I2C Bus) SDA SCL data line stable; data valid change of data allowed Figure 55. Bit Transfer (I2C Bus) 019000890-E-01 2022/01 - 77 - [AK5704] 9.17. Addr Register Map Register Name D7 D6 D5 D4 D3 D2 D1 0 PSW2N D0 00H Flow Control 0 SDTO2E MSN AVDDL PSW1N PSW0N 01H Power Management 1 PMVCM PMPLL PMMP2 PMMP1 PMAIN2B PMAIN2A PMAIN1B PMAIN1A 02H Power Management 2 PMDM2B PMDM2A PMDM1B PMDM1A PMAD2B PMAD2A PMAD1B PMAD1A AIRST[2:0] PMVAD PFSDO2 PFSDO1 PMPFIL2 PMPFIL1 MDIF1A AINCOM MONON 03H Power Management 3 MIC Input & MIC Power 04H Setting 05H MIC Amplifier 1 Gain MDIF2B MDIF2A MG1A[3:0] MG2B[3:0] MG2A[3:0] MIC Amplifier 2 Gain 07H Digital MIC Setting 0 DCLKP2 08H Clock Mode Select 0 0 0 0 0AH PLL Ref CLK Divider 1 MICL[1:0] MG1B[3:0] 06H 09H PLL CLK Source Select MDIF1B DCLKE2 DMIC2 0 DCLKP1 0 0 CM[1:0] BCKO DCLKE1 DMIC1 FS[3:0] MCKOE PLS 0 PLD[15:8] 0BH PLL Ref CLK Divider 2 PLD[7:0] 0CH PLL FB CLK Divider 1 PLM[15:8] 0DH PLL FB CLK Divider 2 PLM[7:0] 0EH Audio I/F Format 0 BCKP 0FH Phase Adjustment 1A DLY1AE 0 DLY1A[5:0] 10H Phase Adjustment 1B DLY1BE 0 DLY1B[5:0] 11H Phase Adjustment 2A DLY2AE 0 DLY2A[5:0] 12H Phase Adjustment 2B DLY2BE 0 13H ADC High Pass Filter 0 14H Digital Filter Select ADVF 15H MIC Sensitivity Adj. 1A 16H MIC Sensitivity Adj.1B MS1B[7:0] 17H MIC Sensitivity Adj.2A MS2A[7:0] 18H MIC Sensitivity Adj.2B MS2B[7:0] 19H Filter 1 Select PFTHR1 1AH Filter 2 Select PFTHR2 0 0 MIX2 1BH VAD Setting 1 VALPF2 VALPF1 VAHPF2 VAHPF1 1CH VAD Setting 2 1DH VAD Setting 3 1EH VAD Setting 4 MINTH[15:8] 1FH VAD Setting 5 MINTH[7:0] 20H VAD Setting 6 21H VAD Setting 7 NLDTH[7:0] 22H VAD Setting 8 ONGT[7:0] 23H VAD Setting 9 OFFGT[7:0] 24H VAD Setting 10 DLC[1:0] TDM[1:0] DIF[1:0] DLY2B[5:0] ADRST[2:0] 0 0 0 0 HPF2C[1:0] FSTHPF FSTHPF VREFH AD2N AD1N MS1A[7:0] MIX1 LPF12 HPF1C[1:0] HPFAD2N HPFAD1N LPF11 HPF12 HPF11 LPF22 LPF21 HPF22 HPF21 HPF3RD VADSEL DLYE VADOE 0 0 MINTH16 PT[7:0] VADINS[1:0] NLLIM[1:0] 0 AT[3:0] VONT NLDTH[11:8] VBS[2:0] 019000890-E-01 0 VAS[2:0] 2022/01 - 78 - [AK5704] Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0 25H ALC Select FRN ATTLIM2 ATTLIM1 0 0 ALC4 ALC2 ALC1 26H ALC Control 1 0 ALCEQN IVTM[1:0] 27H Input Digital Volume 1A IV1A[7:0] 28H Input Digital Volume 1B IV1B[7:0] 29H ALC1 Reference Level REF1[7:0] 2AH ALC1 Control IVOL1C RGAIN1[2:0] 2BH Input Digital Volume 2A IV2A[7:0] 2CH Input Digital Volume 2B IV2B[7:0] 2DH ALC2 Reference Level REF2[7:0] 2EH ALC2 Control 2FH HPF1 Coefficient A IVOL2C RGAIN2[2:0] FH1A[15:8] 30H HPF1 Coefficient A FH1A[7:0] 31H HPF1 Coefficient B FH1B[15:8] 32H HPF1 Coefficient B FH1B[7:0] 33H LPF1 Coefficient A FL1A[15:8] 34H LPF1 Coefficient A FL1A[7:0] 35H LPF1 Coefficient B FL1B[15:8] 36H LPF1 Coefficient B FL1B[7:0] 37H HPF2 Coefficient A FH2A[15:8] 38H HPF2 Coefficient A FH2A[7:0] 39H HPF2 Coefficient B FH2B[15:8] 3AH HPF2 Coefficient B FH2B[7:0] 3BH LPF2 Coefficient A FL2A[15:8] 3CH LPF2 Coefficient A FL2A[7:0] 3DH LPF2 Coefficient B FL2B[15:8] 3EH LPF2 Coefficient B FL2B[7:0] 3FH VAHPF Coefficient A VFHA[15:8] 40H VAHPF Coefficient A VFHA[7:0] 41H VAHPF Coefficient B VFHB[15:8] 42H VAHPF Coefficient B VFHB[7:0] 43H VALPF Coefficient A VFLA[15:8] 44H VALPF Coefficient A VFLA[7:0] 45H VALPF Coefficient B VFLB[15:8] 46H VALPF Coefficient B VFLB[7:0] FRATT[1:0] WTM[1:0] RFST1[1:0] LMTH1[1:0] RFST2[1:0] LMTH2[1:0] Note 57. Register values are initialized by setting the PDN pin to “L”. Note 58. It is prohibited to write “1” to the bits indicated as “0“. Note 59. Writing access to 47H ~ 7FH is prohibited. 019000890-E-01 2022/01 - 79 - [AK5704] 9.18. Addr 00H Register Definition Register Name Flow Control R/W Default D7 0 R/W 0 D6 SDTO2E R/W 0 D5 MSN R/W 0 D4 AVDDL R/W 0 D3 0 R/W 0 D2 PSW2N R/W 0 D1 PSW1N R/W 0 D0 PSW0N R/W 0 PSW2N/1N/0N: Pull-down Resistance Disable bits (Table 1) 0: Pull-down Enable (Typ. 49 k) (default) 1: Pull-down Disable AVDDL: AVDD Internal Operation Mode 0: 3.3V Operation (default) 1: 1.8V Operation MSN: Master/Slave Setting (Table 16, Table 17, Table 18, Table 19) 0: Slave Mode (default) 1: Master Mode SDTO2E: SDTO2 Enable 0: Disable (TDMIN pin: Default) 1: Enable (SDTO2 pin) Addr 01H Register Name Power Management 1 R/W Default D7 PMVCM R/W 0 D6 PMPLL R/W 0 D5 PMMP2 R/W 0 D4 PMMP1 R/W 0 D3 D2 D1 D0 PMAIN2B PMAIN2A PMAIN1B PMAIN1A R/W R/W R/W R/W 0 0 0 0 PMAIN1A/B: Power Management of AIN1A/B Inputs 0: Power down (default) 1: Power up PMAIN2A/B: Power Management of AIN2A/B Inputs 0: Power down (default) 1: Power up PMMP1/2: Power Management of MPWR1/2 (Table 26) 0: Power down: Hi-Z (default) 1: Power up PMPLL: Power Management of PLL 0: Power down (default) 1: Power up PMVCM: Power Management of VCOM 0: Power down (default) 1: Power up After setting AVDDL bit, VCOM must be powered up (PMVCM bit = “1”). 019000890-E-01 2022/01 - 80 - [AK5704] Addr 02H Register Name Power Management 2 R/W Default D7 D6 D5 D4 D3 PMDM2B PMDM2A PMDM1B PMDM1A PMAD2B R/W R/W R/W R/W R/W 0 0 0 0 0 D2 PMAD2A R/W 0 D1 PMAD1B R/W 0 D0 PMAD1A R/W 0 PMAD1A/B: Power Management of MIC-Amp 1 & ADC1 Ach/Bch (Table 29) 0: Power down (default) 1: Power up PMAD2A/B: Power Management of MIC-Amp 2 & ADC2 Ach/Bch (Table 30) 0: Power down (default) 1: Power up PMDM1A/B: Input Signal Select with Digital Microphone 1 (Table 31) 0: Power Down (default) 1: Power Up ADC1 digital block is powered-down by PMDM1A = PMDM1B bits = “0” when selecting a digital microphone input (DMIC1 bit = “1”). PMDM2A/B: Input Signal Select with Digital Microphone 2 (Table 32) 0: Power Down (default) 1: Power Up ADC2 digital block is powered-down by PMDM2A = PMDM2B bits = “0” when selecting a digital microphone input (DMIC2 bit = “1”). Addr 03H Register Name Power Management 3 R/W Default D7 D6 AIRST[2:0] R/W 000 D5 D4 PMVAD R/W 0 D3 PFSDO2 R/W 0 D2 PFSDO1 R/W 0 D1 D0 PMPFIL2 PMPFIL1 R/W R/W 0 0 PMPFIL1: Power Management of Programmable Filter 1 0: Power down (default) 1: Power up PMPFIL2: Power Management of Programmable Filter 2 0: Power down (default) 1: Power up @ PMPFIL1 bit = “1” (PMPFIL2 does not power up, when PMPFIL1 bit = “0”.) PFSDO1/2: SDTO1/2 Output Signal Select 0: ADC output (default) 1: Programmable Filter or VAD output PMVAD: Power Management of Voice Activity Detector (Table 53) 0: Power down (default) 1: Power up AIRST[2:0]: AIN1/2 Initialization Cycle Setting (Table 27) Default: “000” (656/fs) This is a common setting for AIN1A/B and AIN2A/B. 019000890-E-01 2022/01 - 81 - [AK5704] Addr 04H Register Name MIC Input & MIC Power Setting R/W Default D7 D6 D5 D4 D3 D2 D1 D0 MDIF2B MDIF2A MDIF1B MDIF1A AINCOM MONON MICL[1:0] R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 00 MICL1[1:0]: MIC Power (MPWR1/2 pins) Output Voltage Setting (Table 25) Default: “00” (Typ. 2.8 V) MONON: ADC Digital Output Mode Setting (Table 29, Table 30, Table 31, Table 32, Table 39) 0: Ach or Bch output (Default) 1: Ach and Bch output AINCOM: COM Input Setting for Single-ended Input Mode 0: COM Separation (Default) 1: COM Contact (AIN1A-, AIN1B-, AIN2A-, AIN2B- pins) MDIF1A/B: AIN1A/B Input Setting (Table 22) 0: Single-ended Input (AIN1A+ pin, AIN1B+ pin: Default) 1: Full-differential Input (AIN1A+/- pins, AIN1B+/- pins) MDIF2A/B: AIN2A/B Input Setting (Table 23) 0: Single-ended Input (AIN2A+ pin, AIN2B+ pin: Default) 1: Full-differential Input (AIN2A+/- pins, AIN2B+/- pins) Addr 05H Register Name MIC Amplifier 1 Gain R/W Default D7 D6 D5 MG1B[3:0] R/W 0110 D4 D3 D2 D1 MG1A[3:0] R/W 0110 D0 D3 D2 D1 MG2A[3:0] R/W 0110 D0 MG1A/B[3:0]: MIC-Amp 1 Ach/Bch Analog Volume (Table 24) Default: “0110” (+18 dB) Addr 06H Register Name MIC Amplifier 2 Gain R/W Default D7 D6 D5 MG2B[3:0] R/W 0110 D4 MG2A/B[3:0]: MIC-Amp 2 Ach/Bch Analog Volume (Table 24) Default: “0110” (+18 dB) 019000890-E-01 2022/01 - 82 - [AK5704] Addr 07H Register Name Digital MIC Setting R/W Default D7 0 R/W 0 D6 DCLKP2 R/W 0 D5 DCLKE2 R/W 0 D4 DMIC2 R/W 0 D3 0 R/W 0 D2 DCLKP1 R/W 0 D1 DCLKE1 R/W 0 D0 DMIC1 R/W 0 D2 D1 D0 DMIC1: Digital Microphone 1 Connection Select 0: Analog Microphone (default) 1: Digital Microphone (DMCLK1, DMDAT1 pins) DCLKE1: DMCLK1 pin Output Clock Control 0: “L” Output (default) 1: 64fs Output DCLKP1: DMDAT1 pin Data Latching Edge Select (Table 33) 0: Ach data is latched on the DMCLK1 rising edge (“”). (default) 1: Ach data is latched on the DMCLK1 falling edge (“”). DMIC2: Digital Microphone 2 Connection Select 0: Analog Microphone (default) 1: Digital Microphone (DMCLK2, DMDAT2 pins) DCLKE2: DMCLK2 pin Output Clock Control 0: “L” Output (default) 1: 64fs Output DCLKP2: DMDAT2 pin Data Latching Edge Select 0: Ach data is latched on the DMCLK2 falling edge (“”). (default) 1: Ach data is latched on the DMCLK2 falling edge (“”). Addr 08H Register Name Clock Mode Select R/W Default D7 0 R/W 0 D6 0 R/W 0 D5 D4 D3 CM[1:0] R/W 00 FS[3:0] R/W 1010 FS[3:0]: Sampling Frequency Setting (Table 4, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15) Default: “1010” (fs = 48kHz) CM[1:0]: CODEC Master Clock Select (Table 3, Table 5, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15) Default: “00” (256fs) 019000890-E-01 2022/01 - 83 - [AK5704] Addr Register Name 09H PLL CLK Source Select R/W Default D7 0 R/W 0 D6 0 R/W 0 D5 BCKO R/W 0 D4 MCKOE R/W 0 D3 0 R/W 0 D2 0 R/W 0 D1 PLS R/W 0 D0 0 R/W 0 D2 D1 D0 D2 D1 D0 PLS: PLL Clock Source Select (Table 7) 0: MCKI pin (default) 1: BCLK pin MCKOE: Master Clock Output Enable (Table 5) 0: Disable (“L” output: Default) 1: Enable BCKO: BCLK Output Frequency Select at Master Mode (Table 6, Table 14) 0: 32fs (default) 1: 64fs Addr 0AH 0BH Register Name PLL Ref CLK Divider 1 PLL Ref CLK Divider 2 R/W Default D7 D6 D5 D4 D3 PLD[15:8] PLD[7:0] R/W 00H PLD[15:0]: PLL Reference Clock Divider Setting (Table 8) Default: 0000H Addr 0CH 0DH Register Name PLL FB CLK Divider 1 PLL FB CLK Divider 2 R/W Default D7 D6 D5 D4 D3 PLM[15:8] PLM[7:0] R/W 00H PLM[15:0]: PLL Feedback Clock Divider Setting (Table 9) Default: 0000H 019000890-E-01 2022/01 - 84 - [AK5704] Addr 0EH Register Name Audio I/F Format R/W Default D7 0 R/W 0 D6 BCKP R/W 0 D5 D4 DLC[1:0] R/W 00 D3 D2 TDM[1:0] R/W 00 D1 D0 DIF[1:0] R/W 00 DIF[1:0]: Audio I/F Format Setting (Table 16, Table 17, Table 18, Table 19) Default: “00” (I2S compatible) TDM[1:0]: TDM Mode Setting (Table 6, Table 16, Table 17, Table 18, Table 19) Default: “00” (Stereo Mode) DLC[1:0]: Data Length Setting (Table 21) Default: “00” (24-bit Linear) BCKP: BCLK Edge Setting (Table 20) 0: Falling (default) 1: Rising Addr 0FH 10H 11H 12H Register Name Phase Adjustment 1A Phase Adjustment 1B Phase Adjustment 2A Phase Adjustment 2B R/W Default D7 DLY1AE DLY1BE DLY2AE DLY2BE R/W 0 D6 0 0 0 0 R/W 0 D5 D4 D3 D2 DLY1A[5:0] DLY1B[5:0] DLY2A[5:0] DLY2B[5:0] R/W 000000 D1 D0 DLYxA/B[5:0]: Programmable Phase Adjustment Setting (x=1, 2) (Table 34Table 21) Default: “00H” (1/64fs) DLYxA/BE: Programmable Phase Adjustment Enable (x=1, 2) 0: Disable (default) 1: Enable Addr 13H Register Name ADC high Pass Filter R/W Default D7 0 R/W 0 D6 D5 ADRST[2:0] R/W 000 D4 D3 D2 HPF2C[1:0] R/W 00 D1 D0 HPF1C[1:0] R/W 00 HPF1/2C[1:0]: HPF1/2 Cut-off Frequency Setting (Table 35) Default: “00” (3.7Hz @ fs = 48kHz) ADRST[2:0]: ADC1/2 Initialization Cycle Setting (Table 28) Default: “000” (1059/fs) This is a common setting for ADC1 and ADC2. 019000890-E-01 2022/01 - 85 - [AK5704] Addr Register Name D7 D6 D5 14H Digital Filter Select ADVF 0 0 R/W 0 R/W 0 R/W 0 R/W Default D4 FSTHPF AD2N R/W 0 D3 FSTHPF AD1N R/W 0 D2 VREFH R/W 0 D1 D0 HPFAD2N HPFAD1N R/W 0 R/W 0 HPFAD1N: HPF Control for ADC1 0: ON (default) 1: OFF When HPFAD1N bit is “0”, the settings of HPF1C[1:0] bits are enabled. When HPFAD1N bit is “1”, the audio data passes the HPFAD1 block by 0dB gain. When PMAD1A bit = “1” or PMAD1B bit = “1” (PMDM1A bit = “1” or PMDM1B bit = “1”), set HPFAD1N bit to “0”. HPFAD2N: HPF Control for ADC2 0: ON (default) 1: OFF When HPFAD2N bit is “0”, the settings of HPF2C[1:0] bits are enabled. When HPFAD2N bit is “1”, the audio data passes the HPFAD2 block by 0dB gain. When PMAD2A bit = “1” or PMAD2B bit = “1” (PMDM2A bit = “1” or PMDM2B bit = “1”), set HPFAD2N bit to “0”. VREFH: VREF Mode Setting 0: Normal Operation (default) 1: Provide the same power supply as AVDD to VREF pin When the clock is stopped during normal operation, set VREFH bit to “1”. FSTHPFADxN: ADCx HPF Cut-off Frequency Setting during Initialization Cycle (x=1, 2) (Table 36) 0: The cut-off frequencies during initialization cycle will be high. (default) 1: The setting of HPFxC[1:0] bits are valid. ADVF: ADC1/2 Digital Filter Mode Select (Table 37) 0: Short Delay Sharp Roll-Off Filter (default) 1: Voice Filter This is a common setting for ADC1 and ADC2. Addr 15H 16H 17H 18H Register Name MIC Sensitivity Adj.1A MIC Sensitivity Adj.1B MIC Sensitivity Adj.2A MIC Sensitivity Adj.2B R/W Default D7 D6 D5 D4 D3 MS1A[7:0] MS1B[7:0] MS2A[7:0] MS2B[7:0] R/W 80H D2 D1 D0 MSxA/B[7:0]: ADCx Ach/Bch Microphone Sensitivity Adjustment (x=1, 2) (Table 38) Default: “80H” (0dB) 019000890-E-01 2022/01 - 86 - [AK5704] Addr 19H 1AH Register Name Filter 1 Select Filter 2 Select R/W Default D7 PFTHR1 PFTHR2 R/W 0 D6 0 0 R/W 0 D5 0 0 R/W 0 D4 MIX1 MIX2 R/W 0 D3 LPF12 LPF22 R/W 0 D2 LPF11 LPF21 R/W 0 D1 HPF12 HPF22 R/W 0 D0 HPF11 HPF21 R/W 0 HPFx1/2: HPFx Control (x=1, 2) 0: Disable (default) 1: Enable When HPFx1/2 bit is “1”, the settings of FHxA[15:0] and FHxB[15:0] bits are enabled. When HPFx1/2 bit is “0”, the audio data passes the HPFx1/2 block by is 0dB gain. (x=1, 2) LPFx1/2: LPFx Control (x=1, 2) 0: Disable (default) 1: Enable When LPFx1/2 bit is “1”, the settings of FLxA[15:0] and FlxB[15:0] bits are enabled. When LPFx1/2 bit is “0”, the audio data passes the LPFx1/2 block by is 0dB gain. (x=1, 2) MIXx: ADCx Mixer Setting (x=1, 2) (Table 39) 0: Through (default) 1: Mix ((Ach + Bch)/2) PFTHRx: HPFx, LPFx Through Select (x=1, 2) 0: HPFx, LPFx Path (default) 1: Through Path 019000890-E-01 2022/01 - 87 - [AK5704] Addr 1BH Register Name VAD Setting 1 R/W Default D7 VALPF2 R/W 0 D6 VALPF1 R/W 0 D5 VAHPF2 R/W 0 D4 VAHPF1 R/W 0 D3 HPF3RD R/W 0 D2 VADSEL R/W 0 D1 DLYE R/W 0 D0 VADOE R/W 0 VADOE: VADO Output Signal Select 0: ADC1 or Programmable Filter 1 output (default) 1: VADO output DLYE: VAD Input Data Delay Setting (Table 55) 0: No Delay (default) 1: 2048 Samples (128ms @ fs=16kHz) VADSEL: Input signal Select for VAD (Table 54) 0: ADC output (default) 1: HPF/LPF output HPF3RD: HPF Setting for VALPF1 0: Use VALPF1 as LPF (default) 1: Use VALPF1 as HPF (3rd order HPF combined with VAHPF1/2) VAHPF1/2: VAHPF1/2 Control 0: Disable (default) 1: Enable When VAHPF1, VAHPF2 and HPF3RD bit = “1”, the settings of VFHA[15:0] and VFHB[15:0] bits are enabled. When VAHPF1 bit is “0” (VAHPF2 bit = “0”), the audio data passes the VAHPF1 (VAHPF2) block by is 0dB gain. VALPF1/2: VALPF1/2 Control 0: Disable (default) 1: Enable When VALPF1/2 bit is “1”, the settings of VAFLA[15:0] and VAFLB[15:0] bits are enabled. When VALPF1 bit is “0” (VALPF2 bit = “0”), the audio data passes the VALPF1 (VALPF2) block by is 0dB gain. Addr 1CH Register Name VAD Setting 2 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 PT[7:0] R/W 07H PT[7:0]: Noise Level Detector Peak Value Setting (Table 56) Default: 07H, Number of Sample = 8 019000890-E-01 2022/01 - 88 - [AK5704] Addr 1DH 1EH 1FH Register Name VAD Setting 3 VAD Setting 4 VAD Setting 5 R/W Default D7 D6 VADINS[1:0] D5 D4 D3 NLLIM[1:0] 0 MINTH[15:8] MINTH[7:0] R/W 00001FH D2 0 D1 0 D0 MINTH16 MINTH[16:0]: Minimum Noise Level Setting (Table 59) Default: 0001FH, -72.2dB NLLIM[1:0]: Rising Limit Select at NL Update (Table 58) Default: 00, No limit VADINS[1:0]: VAD Input Path Select (Table 54) Default: 00 (AIN1A) Addr 20H 21H Register Name VAD Setting 6 VAD Setting 7 R/W Default D7 D6 D5 D4 D3 D2 D1 NLDTH[11:8] D0 D4 D3 ONGT[7:0] OFFGT[7:0] R/W 010FH D2 D1 D0 D4 D2 D1 VAS[2:0] R/W 000 D0 AT[3:0] NLDTH[7:0] R/W 7200H AT[3:0]: Noise Level Detector Average Value Setting (Table 57) Default: “0111”, Number of Sample = 256 NLDTH[11:0]: Noise Level Threshold (Table 60) Default: 200H, +12.0dB Addr 22H 23H Register Name VAD Setting 8 VAD Setting 9 R/W Default D7 D6 D5 ONGT[7:0]: On Guard Timer Setting (Table 61) Default: 01H, 2 times OFFGT[7:0]: Off Guard Timer Setting (Table 62) Default: 0FH, 4096/fs (256ms) Addr 24H Register Name VAD Setting 10 R/W Default D7 VONT R/W 0 D6 D5 VBS[2:0] R/W 000 D3 0 R/W 0 VAS[2:0], VBS[2:0]: Output Selector Setting (Table 63) Default: “000”, VDLYO[15:0] VONT: NL Non-updated Time Setting at VON Detection Default: “0”, 4s@fs=16kHz “1”, 2s@fs=16kHz 019000890-E-01 2022/01 - 89 - [AK5704] Addr 25H Register Name ALC Select R/W Default D7 FRN R/W 0 D6 ATTLIM2 R/W 0 D5 ATTLIM1 R/W 0 D4 0 R/W 0 D3 0 R/W 0 D2 ALC4 R/W 0 D1 ALC2 R/W 0 D0 ALC1 R/W 0 ALCx: ALCx Enable (x=1, 2) (Table 41) 0: ALCx Disable (default) 1: ALCx Enable ALC4: ALC 4ch Link Enable (Table 41) 0: ALC 4ch Link Disable (default) 1: ALC 4ch Link Enable ATTLIMx: ALCx ATT Limiter Enable (x=1, 2) 0: ATT Limiter Disable (default) 1: ATT Limiter Enable When ALC 4ch Link Mode is selected (ALC4 bit = “1”), it is controlled by ATTLIM1 bit and ATTLIM2 bit should be set to “0”. FRN: Fast Recovery Disable 0: Fast Recovery Enable (default) 1: Fast Recovery Disable Addr 26H Register Name ALC Control 1 R/W Default D7 D6 IVTM[1:0] R/W 01 D5 0 R/W 0 D4 ALCEQN R/W 0 D3 D2 FRATT[1:0] R/W 00 D1 D0 WTM[1:0] R/W 00 WTM[1:0]: ALC Recovery Waiting Period (Table 44) Default: 00 (128fs) FRATT[1:0]: Fast Recovery Reference Volume Attenuation Step (Table 48) Default: 00 (-0.00106dB: 4/fs) ALCEQN: ALCEQ Disable 0: ALCEQ Enable (default) 1: ALCEQ Disable IVTM[1:0]: Input Digital Volume Soft Transition Time Setting (Table 51) Default: 01 (944/fs) Addr Register Name 27H Input Digital Volume 1A 28H Input Digital Volume 1B R/W Default D7 D6 D5 D4 D3 IV1A[7:0] IV1B[7:0] R/W 91H D2 D1 D0 D4 D3 REF1[7:0] R/W E1H D2 D1 D0 IVxA/B[7:0]: Digital Input Volume (x=1, 2) (Table 50) Default: “91H” (0dB) Addr 29H Register Name ALC1 Reference Level R/W Default D7 D6 D5 REF1[7:0]: Reference Value at ALC Recovery Operation (Table 46) Default: “E1H” (+30dB) 019000890-E-01 2022/01 - 90 - [AK5704] Addr 2AH Register Name ALC1 Control R/W Default D7 IVOL1C R/W 1 D6 D5 RGAIN1[2:0] R/W 000 D4 D3 D2 RFST1[1:0] R/W 00 D1 D0 LMTH1[1:0] R/W 00 LMTH1[1:0]: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 42) Default: 00 RFST1[1:0]: ALC Fast Recovery Speed (Table 47) Default: 00 (0.000265dB) RGAIN1[2:0]: ALC Recovery Gain Step (Table 45) Default: 000 (0.00212dB) IVOL1C: Input Digital Volume Control Mode 0: Independent 1: Dependent (default) When IVOL1C bit = “1”, IV1A[7:0] bits control both Ach and Bch volume levels, while register values of IV1A[7:0] bits are not written to IV1B[7:0] bits. Addr Register Name 2BH Input Digital Volume 2A 2CH Input Digital Volume 2B R/W Default D7 D6 D5 D4 D3 IV2A[7:0] IV2B[7:0] R/W 91H D2 D1 D0 D5 D4 D3 REF2[7:0] R/W E1H D2 D1 D0 IV2A/B[7:0]: Digital Input Volume (Table 50) Default: “91H” (0dB) Addr 2DH Register Name ALC2 Reference Level R/W Default D7 D6 REF2[7:0]: Reference Value at ALC Recovery Operation (Table 46) Default: “E1H” (+30dB) Addr 2EH Register Name ALC2 Control R/W Default D7 IVOL2C R/W 1 D6 D5 RGAIN2[2:0] R/W 000 D4 D3 D2 RFST2[1:0] R/W 00 D1 D0 LMTH2[1:0] R/W 00 LMTH2[1:0]: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 42) Default: 00 RFST2[1:0]: ALC Fast Recovery Speed (Table 47) Default: 00 (0.000265dB) RGAIN2[2:0]: ALC Recovery Gain Step (Table 45) Default: 000 (0.00212dB) IVOL2C: Input Digital Volume Control Mode 0: Independent 1: Dependent (default) When IVOL2C bit = “1”, IV2A[7:0] bits control both Ach and Bch volume levels, while register values of IV2A[7:0] bits are not written to IV2B[7:0] bits. 019000890-E-01 2022/01 - 91 - [AK5704] Addr 2FH 30H 31H 32H Register Name HPF1 Coefficient A HPF1 Coefficient A HPF1 Coefficient B HPF1 Coefficient B R/W Default D7 D6 D5 D4 D3 FH1A[15:8] FH1A[7:0] FH1B[15:8] FH1B[7:0] R/W D2 D1 D0 FH1A[15:0] bits = 7EC1H, FH1B[15:0] bits = 827DH FH1A[15:0], FH1B[15:0]: HPF1 Coefficient Default: FH1A[15:0] bits = 7EC1H, FH1B[15:0] bits = 827DH (fc=150Hz@fs=48kHz) Addr 33H 34H 35H 36H Register Name LPF1 Coefficient A LPF1 Coefficient A LPF1 Coefficient B LPF1 Coefficient B R/W Default D7 D6 D5 D4 D3 FL1A[15:8] FL1A[7:0] FL1B[15:8] FL1B[7:0] R/W 00H D2 D1 D0 D5 D4 D3 FH2A[15:8] FH2A[7:0] FH2B[15:8] FH2B[7:0] R/W D2 D1 D0 FL1A[15:0], FL1B[15:0]: LPF1 Coefficient Default: 0000H Addr 37H 38H 39H 3AH Register Name HPF2 Coefficient A HPF2 Coefficient A HPF2 Coefficient B HPF2 Coefficient B R/W Default D7 D6 FH2A[15:0] bits = 7EC1H, FH2B[15:0] bits = 827DH FH2A[15:0], FH2B[15:0]: HPF2 Coefficient Default: FH2A[15:0] bits = 7EC1H, FH2B[15:0] bits = 827DH (fc=150Hz@fs=48kHz) Addr 3BH 3CH 3DH 3EH Register Name LPF2 Coefficient A LPF2 Coefficient A LPF2 Coefficient B LPF2 Coefficient B R/W Default D7 D6 D5 D4 D3 FL2A[15:8] FL2A[7:0] FL2B[15:8] FL2B[7:0] R/W 00H D2 D1 D0 D5 D4 D3 VFHA[15:8] VFHA[7:0] VFHB[15:8] VFHB[7:0] R/W D2 D1 D0 FL2A[15:0], FL2B[15:0]: LPF2 Coefficient Default: 0000H Addr 3FH 40H 41H 42H Register Name VAHPF Coefficient A VAHPF Coefficient A VAHPF Coefficient B VAHPF Coefficient B R/W Default D7 D6 VFHA[15:0] bits = 78DFH, VFHB[15:0] bits = 8E42H VFHA[15:0], VFHB[15:0]: VAHPF Coefficient Default: VFHA[15:0] bits = 78DFH, VFHB[15:0] bits = 8E42H (fc=300Hz@fs=16kHz) 019000890-E-01 2022/01 - 92 - [AK5704] Addr 43H 44H 45H 46H Register Name VAPF Coefficient A VAHF Coefficient A VAPF Coefficient B VAPF Coefficient B R/W Default D7 D6 D5 D4 D3 VFLA[15:8] VFLA[7:0] VFLB[15:8] VFLB[7:0] R/W 00H D2 D1 D0 VFLA[15:0], VFLB[15:0]: VALPF Coefficient Default: 0000H 019000890-E-01 2022/01 - 93 - [AK5704] 10. Recommended External Circuits Figure 56 and Figure 57 show the system connection diagrams. An evaluation board (AKD5704) is available for fast evaluation as well as suggestions for peripheral circuitry. Power Supply 1.71.9V or 3.0~3.6V Analog Ground 0.1u 2.2k 2.2u 1u 19 18 17 16 15 MPWR2 AVDD VSS1 VCOM VREF 22 AIN2A- 20 1u AIN2B- 21 MIC4 PDN 14 TVDD 13 VSS2 12 VDD12 11 26 AIN1A- MCKI 10 27 AIN1A+ MCKO 9 BCLK 8 23 AIN2A+ 1u AK5704 1u 25 AIN1B+ 10u 2.2u Top View 1u MIC1 Power Supply 1.653.6V 0.1u 24 AIN1BMIC2 Digital Ground 2.2u AIN2B+ 2.2k 2.2k 1u 1u MIC3 DMDAT 10u 1u CAD SCL SDA WINTN SDTO1 TDMIN /SDTO2 LRCK 1 2 3 4 5 6 7 28 MPWR1 2.2k DSP or SoC 100k “H” (TVDD) or “L” (VSS2) R R µP Note: - VSS1 and VSS2 of the AK5704 must be distributed separately from the ground of external controllers. - All digital input pins must not be allowed to float. - Negative input pins must be connected to VSS1 with same value capacitor in series. - SCL, SDA pins must be pulled-up by the resistor (R). - If WINTN pin is used, WINTN pin is a Hi-Z state at power-down. WINTN pin should be pulled-up to TVDD by the resistor (about 100kΩ) externally to avoid the floating state. Figure 56. System Connection Diagram (Single-ended Input, EXT Slave Mode) 019000890-E-01 2022/01 - 94 - [AK5704] Power Supply 1.71.9V or 3.0~3.6V Analog Ground 0.1u 1k 2.2u 1u 19 18 17 16 15 MPWR2 AVDD VSS1 VCOM VREF 22 AIN2A- 20 1u AIN2B- 21 MIC4 MIC3 PDN 14 TVDD 13 VSS2 12 VDD12 11 26 AIN1A- MCKI 10 27 AIN1A+ MCKO 9 BCLK 8 23 AIN2A+ 1u Power Supply 1.653.6V 0.1u 24 AIN1B- AK5704 1u MIC2 Digital Ground 2.2u 1u AIN2B+ 1k 1u 1k DMDAT 10u 25 AIN1B+ 10u 2.2u Top View 1u 1u 1k CAD SCL SDA WINTN SDTO1 TDMIN /SDTO2 LRCK 2 3 4 5 6 7 28 MPWR1 1k 1 1k 1k 1k MIC1 DSP or SoC 100k “H” (TVDD) or “L” (VSS2) R R µP Note: - VSS1 and VSS2 of the AK5704 must be distributed separately from the ground of external controllers. - All digital input pins must not be allowed to float. - SCL, SDA pins must be pulled-up by the resistor (R). - If WINTN pin is used, WINTN pin is a Hi-Z state at power-down. WINTN pin should be pulled-up to TVDD by the resistor (about 100kΩ) externally to avoid the floating state. Figure 57. System Connection Diagram (Full-differential Input, EXT Slave Mode) 019000890-E-01 2022/01 - 95 - [AK5704] 1. Grounding and Power Supply Decoupling The AK5704 requires careful attention to power supply and grounding arrangements. AVDD is usually supplied from the system’s analog supply, and TVDD is supplied from the system’s digital power supply. If AVDD and TVDD are supplied separately, the power-up sequence is not critical. The PDN pin should be held “L” when power supplies are tuning on. The PDN pin is allowed to be “H” after all power supplies are applied and settled. 1) Power-up ・The PDN pin should be held “L” when power supplies are turning on. The AK5704 can be reset by keeping the PDN pin “L” for 1ms or longer after all power supplies are applied and settled. When the PDN pin = “H”, LDO12 powers up and outputs a regulated voltage (typ. 1.2V) from the VDD12 pin. LDO12 is supplied to the digital core. The VDD12 pin must be connected to the VSS2 pin with a 2.2μF ±50% ceramic capacitor in series. No load current may be drawn from the VDD12 pin. 2) Power-down ・Each of power supplies can be powered OFF after the PDN pin is set to “L”. VSS1 and VSS2 of the AK5703 should be connected to the analog ground plane. System analog ground and digital ground should be wired separately and connected together as close as possible to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as close the power supply pins as possible. Especially, the small value ceramic capacitor is to be closest. 2. Reference Voltage VREF is an analog reference voltage output from the VREF pin. This pin must be connected to the VSS1 pin with a 2.2μF ±50% ceramic capacitor in series. VCOM is a signal ground of this chip. A 2.2F ±50% capacitor attached to the VSS1 pin eliminates the effects of high frequency noise. This capacitor should be placed as near as possible to the AK5704. No load current may be drawn from the VREF pin and the VCOM pin. All signals, especially clocks, should be kept away from the VREF pin and the VCOM pin in order to avoid unwanted coupling into the AK5704. 3. Analog Inputs The analog inputs are single-ended or full-differential and input resistance is 200k (typ). The input signal range scales with nominally 2.02 x AVDD/3.3 Vpp (typ) (@ MIC-Amp Gain = 0dB), centered around the internal signal ground (0.5 x AVDD). Usually the input signal is AC coupled with a capacitor. The cut-off frequency is fc = 1/(2RC). The ADC output data format is 2’s complement. The DC offset including the ADC’s own DC offset is removed by the internal HPF (fc=1.23Hz@ HPF1/2C[1:0] bits = “00”, fs=16kHz). An AINx- pin must be connected to VSS1 via a capacitor with the same capacitance as the AINx+ pin when single-ended input. 019000890-E-01 2022/01 - 96 - [AK5704] 11. Control Sequence 11.1. Clock Set Up When the AK5704 is in operation, the clocks must be supplied. 11.1.1. PLL Master Mode Example: Power Supply PDN pin ≥1ms Audio I/F Format: I2S, 24-bit Input Master Clock Frequency: 12MHz Output BCLK Frequency: 64fs MCKO: Enable (256fs) Sampling Frequency: 48kHz (1) VDD12 pin Flow Control ≥1ms (1) Power Supply & PDN pin = “L” → “H” (2) (Addr:00H) (2) Addr:00H, Data:67H Addr:01H, Data:80H Addr:08H, Data:0AH Addr:09H, Data:30H Addr:0AH, Data:00H Addr:0BH, Data:18H Addr:0CH, Data:00H Addr:0DH, Data:7FH Addr:0EH, Data:00H PMVCM bit (Addr:01H, D7) Clock Mode Select (Addr:08H) PLL CLK Source Select (Addr:09H) PLL Ref CLK Divider 1, 2 (Addr:0AH, 0BH) (3)Addr:01H, Data:C0H PLL FB CLK Divider 1, 2 (Addr:0CH, 0DH) Audio I/F Format (4)MCKI Input (Addr:0EH) PMPLL bit (Addr:01H, D6) ≥ 5ms (3) MCKO, BCLK and LRCK output (4) MCKI pin Input 3ms (max) BCLK pin LRCK pin Output 3ms (max) MCKO pin (6) (5) (8) Output (7) Figure 58. Clock Set Up Sequence (1) (1) After Power Up: PDN pin “L” → “H” “L” time of 1ms or more is needed to reset the AK5704. After the PDN pin = “H”, wait time of 1ms or more is needed to power up VDD12. (2) Power Up VCOM and VREF: PMVCM bit = “0” → “1” PSW0N, PSW1N, FS[3:0], CM[1:0], MSN, PLS, PLLMD, MCKOE, BCKO, PLD[15:0], PLM[15:0], DIF[1:0], TDM[1:0], DLC[1:0], BCKP and SDTO2E bits must be set during this period. VCOM and VREF must first be powered-up before the other block operates. Power up time is 5.0ms (max) when the capacitance of an external capacitor for the VCOM and the VREF pin is 2.2μF ±50% each. In case of using MCKO output: MCKOE bit = “1” In case of not using MCKO output: MCKOE bit = “0” (3) Power Up PLL: PMPLL bit = “0” → “1” (4) PLL starts after PMPLL bit changes from “0” to “1” and MCKI is supplied from an external source, and PLL lock time is 3ms (max). (5) BCLK pin and LRCK pin output “L” during this period. (6) The AK5704 starts outputting BCLK and LRCK clocks after the PLL becomes stable. Then normal operation starts. (7) The invalid frequency is output from the MCKO pin during this period if MCKO bit = “1”. (8) The normal clock is output from the MCKO pin after the PLL is locked if MCKO bit = “1”. 019000890-E-01 2022/01 - 97 - [AK5704] 11.1.2. PLL Slave Mode (BCLK pin) Example: Power Supply PDN pin Audio I/F Format: I2S, 24-bit PLL Reference Clock: BCLK Input BCLK Frequency: 64fs Sampling Frequency: 48kHz (1) ≥1ms VDD12 pin Flow Control (1) Power Supply & PDN pin = “L” → “H” ≥1ms (2) (Addr:00H) (2) Addr:00H, Data:47H Addr:01H, Data:80H Addr:08H, Data:0AH Addr:09H, Data:02H Addr:0AH, Data:00H Addr:0BH, Data:07H Addr:0CH, Data:00H Addr:0DH, Data:9FH Addr:0EH, Data:00H PMVCM bit (Addr:01H, D7) Clock Mode Select (Addr:08H) PLL CLK Source Select (Addr:09H) PLL Ref CLK Divider 1, 2 (Addr:0AH, 0BH) (3)Addr:01H, Data:C0H PLL FB CLK Divider 1, 2 (Addr:0CH, 0DH) (4)BCLK Input Audio I/F Format (Addr:0EH) PMPLL bit (Addr:01H, D6) ≥ 5ms (3) Internal Clock start (4) BCLK pin Internal Clock Input 3ms (max) (5) Figure 59. Clock Set Up Sequence (2) (1) After Power Up: PDN pin “L” → “H” “L” time of 1ms or more is needed to reset the AK5704. After the PDN pin = “H”, wait time of 1ms or more is needed to power up VDD12. (2) Power Up VCOM and VREF: PMVCM bit = “0” → “1” PSW0N, PSW1N, FS[3:0], CM[1:0], MSN, PLS, PLLMD, PLD[15:0], PLM[15:0], DIF[1:0], TDM[1:0], DLC[1:0], BCKP and SDTO2E bits must be set during this period. VCOM and VREF must first be powered-up before the other block operates. Power up time is 5.0ms (max) when the capacitance of an external capacitor for the VCOM and the VREF pin is 2.2μF ±50% each. (3) Power Up PLL: PMPLL bit = “0” → “1” (4) PLL starts after PMPLL bit changes from “0” to “1” and PLL reference clock is supplied from BCLK pin. The time until PLL is locked and the clock is supplied to internal circuits is 3ms (max). (5) The AK5704 starts normal operation after the PLL became stable and the internal clock is generated. 019000890-E-01 2022/01 - 98 - [AK5704] 11.1.3. PLL Slave Mode (MCKI pin) Example: Power Supply Audio I/F Format: I2S, 24-bit PLL Reference Clock: MCKI (12MHz) MCKO: Enable (256fs) BCLK Frequency: 64fs Sampling Frequency: 48kHz (1) ≥1ms PDN pin VDD12 pin Flow Control ≥1ms (1) Power Supply & PDN pin = “L” → “H” (2) (Addr:00H) (2) Addr:00H, Data:47H Addr:01H, Data:80H Addr:08H, Data:0AH Addr:09H, Data:10H Addr:0AH, Data:00H Addr:0BH, Data:18H Addr:0CH, Data:00H Addr:0DH, Data:7FH Addr:0EH, Data:00H PMVCM bit (Addr:01H, D7) Clock Mode Select (Addr:08H) PLL CLK Source Select (Addr:09H) PLL Ref CLK Divider 1, 2 (Addr:0AH, 0BH) (3)Addr:01H, Data:C0H PLL FB CLK Divider 1, 2 (Addr:0CH, 0DH) Audio I/F Format (4)MCKI Input (Addr:0EH) PMPLL bit (Addr:01H, D6) ≥ 5ms (3) MCKO output start (4) MCKI pin Input BCLK and LRCK input start 3ms (max) (5) MCKO pin Output (6) (7) BCLK pin LRCK pin Input Figure 60. Clock Set Up Sequence (3) (1) After power Up: PDN pin “L” → “H” “L” time of 1ms or more is needed to reset the AK5704. After the PDN pin = “H”, wait time of 1ms or more is needed to power up VDD12. (2) Power Up VCOM and VREF: PMVCM bit = “0” → “1” PSW0N, PSW1N, FS[3:0], CM[1:0], MSN, PLS, PLLMD, MCKOE, PLD[15:0], PLM[15:0], DIF[1:0], TDM[1:0], DLC[1:0], BCKP and SDTO2E bits must be set during this period. VCOM and VREF must first be powered-up before the other block operates. Power up time is 5.0ms (max) when the capacitance of an external capacitor for the VCOM and the VREF pin is 2.2μF ±50% each. (3) Power Up PLL: PMPLL bit = “0” → “1” (4) PLL starts after PMPLL bit changes from “0” to “1” and PLL reference clock is supplied from MCKI pin. The time until PLL is locked and starts normal output is 3ms (max). (5) The normal clock is output from the MCKO pin after the PLL became stable. (6) The invalid frequency is output from the MCKO pin during this period. (7) BCLK and LRCK clocks must be synchronized with MCKO clock. 019000890-E-01 2022/01 - 99 - [AK5704] 11.1.4. External Slave Mode Example: Power Supply Audio I/F Format: I2S, 24-bit Input Master Clock Frequency: 256fs Input BCLK Frequency: 64fs Sampling Frequency: 48kHz (1) ≥1ms PDN pin VDD12 pin Flow Control ≥1ms (1) Power Supply & PDN pin = “L” → “H” (2) (Addr:00H) (2) Addr:00H, Data:47H Addr:01H, Data:80H Addr:08H, Data:0AH Addr:09H, Data:00H Addr:0EH, Data:00H PMVCM bit (Addr:01H, D7) Clock Mode Select (Addr:08H) PLL CLK Source Select (Addr:09H) (3)MCKI, BCLK, LRCK Input Audio I/F Format (Addr:0EH) ≥5ms (3) MCKI pin Input BCLK pin LRCK pin Input Figure 61. Clock Set Up Sequence (4) (1) After Power Up: PDN pin “L” → “H” “L” time of 1ms or more is needed to reset the AK5704. After the PDN pin = “H”, wait time of 1ms or more is needed to power up VDD12. (2) Power Up VCOM and VREF: PMVCM bit = “0” → “1” PSW0N, PSW1N, FS[3:0], CM[1:0], MSN, DIF[1:0], TDM[1:0], DLC[1:0], BCKP and SDTO2E bits must be set during this period. VCOM and VREF must first be powered-up before the other block operates. Power up time is 5.0ms (max) when the capacitance of an external capacitor for the VCOM and the VREF pin is 2.2μF ±50% each. (3) Normal operation starts after the MCKI, BCLK and LRCK are supplied. 019000890-E-01 2022/01 - 100 - [AK5704] 11.1.5. External Master Mode Power Supply PDN pin Example: (1) ≥1ms Audio I/F Format: I2S, 24-bit Input Master Clock Frequency: 12.288MHz Output BCLK Frequency: 64fs Sampling Frequency: 48kHz VDD12 pin Flow Control ≥1ms (1) Power Supply & PDN pin = “L” → “H” (3) (Addr:00H) (4) (2)MCKI input PMVCM bit (Addr:01H, D7) (3) Addr:00H, Data:67H Addr:08H, Data:0AH Addr:0EH, Data:00H Addr:09H, Data:20H Clock Mode Select (Addr:08H) Audio I/F Format (Addr:0EH) MSN, BCKO bits (Addr:09H, D0,D5) BCLK, LRCK output (2) MCKI pin Input BCLK pin LRCK pin Output (4) Addr:01H, Data:80H Figure 62. Clock Set Up Sequence (5) (1) After Power Up: PDN pin “L” → “H” “L” time of 1ms or more is needed to reset the AK5704. After the PDN pin = “H”, wait time of 1ms or more is needed to power up VDD12. (2) MCKI is supplied. (3) After SW0N, PSW1N, FS[3:0], CM[1:0], DIF[1:0], TDM[1:0], DLC[1:0], BCKP and SDTO2E bits are set, MSN and BCKO bits should be set to “1”. Then BCLK and LRCK are output. (4) Power Up VCOM and VREF: PMVCM bit = “0” → “1” VCOM and VREF must first be powered-up before the other block operates. Power up time is 5.0ms (max) when the capacitance of an external capacitor for the VCOM and the VREF pin is 2.2μF ±50% each. 019000890-E-01 2022/01 - 101 - [AK5704] 11.2. Voice Activity Detection (1ch Mic) S Audio I/F Format: I2S, 16-bit Sampling Frequency: 16kHz MIC AMP Gain: +18dB VAHPF1/2: On AIRST[2:0] bits PFSDO1/2 bit 000,00 (Addr:03H, D7-5,D3-2) MIC-amp Gain (Addr:05H, D3-0) Example: (1) Addr:03H, Data:CCH 110,11 (1) (2) Addr:05H, Data:66H 0110 0110 (2) (3) PMAIN1A bit PMMP1 bit (Addr:01H, D4,D0) ADC HPF Setting (Addr:13H) (10) > 16.0ms (4) Addr:13H, Data:71H 00H (5) Addr:14H, Data:80H 71H (4) Digital Filter Select (Addr:14H, D7) 00H (6) Addr:1BH, Data:30H Addr:1CH, Data:07H Addr:1DH, Data:00H Addr:1EH, Data:00H Addr:1FH, Data:1FH Addr:20H, Data:72H Addr:21H, Data:00H Addr:22H, Data:01H Addr:23H, Data:0FH Addr:24H, Data:00H 80H (5) VAD Setting (Addr:1B-24H) xx…..x xx…..x (6) Filter Co-ef (Addr:3F-42H) PMAD1A bit (3) Addr:01H, Data:91H xx…..x xx…..x (7) (8) (Addr:02H, D0) (7) Addr: 3FH ~ 42H PMVAD bit PMPFIL1 bit (8) Addr:02H, Data:01H Addr:03H, Data:DDH (Addr:03H, D4,D0) SDTO1 pin Initialize 40/fs Data (ADC1A) (9) WINTN pin “H” → “L” SDTO2 pin (9) WINTN pin VAD Standby Data Output Detect (10) Addr:02H, Data:00H Addr:03H, Data:CCH Addr:01H, Data:80H Figure 63. Voice Activity Detection (1ch Mic) Sequence This sequence is an example of VAD setting at fs=16kHz. At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set Up AIN Initialization Cycle and Signal Path: AIRST[2:0] bits = “110” (256/fs), PFSDO1/2 bits = “1” (2) Set Up Microphone Amp Gain: MG1A[3:0] bits = “0110” (+18dB) (3) Power Up Microphone Power 1 and Microphone Amp 1A: PMAIN1A = PMMP1 bits = “1” The initialization cycle time of AIN1A is 256/fs=16ms @ fs=16kHz. (4) Set Up ADC1 Initialization Cycle: ADRST[2:0] bits = “111” (32/fs) Set Up HPF1 Cut-off Frequency: HPF1C[1:0] bits = “01” (fc = 4.9Hz) (5) Set Up ADC Digital Filter: ADVF bit = “1” (Voice Filter) (6) Set Up VAD: VAHPF1 = VAHPF2 bits = “1”, PT[7:0] bits = 07H, MINTH[16:0] bits = 0001FH, AT[3:0] bits = “0111”, NLDTH[11:0] bits = 200H, ONGT[7:0] bits = 01H, OFFGT[7:0] bits = 0FH, VAS[2:0] = VBS[2:0] bits = “000” (7) Set Up Coefficient of VAHPF1/2 (Addr: 3FH ~ 42H) (8) Power Up ADC1, VAD and Programmable Filter 1: PMAD1A = PMVAD = PMPFIL1 bits = “0” → “1” The initialization cycle time of ADC is 32/fs=2ms @ fs=16kHz. (9) Voice Activity Detection: WINTN pin = “H” → “L” When the voice activity is detected, the WINTN pin changes from “H” to “L”. The “L” period is 256/fs=16ms @fs = 16kHz(min.). (10) Power Down ADC1, VAD and Programmable Filter 1: PMAD1A = PMVAD = PMPFIL1 bits = “1” → “0” Power Down Microphone Power 1 and Microphone 1A: PMAIN1A = PMMP1 bits = “1” → “0” 019000890-E-01 2022/01 - 102 - [AK5704] 11.3. Voice Activity Detection (4ch Mic) Example: S Audio I/F Format: I2S, 16-bit Sampling Frequency: 16kHz MIC AMP Gain: +18dB VAHPF1/2: On AIRST[2:0] bits PFSDO1/2 bit 000,00 (Addr:03H, D7-5,D3-2) MIC-amp Gain (Addr:05H, 06H) (1) Addr:03H, Data:CCH 110,11 (1) 66H (2) Addr:05H, Data:66H Addr:06H, Data:66H 66H (2) (3) PMAIN1A/B bits PMAIN2A/B bits PMMP1/2 bits (10) > 16.0ms (4) Addr:13H, Data:75H (Addr:01H) ADC HPF Setting (Addr:13H) 00H (5) Addr:14H, Data:80H 75H (4) Digital Filter Select (Addr:14H, D7) 00H (6) Addr:1BH, Data:30H Addr:1CH, Data:07H Addr:1DH, Data:00H Addr:1EH, Data:00H Addr:1FH, Data:1FH Addr:20H, Data:72H Addr:21H, Data:00H Addr:22H, Data:01H Addr:23H, Data:0FH Addr:24H, Data:00H 80H (5) VAD Setting (Addr:1B-24H) xx…..x xx…..x (6) Filter Co-ef (Addr:3F-42H) PMAD1A/B bit PMAD2A/B bits xx…..x xx…..x (7) (8) (7) Addr: 3FH ~ 42H (Addr:02H, D3-0) PMVAD bit PMPFIL1/2 bit (8) Addr:02H, Data:0FH Addr:03H, Data:DFH (Addr:03H, D4,D1-0) SDTO1 pin Initialize 40/fs Data (ADC1A/B) SDTO2 pin Data (ADC2A/B) (9) WINTN pin (3) Addr:01H, Data:BFH Detect VAD Standby Data Output (9) WINTN pin “H” → “L” (10) Addr:02H, Data:00H Addr:03H, Data:CCH Addr:01H, Data:80H Figure 64. Voice Activity Detection (4ch Mic) Sequence This sequence is an example of VAD setting at fs=16kHz. At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set Up AIN Initialization Cycle and Signal Path: AIRST[2:0] bits = “110” (256/fs), PFSDO1/2 bits = “1” (2) Set Up Microphone Amp Gain (Addr = 05H, 06H) (3) Power Up Microphone Power 1/2, Microphone Amp 1A/B and Microphone Amp 2A/B: PMAIN1A/B = PMAIN2A/B = PMMP1/2 bits = “1” The initialization cycle time of AIN1/2 is 256/fs=16ms @ fs=16kHz. (4) Set Up ADC1/2 Initialization Cycle: ADRST[2:0] bits = “111” (32/fs) Set Up HPF1/2 Cut-off Frequency: HPF1/2C[1:0] bits = “01” (fc = 4.9Hz) (5) Set Up ADC Digital Filter: ADVF bit = “1” (Voice Filter) (6) Set Up VAD: VAHPF1 = VAHPF2 bits = “1”, PT[7:0] bits = 07H, MINTH[16:0] bits = 0001FH, AT[3:0] bits = “0111”, NLDTH[11:0] bits = 200H, ONGT[7:0] bits = 01H, OFFGT[7:0] bits = 0FH, VAS[2:0] = VBS[2:0] bits = “000” (7) Set Up Coefficient of VAHPF1/2 (Addr: 3FH ~ 42H) (8) Power Up ADC1/2, VAD and Programmable Filter 1/2: PMAD1A/B = PMAD2A/B = PMVAD = PMPFIL1/2 bits = “0” → “1” The initialization cycle time of ADC is 32/fs=2ms @ fs=16kHz. (9) Voice Activity Detection: WINTN pin = “H” → “L” When the voice activity is detected, the WINTN pin changes from “H” to “L”. The “L” period is 256/fs=16ms @fs = 16kHz(min.). (10) Power Down ADC1/2, VAD and Programmable Filter 1/2: PMAD1A/B = PMAD2A/B = PMVAD = PMPFIL1/2 bits = “1” → “0” Power Down Microphone Power 1/2, Microphone 1A/B and Microphone Amp 2A/B: PMAIN1A/B = PMAIN2A/B = PMMP1/2 bits = “1” → “0” 019000890-E-01 2022/01 - 103 - [AK5704] 11.4. Microphone Input Recording (4ch) AIRST[2:0] bits PFSDO1/2 bit 000,00 (Addr:03H, D7-5,D3-2) MIC-amp Gain (Addr:05H, 06H) Example: 000,11 Sampling Frequency: 48kHz MIC AMP Gain: +18dB ALC setting Refer to Table 39 HPF1/2, LPF1/2: On (1) 66H 66H (1) Addr:03H, Data:0CH (2) (3) PMAIN1A/B bits PMAIN2A/B bits PMMP1/2 bits > 13.7ms (2) Addr:05H, Data:66H Addr:06H, Data:66H (Addr:01H) Filter Select (Addr:19H, 1AH, D3-0) 0101 0000 (3) Addr:01H, Data:BFH (4) ALC Control 1 (Addr:26H) (4) Addr:19H, Data:05H Addr:1AH, Data:05H 46H 40H (5) Input Digital Volume (Addr:27H) E1H 91H (5) Addr:26H, Data:46H (6) ALC Ref. Level (Addr:29H) (6) Addr:27H, Data:E1H E1H E1H (7) ALC1 Control (Addr:2AH) (7) Addr:29H, Data:E1H E1H 80H (8) Filter Co-ef (Addr:2F-3EH) (8) Addr:2AH, Data:A9H xx…..x xx…..x (9) Addr: 2FH ~ 3EH (9) ALC4 Select (Addr:25H, D2) (10) Addr:25H, Data:04H (10) ALC4 State ALC4 Enable ALC4 Disable PMAD1A/B bits PMAD2A/B bits ALC4 Disable (12) (13) (11) Recording (Addr:02H, D3-0) PMPFIL1/2 bits (Addr:03H, D1-0) SDTO1/2 pins State (11) Addr:02H, Data:0FH Addr:03H, Data:0FH (12) Addr:02H, Data:00H Addr:03H, Data:0CH 1059/fs “L” Output Initialize Normal State “L” Output (13) Addr:25H, Data:00H Figure 65. MIC Input Recording Sequence This sequence is an example of ALC setting at fs=48kHz. For changing the parameter of ALC, please refer to “Example of ALC Setting”. At first, clocks should be supplied according to “Clock Set Up”. (1) Set Up AIN Initialization Cycle and Signal Path: AIRST[2:0] bits = “000” (656/fs), PFSDO1/2 bits = “1” (2) Set Up Microphone Amp Gain (Addr = 05H, 06H) (3) Power Up Microphone Power 1/2, Microphone Amp 1A/B and Microphone Amp 2A/B: PMAIN1A/B = PMAIN2A/B = PMMP1/2 bits = “1” The initialization cycle time of AIN2A/B is 656/fs=13.7ms @ fs=48kHz. (4) HPF1/2 and LPF1/2 ON/OFF Setting (Addr = 19H, 1AH) (5) Set Up WTM[1:0], FRATT1[1:0] and ALCEQN bits (Addr = 26H) (6) Set Up IVOL Value at ALC Operation start: IV1A[7:0] bits (Addr = 27H) (7) Set Up REF Value: REF1[7:0] bits (Addtr = 29H) (8) Set Up LMTH1[1:0], RFST1[1:0] and RGAIN1[2:0] bits (Addr = 29H) (9) Set Up Coefficient of HPF1/2 and LPF1/2 (Addr: 2FH ~ 3EH) (10) Set Up ALC4 and ATTLMT1 bits (Addr = 25H) (11) Power Up ADC1/2: PMAD1A/B = PMAD2A/B bits = “0” → “1” Power Up Programmable Filter 1/2: PMPFIL2 = PMPFIL2 bits = “0” → “1” The initialization cycle time of ADC is 1059/fs=22.1ms @ fs=48kHz. ADC outputs “0” data during the initialization cycle. The ALC operation starts from IVOL value of (6). (12) Power Down ADC1/2: PMAD1A/B = PMAD2A/B bits = “1” → “0” Power Down Programmable Filter 1/2: PMPFIL2 = PMPFIL2 bits = “1” → “0” (13) ALC4 Disable: ALC4 bit = “1” → “0” 019000890-E-01 2022/01 - 104 - [AK5704] 11.5. Stop of Clock 11.5.1. PLL Master Mode Example: (1) Audio I/F Format: I2S Input Master Clock Frequency: 12MHz Output BCLK Frequency: 64fs PMPLL bit (Addr:01H, D6) (2) MCKOE bit (Addr:09H, D4) (1) Addr:01H, Data:80H “0” or “1” (2) Addr:09H, Data:25H (3) External MCKI Input (3) Stop an external MCKI Figure 66. Clock Stopping Sequence (1) (1) Power down PLL: PMPLL bit = “1” → “0” (2) Stop MCKO output: MCKOE bit = “1” → “0” (3) Stop an external master clock. 11.5.2. PLL Slave Mode (BCLK pin) (1) PMPLL bit Example: (Addr:01H, D6) Audio I/F Format: I2S PLL Reference Clock: BCLK Input BCLK Frequency: 64fs (1) Addr:01H, Data:80H (2) External BCLK Input (2) External LRCK (2) Stop the external clocks Input Figure 67. Clock Stopping Sequence (2) (1) Power down PLL: PMPLL bit = “1” → “0” (2) Stop the external BCLK and LRCK clocks. 11.5.3. PLL Slave Mode (MCKI pin) Example: (1) Audio I/F Format: I2S PLL Reference Clock: MCKI Input BCLK Frequency: 64fs PMPLL bit (Addr:01H, D6) (2) (1) Addr:01H, Data:80H MCKOE bit (Addr:09H, D4) (2) Addr:09H, Data:04H (3) External MCKI Input (3) Stop an external MCKI Figure 68. Clock Stopping Sequence (3) (1) Power down PLL: PMPLL bit = “1” → “0” (2) Stop MCKO output: MCKOE bit = “1” → “0” (3) Stop an external master clock. 019000890-E-01 2022/01 - 105 - [AK5704] 11.5.4. External Slave Mode (1) External MCKI Example: Input Audio I/F Format: I2S Input Master Clock Frequency: 256fs Input BCLK Frequency: 64fs (1) External BCLK Input (1) Stop the external clocks (1) External LRCK Input Figure 69. Clock Stopping Sequence (4) (1) Stop the external MCKI, BCLK and LRCK clocks. 11.5.5. External Master Mode (1) External MCKI BCLK Example: Input Output “H” or “L” Audio I/F Format: I2S Input Master Clock Frequency: 256fs Output BCLK Frequency: 64fs (1) Stop the external clocks LRCK Output “H” or “L” Figure 70. Clock Stopping Sequence (5) (1) Stop an external master clock. BCLK and LRCK are fixed to “H” or “L”. 11.6. Power Down Power supply current cannot be shut down by stopping clocks and setting PMVCM bit = “0”. Power supply current can be shut down (typ. 4A) by stopping clocks and setting the PDN pin = “L”. When the PDN pin = “L”, all registers are initialized. 019000890-E-01 2022/01 - 106 - [AK5704] 12. Package 12.1. Outline Dimensions 28-pin QFN 0.75 ± 0.05 B 15 21 14 22 8 Exposed Pad 28 7 A 1 0 ~ 0.05 4.00 ± 0.10 (0.20) 0.40 0.20 ± 0.05 0.07 M C A B 0.40 ± 0.10 (0.30) 2.60 ± 0.10 4.00 ± 0.10 2.60 ± 0.10 C0.35 0.08 C (Unit: mm) * The exposed pad on the bottom surface of the package should be connected to the ground. C 12.2. Material & Lead finish Package molding compound: Epoxy Resin, Halogen (Br and Cl) free Lead frame material: Cu Alloy Pin surface treatment: Solder (Pb free) plate 12.3. Marking 5704 XXXX 1 XXXX: Date code (4 digits) Pin #1 indication 019000890-E-01 2022/01 - 107 - [AK5704] 13. Ordering Guide AK5704EN AKD5704 −40 ~ +85°C 28-pin QFN (0.4mm pitch) AK5704 Evaluation Board 14. Revision History Date (Y/M/D) 19/02/20 22/01/31 Revision 00 01 Reason First Edition Error Correction Page Contents 102 Description Addition 103 Control Sequence Voice Activity Detection (1ch Mic) sequence and figure were changed. Control Sequence Voice Activity Detection (4ch Mic) sequence was added. 019000890-E-01 2022/01 - 108 - [AK5704] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. Rev.1 019000890-E-01 2022/01 - 109 -
AK5704EN 价格&库存

很抱歉,暂时无法提供与“AK5704EN”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AK5704EN
  •  国内价格 香港价格
  • 1+30.224301+3.74931
  • 10+19.8159010+2.45816
  • 25+17.0953025+2.12067
  • 100+14.04072100+1.74175
  • 250+12.55539250+1.55749
  • 500+11.64876500+1.44503
  • 1000+10.895411000+1.35157

库存:5578

AK5704EN
  •  国内价格 香港价格
  • 2000+10.269622000+1.27394
  • 4000+9.750124000+1.20950
  • 6000+9.488176000+1.17701

库存:5578