0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AK7735EQ

AK7735EQ

  • 厂商:

    AKM(旭化成)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    ICDSP4CHADC/DAC/SRC48LQFP

  • 数据手册
  • 价格&库存
AK7735EQ 数据手册
[AK7735] AK7735 Dual DSP with 4chADC + 4chDAC + 4chSRC 1. General Description The AK7735 is a highly integrated digital signal processor, including a 24-bit stereo ADC with MIC gain amplifiers, a 24-bit stereo ADC with input selector, two 32-bit stereo DACs, 2 stereo sampling rate convertors supporting the sampling frequency up to 192kHz and dual DSPs for Audio/HF process. Each DSP has 3072step/fs (when fs=48kHz) parallel processing power. As the AK7735 is a RAM based DSP, it is freely programmable for user requirements, such as acoustic effects and proprietary high performance hands-free function. The AK7735 is available in a 48-pin LQFP package. 2. Features □ Dual DSP: (DSP1 and DSP2 have the same specification. Memory areas are shared by them) - Word length: 28-bit (Simple floating point supported) - Instruction cycle: Max. 6.8ns (3072fs at fs=48kHz) - Multiplier: 24 x 24 → 48-bit (Double precision arithmetic available) - Divider: 24 / 24 → 24-bit (Floating point normalization function) - ALU: 52-bit Arithmetic Operation (with 4bits overflow margin) - Program RAM: 4096-word x 36-bit - Coefficient RAM: 6144-word x 24-bit - Data RAM: 4096-word x 28-bit - Delay RAM: 12288-word x 28-bit - JX pins (Interrupt) - Independent Power Management Function for DSP1, DSP2 □ ADC1: 24-bit Stereo ADC with MIC Gain Amplifiers - Sampling Frequency: fs = 8kHz ~ 192kHz - Channel Independent Analog Gain Amplifiers (0~18dB(2dB Step), 18~36dB(3dB Step)) - Differential Input or Single-ended Input - ADC Characteristics S/N: 106dB (fs=48kHz, Differential Input, MIC Gain=0dB) - Channel Independent Digital Volume Control (24dB~-103dB, 0.5dB Step, Mute) - Digital HPF for DC Offset Cancelling - Low Noise MIC Power Output: 1ch - 4 types of Digital Filter for Sound Color Selection □ ADC2: 24-bit Stereo ADC with Input Selector - Sampling Frequency: fs = 8kHz ~ 192kHz - Analog Input Selector: Differential Input x1 or Single-ended Input x2, - ADC Characteristics S/N: 106dB (fs=48kHz, Differential Input) - Channel Independent Digital Volume (24dB ~ -103dB, 0.5dB Step, Mute) - Digital HPF for DC Offset Cancelling - 4 types of Digital Filter for Sound Color Selection 016014707-E-00 2016/12 -1- [AK7735] □ DAC: Advanced 32bit DAC - 2ch x 2 - Sampling Frequency: fs = 8kHz ~ 192kHz - Single-ended Output - DAC Characteristics S/N: 108dB (fs=48kHz) - Channel Independent Digital Volume Control (12dB ~ -115dB, 0.5dB Step, Mute) - 4 types of Digital Filter for Sound Color Selection □ SRC: - 2ch x 2 - FSI = 8kHz ~ 192kHz, FSO = 8kHz ~ 192kHz (FSO/FSI = 0.167 ~ 6.0) □ Digital Interfaces - Digital Input Port x 4 (Max 32ch, in TDM mode) - Digital Output Port x 4 (Max 32ch, in TDM mode) - Independent LRCK/BICK port x 3 - Data Format: MSB 32, 24bit / LSB 24, 20, 16bit / I2S - PCM Short / Long Frame Supported - TDM Format Supported (Max:8ch / 256fs, fs=96kHz) □ PLL Circuit □ μP Interface: SPI(Max 6MHz) / I2C(400kHz Fast Mode, 1MHz Fast Mode Plus) □ Power Supply: Analog: AVDD: 3.0V ~ 3.6V (Typ. 3.3V) Digital: LVDD: 3.0V ~ 3.6V (Typ. 3.3V) (3.3V → 1.2V regulator integrated) I/F VDD33: 3.0V ~ 3.6V (Typ. 3.3V) TVDD: 1.7V ~ 3.6V (Typ. 3.3V) □Operating Temperature Range: AK7735VQ: Ta = -40 ~ 85C AK7735EQ: Ta = -20 ~ 85C □Package: 48-pin LQFP (7mm x 7mm, 0.5mm pitch) 016014707-E-00 2016/12 -2- [AK7735] 3. 1. 2. 3. 4. ■ ■ 5. ■ ■ ■ ■ ■ 6. 7. 8. ■ ■ 9. ■ ■ ■ 10. 11. ■ ■ ■ ■ ■ 12. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 13. ■ Table of Contents General Description .......................................................................................................................... 1 Features ............................................................................................................................................ 1 Table of Contents .............................................................................................................................. 3 Block Diagrams ................................................................................................................................. 5 Block Diagram ................................................................................................................................... 5 DSP Block Diagram........................................................................................................................... 6 Pin Configurations and Functions ..................................................................................................... 7 Pin Configurations ............................................................................................................................. 7 Pin Functions..................................................................................................................................... 8 Handling of Unused Pins..................................................................................................................11 Internal Pulled-down Pins Status .....................................................................................................11 Power-down Status of Output Pins ................................................................................................. 12 Absolute Maximum Ratings ............................................................................................................ 13 Recommended Operating Conditions ............................................................................................ 13 Electrical Characteristics................................................................................................................. 14 Analog Characteristics .................................................................................................................... 14 Power Consumption ........................................................................................................................ 19 Digital Filter Characteristics ............................................................................................................ 20 ADC Block ....................................................................................................................................... 20 DAC Block ....................................................................................................................................... 24 SRC Block ....................................................................................................................................... 28 DC Characteristics .......................................................................................................................... 30 Switching Characateristics .............................................................................................................. 31 System Clock .................................................................................................................................. 31 Power Down .................................................................................................................................... 31 Serial Data Interface (SDIN1 ~ SDIN4, SDOUT1 ~ SDOUT4) ....................................................... 32 SPI Interface.................................................................................................................................... 35 I2C Interface..................................................................................................................................... 37 Functional Descriptions................................................................................................................... 38 System Clock .................................................................................................................................. 38 Audio HUB ....................................................................................................................................... 40 Audio Data Path Setting .................................................................................................................. 46 Power-up Sequence ........................................................................................................................ 64 VREG (Internal Circuit Drive Regulator) ......................................................................................... 65 Power-down and Reset ................................................................................................................... 66 RAM Clear ....................................................................................................................................... 68 STO pin Output Status .................................................................................................................... 69 μP Interface Setting and Pin Statuses ............................................................................................ 70 SPI Interface.................................................................................................................................... 71 I2C Interface..................................................................................................................................... 85 Simple Write Error Check ................................................................................................................ 90 DSP Block ....................................................................................................................................... 91 Analog Input Block .......................................................................................................................... 94 ADC Block ....................................................................................................................................... 97 DAC Block ..................................................................................................................................... 102 SRC Block ..................................................................................................................................... 107 Register Map ..................................................................................................................................113 Register Definitions ........................................................................................................................116 Recommended External Circuits .................................................................................................. 135 Connection Diagram ..................................................................................................................... 135 016014707-E-00 2016/12 -3- [AK7735] ■ Peripheral Circuit ........................................................................................................................... 137 14. Package ........................................................................................................................................ 139 ■ Outline Dimensions ....................................................................................................................... 139 ■ Material and Lead Finish ............................................................................................................... 139 ■ Marking .......................................................................................................................................... 140 15. Ordering Guide.............................................................................................................................. 141 16. Revision History ............................................................................................................................ 141 IMPORTANT NOTICE ........................................................................................................................ 142 016014707-E-00 2016/12 -4- [AK7735] 4. ■ Block Diagrams Block Diagram Figure 1. Block Diagram 016014707-E-00 2016/12 -5- [AK7735] ■ DSP Block Diagram Pointer CP0, CP1 DP0, DP1 Coefficient RAM DLP0, DLP1 Data RAM Delay RAM 4096w x 28Bit max 2048w Unit 6144×24Bit max 2048w Unit OFREG 64w x 14Bit 12288w x 28Bit max 4096w Unit CBUS(24Bit) DBUS(28Bit) Micon I/F MPX24 MPX24 Control Serial I/F Program RAM X DEC Y Multiply 24×24 → 48Bit 4096w×36Bit max 2048w Unit PC Stack : 8 Level(max) 28Bit 48Bit TMP 12×28Bit PTMP(LIFO) 6×28Bit MUL DBUS 2 x 24Bit DIN6 SHIFT 52Bit 2 x 24Bit DIN5 48Bit A 2 x 24Bit DIN4 2 x 24Bit DIN3 B ALU 2 x 24Bit DIN2 52Bit 2 x 24Bit DIN1 Overflow Margin: 4Bit 2 x 32Bit DOUT6 52-Bit 2 x 32Bit DOUT5 2 x 32Bit DOUT4 DR0  3 2 x 32Bit DOUT3 52Bit 2 x 32Bit DOUT2 Over Flow Data Generator 2 x 32Bit DOUT1 28bit x fifo16 DTMP (Connection between DSP1/2) Division 2424→24 Peak Detector Figure 2. DSP Block Diagram Note * 1. Coefficient RAM, Data RAM, Delay RAM, Program RAM areas are shared by DSP1 and DSP2 and the sizes are configurable by control registers. 016014707-E-00 2016/12 -6- [AK7735] 5. Pin Configurations and Functions AIN1R/INP2 37 INN1 38 AIN1L/INP1 39 MPREF 40 MPWR 41 SI/I2CFIL SCLK/SCL SO/SDA 26 25 30 27 LVDD 31 PDN AIN2RN/AIN4R 32 28 AIN2RP/AIN3R 33 AVDRV AIN2LN/AIN4L 34 29 AIN2LP/AIN3L 35 DVSS3 INN2 36 Configurations LVDD TVDD AK7735 (Top View) AVDD 24 CSN 23 STO/RDY/SDOUT2 22 - DVSS2 21 - TVDD 20 SDOUT1/RDY 19 BICK1 AVDD - 42 AVSS - 43 18 LRCK1 VCOM 44 17 SDIN1 VREFH 45 16 BICK2/JX2 VREFL 46 15 LRCK2/JX1 AOUT1R 47 14 SDIN2/JX0 AOUT1L 48 13 XTO 1 2 3 4 5 6 7 8 9 - 10 - 11 12 AOUT2L TESTI LRCK3 SDOUT4/GPO2 BICK3 SDOUT3/CLKO/GPO1 SDIN3/JX3 SDIN4 DVSS1 VDD33 XTI VDD33 AOUT2R ■ Pin 016014707-E-00 input output in/out - power 2016/12 -7- [AK7735] ■ Pin Functions No. Pin Name I/O 1 AOUT2R O 2 AOUT2L O 3 TESTI I 4 9 10 11 LRCK3 SDOUT4 GPO2 BICK3 SDOUT3 CLKO GPO1 SDIN3 JX3 SDIN4 DVSS1 VDD33 12 XTI I 13 XTO O SDIN2 JX0 LRCK2 JX1 BICK2 JX2 SDIN1 LRCK1 BICK1 SDOUT1 RDY TVDD DVSS2 I I I/O I I/O I I I/O I/O O O - 5 6 7 8 14 15 16 17 18 19 20 21 22 I/O O O I/O O O O I I I - Supply Power Function DAC2 Rch Analog Output Pin This pin outputs “Hi-Z” during power-down state. DAC2 Lch Analog Output Pin This pin outputs “Hi-Z” during power-down state. Test Input Pin It must be tied “L”. LR Channel Select Clock 3 Pin Serial Data Output 4 Pin GPO Output 2 Pin (GPO Output of DSP2) Serial Bit Clock 3 Pin Serial Data Output 3 Pin Master Clock Output Pin GPO Output 1 Pin (GPO Output of DSP1) Serial Data Input 3 Pin External Conditional Jump Input 3 Pin Serial Data Input 4 Pin Digital Ground 1 Pin 0V Digital I/F Power Supply Pin 3.0~3.6V (typ.3.3V) Crystal Oscillator Input Pin When using a crystal oscillator, connect it between XTI and XTO. When not using XTI pin, leave this pin open. Crystal Oscillator Output Pin When using a crystal oscillator, connect it between XTI and XTO. When not using a crystal oscillator, leave this pin open. Serial Data Input 2 Pin External Conditional Jump Input 0 Pin LR Channel Select Clock 1 Pin External Conditional Jump Input 1 Pin Serial Bit Clock 2 Pin External Conditional Jump Input 2 Pin Serial Data Input 1 Pin LR Channel Select Clock 1 Pin Serial Bit Clock 1 Pin Serial Data Output 1 Pin RDY Signal Output Pin Digital I/F Power Supply Pin 1.7~3.6V (typ.3.3V) Digital Ground 2 Pin 0V 016014707-E-00 AVDD AVDD VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 TVDD TVDD TVDD TVDD TVDD TVDD TVDD - 2016/12 -8- [AK7735] No. 23 Pin Name I/O STO O RDY SDOUT2 O O I 24 CSN I SO O 25 SDA I/O SCLK SCL SI I I I I2CFIL I 28 PDN I 29 AVDRV O 30 31 DVSS3 LVDD - 26 27 Supply Power Function Status Output Pin This pin outputs “L” during power-down state. RDY Signal Output Pin Serial Data Output 2 Pin SPI Mode SPI I/F Chip Select Pin During power-down state or when SPI I/F is not in use, leave this pin “H” level. 2 I C Mode I2C I/F Chip Address Pin This pin must be pulled up or pulled down. Serial Data Output Pin for SPI I/F This pin outputs “Hi-Z” during power-down state. This pin must be pulled up or pulled down. Serial Data In/Output Pin for I2C I/F This pin outputs “Hi-Z” during power-down state. Serial Data Clock Input Pin for SPI I/F Serial Data Clock Input Pin for I2C I/F Serial Data Input Pin for SPI I/F I2C I/F Mode Select Input Pin I2CFIL = “L”: Fast Mode (400kHz) I2CFIL = “H”: Fast Mode Plus (1MHz) (should be fixed to TVDD2) Power-down Pin Use this pin to power down the AK7735. The PDN pin should be held “L” when power is supplied. VREG Output Pin Connect a 2.2uF(±30%) ceramic capacitor between this pin and DVSS3. Do not connect this pin to an external circuit. Digital Ground 3 Pin 0V Digital Core Power Supply Pin 3.0~3.6V (typ.3.3V) 016014707-E-00 TVDD TVDD TVDD TVDD TVDD TVDD LVDD - 2016/12 -9- [AK7735] No. Pin Name I/O Supply Power Function AIN2RN AIN4R AIN2RP AIN3R AIN2LN AIN4L AIN2LP AIN3L INN2 AIN1R INP2 INN1 AIN1L I I I I I I I I I I I I I ADC2 Rch Inverted Differential Input 2 Pin ADC2 Rch Single-ended Input 4 Pin ADC2 Rch Non-inverted Differential Input 2 Pin ADC2 Rch Single-ended Input 3 Pin ADC2 Lch Inverted Differential Input 2 Pin ADC2 Lch Single-ended Input 4 Pin ADC2 Lch Non-inverted Differential Input 2 Pin ADC2 Lch Single-ended Input 3 Pin ADC1 Rch Inverted Differential Input 2 Pin ADC1 Rch Single-ended Input 1 Pin ADC1 Rch Non-inverted Differential Input 2 Pin ADC1 Lch Inverted Differential Input 1 Pin ADC1 Lch Single-ended Input 1 Pin INP1 I 40 MPREF O 41 MPWR O 42 43 AVDD AVSS - 44 VCOM O 45 VREFH I 46 VREFL I 47 AOUT1R O 48 AOUT1L O ADC1 Lch Non-inverted Differential Input 1 Pin Ripple Filter Pin for Microphone Power Supply Connect a 1uF ceramic capacitor between this pin and AVSS. Do not connect this pin to an external circuit. Power Supply Output Pin for Microphone This pin outputs “Hi-Z” during power-down state. Analog Power Supply Pin 3.0~3.6V (typ.3.3V) Analog Ground Pin 0V Analog Common Voltage Output Pin Connect a 2.2uF ceramic capacitor between this pin and AVSS. Do not connect this pin to an external circuit. This pin outputs “L” during power-down state. Analog High-level Reference Voltage Input Pin Connect this pin to AVDD. Analog Low-level Reference Voltage Input Pin Connect this pin to AVSS. DAC1 Rch Analog Output Pin This pin outputs “Hi-Z” during power-down state. DAC1 Lch Analog Output Pin This pin outputs “Hi-Z” during power-down state. 32 33 34 35 36 37 38 39 016014707-E-00 AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD 2016/12 - 10 - [AK7735] ■ Handling of Unused Pins Unused I/O pins must be connected appropriately. Classification Analog Digital ■ Pin Name MPREF, MPWR, AIN1L/INP1, INN1, AIN1R/INP2, INN2, AIN2LP/AIN3L, AIN2LN/AIN4L, AIN2RP/AIN3R, AIN2RN/AIN4R, AOUT1L, AOUT1R, AOUT2L, AOUT2R XTI, XTO, SDOUT1/RDY, STO/RDY/SDOUT2, SDOUT3/CLKO/GPO1, SDOUT4/GPO2 SDIN4, SDIN3/JX3, SDIN2/JX0, SDIN1, LRCK1, BICK1, LRCK2/JX1, BICK2/JX2, LRCK3, BICK3, TESTI Table 1. Handling of Unused Pins Setting Open Open Connect to DVSS1/DVSS2 Internal Pulled-down Pins Status No. Pin Name 3 18 19 15 16 4 6 20 23 7 5 29 TESTI LRCK1 BICK1 LRCK2/JX1 BICK2/JX2 LRCK3 BICK3 SDOUT1/RDY STO/RDY/SDOUT2 SDOUT3/CLKO/GPO1 SDOUT4/GPO2 AVDRV Power Down Status PDN pin = “L” Power Down Release PDN pin = “H” (Slave mode) Pulled-down (25kΩ) Pulled-down (25kΩ) Pulled-down (50kΩ) Input (Pulled-down) (46 kΩ) Pulled-down (50kΩ) Input (Pulled-down) (46 kΩ) Pulled-down (50kΩ) Input (Pulled-down) (46 kΩ) Pulled-down (50kΩ) Input (Pulled-down) (46 kΩ) Pulled-down (50kΩ) Input (Pulled-down) (46 kΩ) Pulled-down (50kΩ) Input (Pulled-down) (46 kΩ) Pulled-down (50kΩ) Output Pulled-down (50kΩ) Output Pulled-down (50kΩ) Output Pulled-down (50kΩ) Output Pulled-down (70Ω) Output Table 2. Internal Pulled-down Pins Status Power Down Release PDN pin = “H” (Master mode) Pulled-down (25kΩ) Output Output Output Output Output Output Output Output Output Output Output Note * 2. Typical resistance value when LVDD=TVDD=VDD33=3.3V. 016014707-E-00 2016/12 - 11 - [AK7735] ■ Power-down No 44 40 41 Status of Output Pins Pin Name VCOM MPREF MPWR I/O O O O Power-down Status “L” Output “L” Output “Hi-Z” Output No 4 6 25 Pin Name LRCK3 BICK3 SO/SDA I/O I/O I/O I/O 48 AOUT1L O “Hi-Z” Output 20 SDOUT1/RDY O 47 AOUT1R O “Hi-Z” Output 23 STO/RDY/SDOUT2 O 2 AOUT2L O “Hi-Z” Output 7 SDOUT3/CLKO/GPO1 O 1 AOUT2R O “Hi-Z” Output 5 SDOUT4/GPO2 O 18 LRCK1 I/O Input 13 XTO O 19 BICK1 I/O Input 29 AVDRV O 15 LRCK2/JX1 16 BICK2/JX2 I/O Input I/O Input Power-down Status Input Input “Hi-Z” Output “L” Output (Pulled-down) “L” Output (Pulled-down) “L” Output (Pulled-down) “L” Output (Pulled-down) “Hi-Z” Output “L” Output (Pulled-down) Table 3. Power-down Status of Output Pins 016014707-E-00 2016/12 - 12 - [AK7735] 6. Absolute Maximum Ratings (AVSS=DVSS1=DVSS2=DVSS3=0V * 3) Parameter Symbol Min. Max. Unit Power Supplies Analog AVDD -0.3 4.3 V Digital1(Core) LVDD -0.3 4.3 V Digital2(I/F) TVDD -0.3 4.3 V Digital3(I/F) VDD33 -0.3 4.3 V Difference (AVSS, DVSS1, DVSS2, DVSS3) * 3 ΔGND -0.3 0.3 V mA Input Current (except power supply pins) IIN ±10 - Analog Input Voltage * 4 VINA -0.3 (AVDD+0.3) or 4.3 V Digital Input Voltage * 5 VIND1 -0.3 (TVDD+0.3) or 4.3 V Digital Input Voltage * 6 VIND2 -0.3 (VDD33+0.3) or 4.3 V Ambient Temperature (AK7735VQ) Ta -40 85 C Ambient Temperature (AK7735EQ) Ta -20 85 C Storage Temperature Tstg -65 150 C Notes * 3. All voltages are with respect to ground. AVSS and DVSS1-3 must be connected to the same ground. * 4. The maximum analog input voltage is smaller value between (AVDD+0.3)V and 4.3V. * 5. The maximum digital input voltage of SDIN1, SDIN2/JX0, LRCK1, BICK1, LRCK2/JX1, BICK2/JX2, PDN, SCLK/SCL, CSN and SI/I2CFIL pins is smaller value between (TVDD+0.3)V and 4.3V. * 6 . The maximum digital input voltage of SDIN3/JX3, SDIN4, LRCK3, BICK3, TESTI and XTI pins is smaller value between (VDD33+0.3)V and 4.3V. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 7. Recommended Operating Conditions (AVSS=DVSS1=DVSS2=DVSS3=0V * 3) Parameter Symbol Min. Typ. Max. Unit Power Supplies Analog AVDD 3.0 3.3 3.6 V Digital1(Core) LVDD 3.0 3.3 3.6 V Digital2(I/F) TVDD 1.7 3.3 3.6 V Digital3(I/F) VDD33 3.0 3.3 3.6 V Difference1 AVDD – LVDD -0.1 0 0.1 V Difference2 AVDD – VDD33 -0.1 0 0.1 V Difference3 LVDD – VDD33 -0.1 0 0.1 V Difference4 LVDD – TVDD -0.1 V Notes * 7. The power-up sequence with AVDD, DVDD, TVDD and VDD33 is not critical. The PDN pin should be held “L” when power is supplied. The PDN pin is allowed to be “H” after all power supplies are applied and settled. * 8. Do not turn off the power supply of the AK7735 with the power supply of the peripheral device turned on. When using the I2C interface, pull-up resistors of SDA and SCL pins should be connected to TVDD or less voltage. WARNING: AKM assumes no responsibility for the usage beyond the conditions in the datasheet. 016014707-E-00 2016/12 - 13 - [AK7735] 8. ■ Electrical Characteristics Analog Characteristics 1. MIC AMP (Ta=25C; AVDD=LVDD=TVDD=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; ADC1VL/R bits=“0”) Parameter Min. Typ. Input Impedance 14 20 MGNL[3:0]bits=0h, MGNR[3:0]bits=0h -1 0 MGNL[3:0]bits=1h, MGNR[3:0]bits=1h 1 2 MGNL[3:0]bits=2h, MGNR[3:0]bits=2h 3 4 MGNL[3:0]bits=3h, MGNR[3:0]bits=3h 5 6 MGNL[3:0]bits=4h, MGNR[3:0]bits=4h 7 8 MGNL[3:0]bits=5h, MGNR[3:0]bits=5h 9 10 MIC MGNL[3:0]bits=6h, MGNR[3:0]bits=6h 11 12 AMP MGNL[3:0]bits=7h, MGNR[3:0]bits=7h 13 14 Gain MGNL[3:0]bits=8h, MGNR[3:0]bits=8h 15 16 MGNL[3:0]bits=9h, MGNR[3:0]bits=9h 17 18 MGNL[3:0]bits=Ah, MGNR[3:0]bits=Ah 20 21 MGNL[3:0]bits=Bh, MGNR[3:0]bits=Bh 23 24 MGNL[3:0]bits=Ch, MGNR[3:0]bits=Ch 26 27 MGNL[3:0]bits=Dh, MGNR[3:0]bits=Dh 29 30 MGNL[3:0]bits=Eh, MGNR[3:0]bits=Eh 32 33 MGNL[3:0]bits=Fh, MGNR[3:0]bits=Fh 35 36 Max. 26 1 3 5 7 9 11 13 15 17 19 22 25 28 31 34 37 2. MIC Bias Output (Ta=25C; AVDD=LVDD=TVDD=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; Measurement Frequency =20Hz~20kHz) Parameter Min. Typ. Max. Output Voltage * 9 2.3 2.5 2.7 MIC Bias Load Resistance 2 Load Capaitance 30 Output Noise (A-weighted) -114 -108 Note * 9. Output voltage is proportional to AVDD (0.76 x AVDD). 016014707-E-00 Unit kΩ dB Unit V kΩ pF dBV 2016/12 - 14 - [AK7735] 3. MIC AMP + ADC1 (Ta=25C; AVDD=LVDD=TVDD=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; Signal Frequency =1kHz; 24bit Data; BICK=64fs; @fs=48kHz, Measurement Frequency BW=20Hz ~ 20kHz; @fs=96kHz,192kHz, BW=20Hz ~ 40kHz; ADC1VL/R bits=“0”; MGNL/R[3:0] bits=0h (0dB); Differential Input, Unless otherwise specified.) Parameter Resolution Differential Input Differential Input Differential Input Single-ended Input Input Full Scale Single-ended Input Voltage * 11 Single-ended Input fs=48kHz * 13 fs=48kHz * 14 fs=96kHz * 13 S/(N+D) (-1dBFS) fs=96kHz * 14 fs=192kHz * 13 fs=192kHz * 14 fs=48kHz (A-weighted) fs=48kHz (A-weighted) fs=96kHz Dynamic Range (-60dBFS) fs=96kHz fs=192kHz fs=192kHz fs=48kHz (A-weighted) fs=48kHz (A-weighted) fs=96kHz S/N fs=96kHz fs=192kHz fs=192kHz Inter-Channel Isolation Channel Gain Mismatch CMRR * 16 Input Full Scale Voltage * 10 MIC AMP + ADC1 * 13 * 14 * 15 * 13 * 14 * 15 * 13 * 14 * 13 * 14 * 13 * 14 * 13 * 14 * 13 * 14 * 13 * 14 * 12 Min. Typ. ±2.1 ±0.264 ±2.55 2.1 0.264 2.55 85 ±2.3 ±0.290 ±2.83 2.3 0.290 2.83 95 87 92 84 92 84 106 95 99 89 99 89 106 95 99 89 99 89 105 0.0 80 98 98 90 60 Max. Unit 24 Bit ±2.5 ±0.315 Vpp ±3.11 2.5 0.315 Vpp 3.11 dB dB dB 0.3 dB dB dB Notes * 10. INP1, INN1, INP2 and INN2 pins * 11. AIN1L and AIN1R pins * 12. Inter-channel isolation with -1dBFS signal input. * 13. ADC1VL/R bits = “0”, MGNL/R[3:0] bits = 0h (0dB). Input full-scale voltage is proportional to AVDD (0.7 x AVDD). * 14. ADC1VL/R bits = “0”, MGNL/R[3:0] bits = 9h (+18dB). Input full-scale voltage is proportional to AVDD (0.088 x AVDD). * 15. ADC1VL/R bits = “1”, MGNL/R[3:0] bits = 0h (0dB). Input full-scale voltage is proportional to AVDD (0.86 x AVDD). * 16. Common mode rejection ratio when inputting 1kHz, 100mVpp sine wave to both differential inputs. The value refers to the case when input a 1kHz, ±100mVpp sine wave as differential input. 016014707-E-00 2016/12 - 15 - [AK7735] 4. ADC2 (Ta=25C; AVDD=LVDD=TVDD=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; Signal Frequency =1kHz; 24bit Data; BICK=64fs; @fs=48kHz, Measurement Frequency BW=20Hz ~ 20kHz; @fs=96kHz,192kHz, BW=20Hz ~ 40kHz; ADC2VL/R bits=“0”; Differential Input, Unless otherwise specified.) Parameter Resolution Input Impedance Input Full Scale Voltage * 17 Input Full Scale Voltage * 18 ADC2 Differential Input * 19 Differential Input * 20 Single-ended Input * 19 Single-ended Input * 20 fs=48kHz S/(N+D) (-1dBFS) fs=96kHz fs=192kHz fs=48kHz (A-weighted) Dynamic Range fs=96kHz (-60dBFS) fs=192kHz fs=48kHz (A-weighted) S/N fs=96kHz fs=192kHz Inter-Channel Isolation * 12 Channel Gain Mismatch CMRR * 16 Min. Typ. 14 ±2.1 ±2.55 2.1 2.55 85 20 ±2.3 ±2.83 2.3 2.83 95 92 92 106 99 99 106 99 99 105 0.0 80 98 98 90 Max. 24 26 ±2.5 ±3.11 2.5 3.11 60 Notes * 17. AIN2LP, AIN2LN, AIN2RP and AIN2RN pins * 18. AIN3L, AIN3R, AIN4L and AIN4R pins * 19. ADC2VL/R bits = “0”. Input full-scale voltage is propotional to AVDD (0.7 x AVDD). * 20. ADC2VL/R bits = “1”. Input full-scale voltage is propotional to AVDD (0.86 x AVDD). 016014707-E-00 Unit bit kΩ Vpp Vpp dB dB dB 0.3 dB dB dB 2016/12 - 16 - [AK7735] 5. DAC (Ta=25C; AVDD=LVDD=TVDD=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; Signal Frequency =1kHz; 32bit Data; BICK=64fs; @fs=48kHz, Measurement Frequency BW=20Hz ~ 20kHz; @fs=96kHz,192kHz, Measurement Frequency BW=20Hz ~ 40kHz) Parameter Min. Typ. Max. Unit Resolution 32 bit Output Voltage * 21 2.55 2.83 3.11 Vpp fs=48kHz 80 91 S/(N+D) fs=96kHz 89 dB (0dBFS) fs=192kHz 89 fs=48kHz (A-weighted) 100 108 Dynamic Range fs=96kHz 101 dB DAC1 (-60dBFS) DAC2 fs=192kHz 101 fs=48kHz (A-weighted) 100 108 S/N fs=96kHz 101 dB fs=192kHz 101 Inter-Channel Isolation (fin=1kHz) * 22 90 110 dB Channel Gain Mismatch 0.0 0.7 dB Load Resistance * 23 10 kΩ Load Capaitance 30 pF Notes * 21. The output voltage when 0dBFS signal input. The output voltage is proportional to AVDD (0.86 x AVDD). * 22. Inter-channel isolation between each DAC of Lch and Rch with 0dBFS signal input. (AOUT1L and AOUT1R, and AOUT2L and AOUT2R) * 23. to AC load 016014707-E-00 2016/12 - 17 - [AK7735] 6. SRC (Ta=25C; AVDD=LVDD=TVDD=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; Signal Frequency =1kHz; 24bit Data; Measurement Frequency BW=20Hz ~ FSO/2) Parameter Symbol Min. Typ. Max. Unit Resolution 24 bit Input Sample Rate FSI 8 192 kHz Output Sample Rate FSO 8 192 kHz THD+N (Input=1kHz, 0dBFS) Audio Mode (SRCFAUD bit = “1”, SRCFEC bit = “0”) FSO/FSI=192kHz/48kHz FSO/FSI=44.1kHz/48kHz FSO/FSI=48kHz/88.2kHz FSO/FSI=48kHz/96kHz FSO/FSI=44.1kHz/96kHz FSO/FSI=48kHz/192kHz FSO/FSI=8kHz/48kHz SRC Voice Mode (SRCFAUD bit = “0”, SRCFEC bit = “0”) FSO/FSI=24kHz/32kHz FSO/FSI=16kHz/24kHz FSO/FSI=24kHz/44.1kHz FSO/FSI=16kHz/44.1kHz FSO/FSI=8kHz/32kHz Dynamic Range (Input=1kHz, -60dBFS) Audio Mode (SRCFAUD bit = “1”, SRCFEC bit = “0”) FSO/FSI=192kHz/48kHz FSO/FSI=44.1kHz/48kHz FSO/FSI=48kHz/88.2kHz FSO/FSI=48kHz/96kHz FSO/FSI=44.1kHz/96kHz FSO/FSI=48kHz/192kHz FSO/FSI=8kHz/48kHz Voice Mode (SRCFAUD bit = “0”, SRCFEC bit = “0”) FSO/FSI=24kHz/32kHz FSO/FSI=16kHz/24kHz FSO/FSI=24kHz/44.1kHz FSO/FSI=16kHz/44.1kHz FSO/FSI=8kHz/32kHz Dynamic Range (Input=1kHz, -60dBFS, A-weighted) FSO/FSI=44.1kHz/48kHz Ratio between Input and Output Sample Rate 016014707-E-00 FSO/FSI 0.167 -122 -125 -122 -133 -116 -133 -130 dB dB dB dB dB dB dB -95 -98 -78 -69 -130 dB dB dB dB dB 132 136 136 135 136 136 130 dB dB dB dB dB dB dB 134 137 132 128 130 dB dB dB dB dB 137 6 dB - 2016/12 - 18 - [AK7735] ■ Power Consumption (Ta=25C; AVDD=LVDD=VDD33=3.0~3.6V(Typ=3.3V, Max=3.6V); TVDD=1.7~3.6V(Typ=3.3V, Max=3.6V); AVSS=DVSS1=DVSS2=DVSS3=0V; fs=192kHz; BICK=64fs; Master Mode; SDOUT1~4/LRCK1~3/BICK1~3=Output; CL=20pF) Parameter Symbol Min. Typ. Max. Unit AVDD 23 33 mA LVDD 55 98 mA Power-Up * 24 (PDN pin = “H”) TVDD 4 6 mA VDD33 5 8 mA AVDD 0.01 mA LVDD 0.01 mA Power-Down (PDN pin = “L”) TVDD 0.01 mA VDD33 0.01 mA Note * 24. The current of LVDD changes depending on the system frequency and contents of DSP program. 016014707-E-00 2016/12 - 19 - [AK7735] 9. Digital Filter Characteristics ■ ADC Block (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V) 1. Sharp Roll-Off Filter (ADSD bit = “0”, ADSL bit = “0”) fs=48kHz Parameter SHARP ROLL-OFF Passband * 25 0dB ~ -0.06dB -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~20kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=96kHz Parameter SHARP ROLL-OFF Passband * 25 0dB ~ -0.06dB -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=192kHz Parameter SHARP ROLL-OFF Passband * 25 0dB ~ -0.04dB -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 22.1 0 20 kHz kHz kHz dB 1/fs 1/fs 0.9 Hz 23.7 27.8 85.0 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 44.2 0 20 kHz kHz kHz dB 1/fs 1/fs 1.9 Hz 47.5 55.6 85.0 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 83.7 0 16 kHz kHz kHz dB 1/fs 1/fs 3.8 Hz 96.0 122.9 85.0 FR 016014707-E-00 2016/12 - 20 - [AK7735] 2. Slow Roll-Off Filter (ADSD bit = “0”, ADSL bit = “1”) fs=48kHz Parameter SLOW ROLL-OFF Passband * 25 0dB ~ -0.074dB -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~20kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=96kHz Parameter SLOW ROLL-OFF Passband * 25 0dB ~ -0.074dB -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=192kHz Parameter SLOW ROLL-OFF Passband * 25 0dB ~ -0.1dB -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 12.5 0 8 kHz kHz kHz dB 1/fs 1/fs 0.9 Hz 19.2 36.5 85.0 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 25 0 8 kHz kHz kHz dB 1/fs 1/fs 1.9 Hz 38.5 73.0 85.0 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 31.1 0 9 kHz kHz kHz dB 1/fs 1/fs 3.8 Hz 62.3 145.9 85.0 FR 016014707-E-00 2016/12 - 21 - [AK7735] 3. Short Delay Sharp Roll-Off Filter (ADSD bit = “1”, ADSL bit = “0”) fs=48kHz Parameter SHORT DELAY SHARP ROLL-OFF 0dB ~ -0.06dB Passband * 25 -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~20kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=96kHz Parameter SHORT DELAY SHARP ROLL-OFF 0dB ~ -0.06dB Passband * 25 -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=192kHz Parameter SHORT DELAY SHARP ROLL-OFF 0dB ~ -0.04dB Passband * 25 -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 22.1 6 kHz kHz kHz dB 1/fs 1/fs 0.9 Hz 23.7 27.8 85.0 2.6 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 44.2 6 kHz kHz kHz dB 1/fs 1/fs 1.9 Hz 47.5 55.6 85.0 2.6 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 83.7 7 kHz kHz kHz dB 1/fs 1/fs 3.8 Hz 96.0 122.9 85.0 0.2 FR 016014707-E-00 2016/12 - 22 - [AK7735] 4. Short Delay Slow Roll-Off Filter (ADSD bit = “1”, ADSL bit = “1”) fs=48kHz Parameter SHORT DELAY SLOW ROLL-OFF 0dB ~ -0.074dB Passband * 25 -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~20kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB fs=96kHz Parameter SHORT DELAY SLOW ROLL-OFF 0dB ~ -0.074dB Passband * 25 -3.0dB Stopband * 25 Stopband Attenuation Group Delay Distortion : 0Hz~40kHz Group Delay * 26 ADC Digital Filter(HPF) Frequency Response -3.0dB Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 12.5 6 kHz kHz kHz dB 1/fs 1/fs 0.9 Hz 19.2 36.5 85.0 2.6 FR Symbol Min. PB PB SB SA GD GD 0 Typ. Max. Unit 25 6 kHz kHz kHz dB 1/fs 1/fs 1.9 Hz 38.5 73.0 85.0 2.6 FR fs=192kHz Parameter Symbol Min. Typ. Max. Unit SHORT DELAY SLOW ROLL-OFF 0dB ~ -0.1dB PB 0 31.1 kHz Passband * 25 -3.0dB PB 63.2 kHz Stopband * 25 SB 145.9 kHz Stopband Attenuation SA 85.0 dB Group Delay Distortion : 0Hz~40kHz GD 0.5 1/fs Group Delay * 26 GD 7 1/fs ADC Digital Filter(HPF) Frequency Response -3.0dB FR 3.8 Hz Notes * 25. The passband and stopband frequencies are proportional to fs (sampling rate). High-pass filter characteristics are not included. A reference value of each gain amplitude is the maximum value of frequency response. * 26. Delay time caused by the digital filter calculation. This time is measured from an analog signal input until 24-bit data of both channels are set into the output register. It includes group delay by HPF. 016014707-E-00 2016/12 - 23 - [AK7735] ■ DAC Block (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V) 1. Sharp Roll-Off Filter (DASD bit = “0”, DASL bit = “0”) fs=48kHz Parameter SHARP ROLL-OFF Passband * 27 0.05dB 3.0dB Passband Ripple * 28 Stopband * 27 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  20.0kHz fs=96kHz Parameter SHARP ROLL-OFF Passband * 27 0.05dB 3.0dB Passband Ripple * 28 Stopband * 27 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  40.0kHz fs=192kHz Parameter SHARP ROLL-OFF Passband * 27 0.05dB 3.0dB Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 21.7 kHz kHz dB kHz dB 1/fs 23.4 -0.0032 26.3 80.0 0.0032 27.3 -0.3 Symbol Min. PB PB PR SB SA GD 0 Typ. 0.1 dB Max. Unit 43.5 kHz kHz dB kHz dB 1/fs 46.8 -0.0032 52.5 80.0 0.0032 27.3 -0.5 Symbol Min. PB PB PR SB SA GD 0 Typ. 0.1 dB Max. Unit 87.0 kHz kHz dB kHz dB 1/fs 93.6 Passband Ripple * 28 -0.0032 0.0032 Stopband * 27 105.0 Stopband Attenuation * 30, * 31 80.0 Group Delay * 29 27.3 Digital Filter + SCF + SMF * 30 Frequency Response : 0  80.0kHz -1.9 0.1 dB Notes * 27. The passband and stopband frequencies are proportional to fs (sampling rate). “PB = 0.4535  fs, SB = 0.546  fs” * 28. Pass-band gain amplitude of double over sampling filter at the first step of Interpolator. * 29. Delay time caused by the digital filter calculation. This time is measured from setting of the 16/20/24/32-bit impulse data to the input registers to output of the analog peak signal. * 30. The output level with a 1kHz, 0dB sine wave input is defined as 0dB. * 31. Band width of Stopband Attenuation ranges from 0Hz to fs. 016014707-E-00 2016/12 - 24 - [AK7735] 2. Slow Roll-Off Filter (DASD bit = “0”, DASL bit = “1”) fs=48kHz Parameter SLOW ROLL-OFF Passband * 32 0.05dB 3.0dB Passband Ripple * 28 Stopband * 32 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  20.0kHz fs=96kHz Parameter SLOW ROLL-OFF Passband * 32 0.05dB 3.0dB Passband Ripple * 28 Stopband * 32 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  40.0kHz fs=192kHz Parameter SLOW ROLL-OFF Passband * 32 0.05dB 3.0dB Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 8.8 kHz kHz dB kHz dB 1/fs 19.8 -0.043 42.7 73.0 0.043 6.8 -5.0 Symbol Min. PB PB PR SB SA GD 0 Typ. 0.1 dB Max. Unit 17.7 kHz kHz dB kHz dB 1/fs 39.5 -0.043 85.3 73.0 0.043 6.8 -5.2 Symbol Min. PB PB PR SB SA GD 0 Typ. 0.1 dB Max. Unit 35.5 kHz kHz dB kHz dB 1/fs 79.0 Passband Ripple * 28 -0.043 0.043 Stopband * 32 171.0 Stopband Attenuation * 30, * 31 73.0 Group Delay * 29 6.8 Digital Filter + SCF + SMF * 30 Frequency Response : 0  80.0kHz -5.9 0.1 Note * 32. The passband and stopband frequencies are proportional to fs (sampling rate). “PB = 0.185  fs, SB = 0.888  fs” 016014707-E-00 dB 2016/12 - 25 - [AK7735] 3. Short Delay Sharp Roll-Off Filter (DASD bit = “1”, DASL bit = “0”) fs=48kHz Parameter SHORT DELAY SHARP ROLL-OFF 0.05dB Passband * 27 3.0dB Passband Ripple * 28 Stopband * 27 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  20.0kHz fs=96kHz Parameter SHORT DELAY SHARP ROLL-OFF 0.05dB Passband * 27 3.0dB Passband Ripple * 28 Stopband * 27 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  40.0kHz fs=192kHz Parameter SHORT DELAY SHARP ROLL-OFF 0.05dB Passband * 27 3.0dB Passband Ripple * 28 Stopband * 27 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  80.0kHz Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 21.7 0.0031 kHz kHz dB kHz dB 1/fs 0.1 dB Max. Unit 43.5 kHz kHz dB kHz dB 1/fs 23.4 -0.0031 26.3 80.0 6.3 -0.3 Symbol Min. PB PB PR SB SA GD 0 Typ. 46.8 -0.0031 52.5 80.0 0.0031 6.3 -0.5 Symbol Min. PB PB PR SB SA GD 0 Typ. 0.1 dB Max. Unit 87.0 kHz kHz dB kHz dB 1/fs 93.6 -0.0031 105.0 80.0 0.0031 6.3 -1.9 016014707-E-00 0.1 dB 2016/12 - 26 - [AK7735] 4. Short Delay Slow Roll-Off Filter (DASD bit = “1”, DASL bit = “1”) fs=48kHz Parameter SHORT DELAY SLOW ROLL-OFF 0.05dB Passband * 33 3.0dB Passband Ripple * 28 Stopband * 33 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  20.0kHz fs=96kHz Parameter SHORT DELAY SLOW ROLL-OFF 0.05dB Passband * 33 3.0dB Passband Ripple * 28 Stopband * 33 Stopband Attenuation * 30, * 31 Group Delay * 29 Digital Filter + SCF + SMF * 30 Frequency Response : 0  40.0kHz Symbol Min. PB PB PR SB SA GD 0 Typ. Max. Unit 12.0 kHz kHz dB kHz dB 1/fs 21.1 -0.05 41.5 82.0 0.05 5.3 -4.8 Symbol Min. PB PB PR SB SA GD 0 Typ. 0.1 dB Max. Unit 24.2 kHz kHz dB kHz dB 1/fs 42.1 -0.05 83.0 82.0 0.05 5.3 -5.0 0.1 fs=192kHz Parameter Symbol Min. Typ. Max. SHORT DELAY SLOW ROLL-OFF 0.05dB PB 0 48.4 Passband * 33 3.0dB PB 84.3 Passband Ripple * 28 PR -0.05 0.05 Stopband * 33 SB 165.9 Stopband Attenuation * 30, * 31 SA 82.0 Group Delay * 29 GD 5.3 Digital Filter + SCF + SMF * 30 Frequency Response : 0  80.0kHz -5.7 0.1 Note * 33. The passband and stopband frequencies are proportional to fs (sampling rate). “PB = 0.252  fs, SB = 0.864  fs” 016014707-E-00 dB Unit kHz kHz dB kHz dB 1/fs dB 2016/12 - 27 - [AK7735] ■ SRC Block (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V ) 1. Audio Mode (SRCFAUD bit = “1”, SRCFEC bit = “0”) Parameter -0.01dB -0.01dB -0.01dB Passband -0.01dB -0.01dB -0.01dB -0.50dB Stopband Passband Ripple 0.980 ≤ 0.900 ≤ 0.533 ≤ 0.490 ≤ 0.450 ≤ 0.225 ≤ 0.167 ≤ 0.980 ≤ 0.900 ≤ 0.533 ≤ 0.490 ≤ 0.450 ≤ 0.225 ≤ 0.167 ≤ 0.225 ≤ 0.167 ≤ 0.450 ≤ 0.167 ≤ FSO/FSI ≤ 6.000 FSO/FSI < 0.990 FSO/FSI < 0.909 FSO/FSI < 0.539 FSO/FSI < 0.495 FSO/FSI < 0.455 FSO/FSI < 0.227 FSO/FSI ≤ 6.000 FSO/FSI < 0.990 FSO/FSI < 0.909 FSO/FSI < 0.539 FSO/FSI < 0.495 FSO/FSI < 0.455 FSO/FSI < 0.227 FSO/FSI ≤ 6.000 FSO/FSI < 0.227 FSO/FSI ≤ 6.000 FSO/FSI < 0.455 Symbol PB PB PB PB PB PB PB SB SB SB SB SB SB SB PR PR SA SA Min. 0 0 0 0 0 0 0 0.5417FSI 0.5021FSI 0.2974FSI 0.2812FSI 0.2604FSI 0.1802FSI 0.0970FSI Typ. Max. 0.4583FSI 0.4167FSI 0.2182FSI 0.2177FSI 0.1948FSI 0.1312FSI 0.0658FSI ±0.01 ±0.50 95.2 Stopband Attenuation 85.0 Group Delay * 34 67 GD (Ts=1/fs) (55/FSI+12/FSO) Note * 34. This value is SRC block only. It is the time from a rising edge of input LRCK after data is input to a rising edge of output LRCK just before the data is output when there is no phase difference between input and output LRCK. 016014707-E-00 2016/12 - 28 - Unit kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz dB dB dB dB Ts [AK7735] 2. Voice Mode (SRCFAUD bit = “0”, SRCFEC bit = “0”) Passband Parameter -0.01dB -0.01dB -0.50dB -0.50dB -0.50dB -0.50dB -0.50dB -0.50dB Stopband Passband Ripple Stopband Attenuation 0.980 ≤ FSO/FSI ≤ 6.000 0.900 ≤ FSO/FSI < 0.990 0.711 ≤ FSO/FSI < 0.910 0.653 ≤ FSO/FSI < 0.718 0.450 ≤ FSO/FSI < 0.660 0.327 ≤ FSO/FSI < 0.455 0.225 ≤ FSO/FSI < 0.330 0.167 ≤ FSO/FSI < 0.227 0.980 ≤ FSO/FSI ≤ 6.000 0.900 ≤ FSO/FSI < 0.990 0.711 ≤ FSO/FSI < 0.910 0.653 ≤ FSO/FSI < 0.718 0.450 ≤ FSO/FSI < 0.660 0.327 ≤ FSO/FSI < 0.455 0.225 ≤ FSO/FSI < 0.330 0.167 ≤ FSO/FSI < 0.227 0.900 ≤ FSO/FSI ≤ 6.000 0.167 ≤ FSO/FSI ≤ 0.910 0.900 ≤ FSO/FSI ≤ 6.000 0.653 ≤ FSO/FSI < 0.909 0.450 ≤ FSO/FSI ≤ 0.660 0.167 ≤ FSO/FSI < 0.455 Symb ol PB PB PB PB PB PB PB PB SB SB SB SB SB SB SB SB PR PR SA SA SA SA Group Delay * 34 (Ts=1/fs) Min. Typ. 0 0 0 0 0 0 0 0 0.5417FSI 0.5021FSI 0.3735FSI 0.3320FSI 0.2490FSI 0.1660FSI 0.1248FSI 0.0970FSI Max. Unit 0.4583FSI 0.4167FSI 0.3420FSI 0.3007FSI 0.2230FSI 0.1417FSI 0.1018FSI 0.0658FSI kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz dB dB dB dB dB dB ±0.01 ±0.50 95.2 90.0 70.0 60.0 67 (55/FSI+12/FSO) GD Ts 3. Echo Canceller Mode (SRCFEC bit = “1”) Parameter Passband -0.01dB Stopband Passband Ripple Stopband Attenuation Group Delay * 34 (Ts=1/fs) 0.167 ≤ FSO/FSI ≤ 6.000 0.167 ≤ FSO/FSI ≤ 6.000 0.167 ≤ FSO/FSI ≤ 6.000 Symbol PB SB PR Min. 0 0.5417FSI 0.167 ≤ FSO/FSI ≤ 6.000 SA 95.2 GD 016014707-E-00 Typ. Max. 0.4583FSI ±0.01 dB 67 (55/FSI+12/FSO) Ts 2016/12 - 29 - Unit kHz kHz dB [AK7735] 10. DC Characteristics (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V) Parameter Symbol Min. Typ. Max. Unit High-Level Input Voltage 1 * 35 VIH1 75%TVDD V Low-Level Input Voltage 1 * 35 VIL1 25%TVDD V High-Level Input Voltage 2 * 36 VIH2 75%VDD33 V Low-Level Input Voltage 2 * 36 VIL2 25%VDD33 V SCL, SDA High-Level Input Voltage VIH3 70%TVDD V SCL, SDA Low-Level Input Voltage VIL3 30%TVDD V TVDD-0.3 V VOH1 High-Level Output Voltage Iout= -100A * 37 0.3 V VOL1 Low-Level Output Voltage Iout=100A * 37 VDD33-0.3 V VOH2 High-Level Output Voltage Iout= -100A * 38 0.3 V VOL2 Low-Level Output Voltage Iout=100A * 38 Fast Mode TVDD ≥ 2.0V (Iout=3mA) VOL3 0.4 V TVDD < 2.0V (Iout=3mA) VOL3 20%TVDD V SDA Low-Level Output Voltage Fast Mode Plus TVDD ≥ 2.0V (Iout=20mA) VOL3 0.4 V TVDD < 2.0V (Iout=3mA) VOL3 20%TVDD V Input Leak Current * 39 Iin ±10 A Input Leak Current, Pulled down pins Iid 66 A Power Down * 40, * 42 Input Leak Current, Pulled down pins Iid 72 A Power Down Release * 41, * 42 132 Input Leak Current, TESTI pin Iid A 17 Input Leak Current, XTI pin lix A Notes * 35. SDIN1, SDIN2/JX0, LRCK1, BICK1, LRCK2/JX1, BICK2/JX2, PDN, SCLK/SCL, CSN and SI/I2CFIL pins. The SCL pin is not included. * 36. SDIN3/JX3, SDIN4, LRCK3, BICK3, TESTI and XTI pins * 37. SDOUT1/RDY, STO/RDY/SDOUT2 and SO/SDA pins. The SDA pin is not included. * 38. SDOUT3/CLKO/GPO1 pin and SDOUT4/GPO2 pin * 39. Except internal pulled-down pins and the XTI pin. * 40. When the AK7735 is powered down (PDN pin = “L”), the pull down resistors of LRCK1, BICK1, LRCK2/JX1, BICK2/JX2, LRCK3 and BICK3 pins is 50kΩ (Typ. @3.3V). * 41. When the AK7735 is powered up (PDN pin = “H”), the pull down resistors of LRCK1, BICK1, LRCK2/JX1, BICK2/JX2, LRCK3 and BICK3 pins is 46kΩ (Typ. @3.3V). * 42. Leak current in case of inputting 3.3V when LVDD=TVDD=VDD33=3.3V. 016014707-E-00 2016/12 - 30 - [AK7735] 11. Switching Characateristics ■ System Clock (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF) Parameter Symbol Min. Typ. Max. XTI Input Timing a) X’tal Oscillator Input Frequency fXTI 11.2896 18.432 b) XTI Clock Input Duty Cycle 40 50 60 Input Frequency fXTI 0.256 24.576 CLKO Output Timing Output Frequency fCLKO 2.048 24.576 Duty Cycle dCLKO 50 LRCK/BICK Input Timing (Slave Mode) LRCK Input Timing Frequency fs 8 192 BICK Input Timing Frequency * 43 fBCLK 0.256 24.576 Pulse Width Low tBCLKL 0.4 / fBCLK Pulse Width High tBCLKH 0.4 / fBCLK LRCK/BICK Output Timing (PLL Master Mode) LRCK Output Timing Frequency fs 8 192 Pulse Width High PCM Mode tLRCKH 1/fBCLK Except PCM Mode tLRCKH 50 BICK Output Timing Frequency * 43 fBCLK 0.256 24.576 Duty dBCLK 50 Note * 43. Required to meet the following expression: fBCLK ≥ 2 x fs x (Input/Output Data Length). ■ Power Unit MHz % MHz MHz % kHz MHz ns ns kHz ns % MHz % Down (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V) Parameter Symbol Min. Typ. Max. PDN Pulse Width * 44 tRST 600 Note * 44. The PDN pin must be “L” when power up the AK7735. Unit ns PDN tRST VIL1 Figure 3. Reset Timing 016014707-E-00 2016/12 - 31 - [AK7735] ■ Serial Data Interface (SDIN1 ~ SDIN4, SDOUT1 ~ SDOUT4) (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF) Parameter Symbol Min. Typ. Max. Unit Slave Mode Delay Time from BICK “↑” to LRCK * 45 tBLRD 10 ns Delay Time from LRCK to BICK “↑” * 45 tLRBD 10 ns Serial Data Input Latch Setup Time tBSIDS 10 ns Serial Data Input Latch Hold Time tBSIDH 5 ns Delay Time from BICK “↓” to Serial Data Output * 46 tBSOD1 20 ns Delay Time from BICK “↑”to Serial Data Output * 45, * 47 tBSOD2 5 30 ns Master Mode 32, 48, 64, BICK Frequency fBCLK fs 128, 256 BICK Duty Cycle 50 % Delay Time from BICK “↓” to LRCK * 46 tMBL -10 10 ns Serial Data Input Latch Setup Time tBSIDS 10 ns Serial Data Input Latch Hold Time tBSIDH 10 ns Delay Time from BICK “↓” to Serial Data Output * 46, * 47 tBSOD 10 ns Notes * 45. It is measured from BICK “↓” when the BICK polarity is inverted by setting BCKPx bit = “1”. * 46. It is measured from BICK “↑” when the BICK polarity is inverted by setting BCKPx bit = “1”. * 47. Set SDOPHx bit to “1” and the data from SDOUTx pin is output based on BICK “↑” when BICK speed is more than 12.288MHz such as when using TDM256 mode with 96kHz sampling frequency or TDM128 mode with 192kHz sampling frequency in slave mode. SDOPHx bit must be set to “0” in master mode. 016014707-E-00 2016/12 - 32 - [AK7735] 1. Slave Mode LRCK(I) tBLRD VIH VIL D D tLRBD D BICK(I) tBSIDS D D tBSIDH SDIN1~4 VIH VIL VIH VIL D Figure 4. Serial Interface Input Timing in Slave Mode D VIH VIL LRCK(I) tBLRD tLRBD D BICK(I) VIH VIL tBSOD1 tBSOD1 D D 50%TVDD 50%VDD33 SDOUT1~4 Figure 5. Serial Interface Output Timing in Slave Mode (SDOPHx bit = “0”) VIH VIL LRCK(I) tBLRD tLRBD D BICK(I) VIH VIL tBSOD2 D tBSOD2 D SDOUT1~4 50%TVDD 50%VDD33 Figure 6. Serial Interface Output Timing in Slave Mode (SDOPHx bit = “1”) 016014707-E-00 2016/12 - 33 - [AK7735] 2. Master Mode 50%TVDD 50%VDD33 LRCK(O) tMBL tMBL 50%TVDD 50%VDD33 D BICK(O) tBSIDS tBSIDH SDIN1~4 VIH VIL D Figure 7. Serial Interface Input Timing in Master Mode LRCK(O) 50%TVDD 50%VDD33 BICK(O) 50%TVDD 50%VDD33 tBSOD D tBSOD D 50%TVDD 50%VDD33 SDOUT1~4 Figure 8. Serial Interface Output Timing in Master Mode (SDOPHx bit = “0”) 016014707-E-00 2016/12 - 34 - [AK7735] ■ SPI Interface (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF) 1. SPI Low Speed Mode Parameter μP Interface Signal SCLK Frequency * 49 SCLK Low-level Width SCLK High-level Width Microcontroller → AK7735 CSN High-level Width From CSN “↑” to PDN “↑” From PDN “↑” to CSN “↓” From CSN “↓” to SCLK “↓” From SCLK “↑” to CSN “↑” SI Latch Setup Time SI Latch Hold Time AK7735 → Microcontroller Delay Time from SCLK “↓” to SO Output SO Output Hold Time from SCLK “↑” * 48 Symbol Min. fSCLK tSCLKL tSCLKH Typ. Max. Unit 3.0 160 160 MHz ns ns tWRQH tRST tIRRQ tWSC tSCW tSIS tSIH 300 360 1 300 480 120 120 ns ns ms ns ns ns ns tSOS tSOH 120 120 ns ns 2. SPI High Speed Mode Parameter Symbol Min. Typ. Max. Unit μP Interface Signal SCLK Frequency * 49 fSCLK 6 MHz SCLK Low-level Width tSCLKL 72 ns SCLK High-level Width tSCLKH 72 ns Microcontroller → AK7735 CSN High-level Width tWRQH 150 ns From CSN “↑” to PDN “↑” tRST 180 ns From PDN “↑” to CSN “↓” tIRRQ 1 ms From CSN “↓” to SCLK “↓” tWSC 150 ns From SCLK “↑” to CSN “↑” tSCW 240 ns SI Latch Setup Time tSIS 60 ns SI Latch Hold Time tSIH 60 ns AK7735 → Microcontroller Delay Time from SCLK “↓” to SO Output tSOS 60 ns SO Output Hold Time from SCLK “↑” * 48 tSOH 60 ns Notes * 48. Except when writing the 24th bit (8 bits command + 16 bits address) of the command code. This will be the 8th bit (8 bits command) with “write preparation data read command (24H, 25H, 26H and 27H)”. * 49. Dummy command writing for switching to SPI interface from I2C interface and control register access can always be made in SPI high speed mode (Max. 6MHz). DSP RAM area can be accessed in SPI low speed mode (Max. 3MHz) in clock reset state (CKRESETN bit = “0”) and can also be accessed in SPI high speed mode (Max. 6MHz) when PLL is locked (CKRESETN bit = “1” and PLL is locked). It is necessary to set DLRDY bit to “1” when accessing to the DSP RAM area while PLL is unlocked (Figure 47). 016014707-E-00 2016/12 - 35 - [AK7735] VIH1 VIL1 SCLK tSCLKL tSCLKH 1/fSCLK 1/fSCLK VIH1 PDN VIL1 VIH1 CSN VIL1 tRST tIRRQ Figure 9. SPI Interface Timing 1 VIH1 VIL1 tWRQH CSN VIH1 SI VIL1 tSIS tSIH VIH1 VIL1 SCLK tWSC tSCW tWSC tSCW Figure 10. SPI Interface Timing 2 (Microcontroller → AK7735) VIH1 VIL1 SCLK 50%TVDD SO tSOS tSOH Figure 11. SPI Interface Timing 3 (AK7735 → Microcontroller) 016014707-E-00 2016/12 - 36 - [AK7735] ■ I2C Interface (Ta=-40 ~ 85C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V) 1. I2C: Fast Mode Parameter I2C Timing SCL clock frequency Bus Free Time Between Transmissions Start Condition Hold Time (prior to first Clock pulse) Clock Low Time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines Fall Time of Both SDA and SCL Lines Setup Time for Stop Condition Pulse Width of Spike Noise Suppressed By Input Filter Capacitive load on bus 2. I2C: Fast Mode Plus Parameter I2C Timing SCL clock frequency Bus Free Time Between Transmissions Start Condition Hold Time (prior to first Clock pulse) Clock Low Time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines Fall Time of Both SDA and SCL Lines Setup Time for Stop Condition Pulse Width of Spike Noise Suppressed By Input Filter Capacitive load on bus Symbol Min. Typ. Max. Unit fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO tSP Cb 1.3 0.6 1.3 0.6 0.6 0 0.1 0.6 0 - - 400 0.3 0.3 50 400 kHz s s s s s s s s s s ns pF Symbol Min. Typ. Max. Unit fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO tSP Cb 0.5 0.26 0.5 0.26 0.26 0 0.05 0.26 0 - - 1 0.12 0.12 50 550 MHz s s s s s s s s s s ns pF VIH3 SDA VIL3 tBUF tLOW tR tHIGH tF tSP VIH3 SCL VIL3 tHD:STA Stop tHD:DAT tSU:DAT tSU:STA tSU:STO Start Stop Start 2 Figure 12. I C Interface Timing 016014707-E-00 2016/12 - 37 - [AK7735] 12. Functional Descriptions ■ System Clock 1. PLL Mode The AK7735 has a PLL circuit to generate an internal operation clock. An input pin for the PLL reference clock is selected by REFSEL[1:0] bits. REFMODE[4:0] bits set the frequency of the reference clock. A reference clock input pin and the reference clock frequency must be changed during clock reset (CKRESETN bit = “0”). Use of Crystal Oscillator XTI Available BICK1 N/A BICK2 N/A BICK3 N/A Table 4. PLL Reference Clock Input Pin Select Mode REFSEL[1:0] bits 0 1 2 3 00 01 10 11 Reference Clock Input Pin (default) Input Frequency 48kHz base 44.1kHz base 0 00000 256kHz 235.2kHz (default) 1 00001 384kHz 352.8kHz 2 00010 512kHz 470.4kHz 3 00011 768kHz 705.6kHz 4 00100 1.024MHz 940.8kHz 5 00101 1.152MHz 1.0584MHz 6 00110 1.536MHz 1.4112MHz 7 00111 2.048MHz 1.8816MHz 8 01000 2.304MHz 2.1168MHz 9 01001 3.072MHz 2.8224MHz 10 01010 4.096MHz 3.7632MHz 11 01011 4.608MHz 4.2336MHz 12 01100 6.144MHz 5.6448MHz 13 01101 8.192MHz 7.5264MHz 14 01110 9.216MHz 8.4672MHz 15 01111 12.288MHz 11.2896MHz (X’tal available) 16 10000 18.432MHz 16.9344MHz (X’tal available) 17 10001 24.576MHz 22.5792MHz Others N/A N/A N/A Table 5. PLL Reference Clock Frequency Setting (N/A: Not Available) Mode REFMODE[4:0] bits The PLL block multiplies an input clock which is set by REFMODE[4:0] bits directly and generates a 147.456MHz/135.4752MHz master clock (PLLMCLK) for internal operation. 48kHz base 44.1kHz base Master Clock (PLLMCLK) 147.456MHz 135.4752MHz Table 6. Internal Operation Master Clock 016014707-E-00 2016/12 - 38 - [AK7735] 1-1. XTI Input When using a crystal oscillator, connect it between XTI pin and XTO pin. Only 11.2896MHz, 12.288MHz, 16.9344MHz and 18.432MHz crystal oscillators are available. When using an external clock, the external clock must be input to the XTI pin and the XTO pin must be open. The XTI pin should also be open when not using XTI input. XTI XTI ExternalClock Clock External XTO AK7735 XTO Figure 13. Using Crystal Oscillator AK7735 Figure 14. Using External System Clock 1-2. BICK Input A stable BICK of single frequency is required when using clock input from BICKx (x=1~3) pin as reference clock. 016014707-E-00 2016/12 - 39 - [AK7735] ■ Audio HUB 1. Audio HUB Audio HUB provides simultaneous data transmitting and flexible path configuration for various audio sources by setting sample rate converters, input/output ports that support TDM mode and registers. Therefore the AK7735 is able to support various use cases of audio systems. 2. Definition of Clock Sync Domain The AK7735 has four Clock Sync Domains (Figure 15). Reference clocks (LRCKSDx, BICKSDx, x=1~4) are output according to each register settings. The internal audio data and input/output data of the AK7735 must be synchronized with one of these four Clock Sync Domains. When MSNx bit =“0”, clocks from input pins (LRCKx pin/BICKx pin) are selected as reference clock of clock sync domain 1~3. When MSNx bit = “1”, internal dividing clocks (MLRCKx/MBICKx) are selected as reference clock of clock sync domain 1~3. For clock sync domain 4, internal dividing clocks (MBICK4/MLRCK4) are selected as reference clock (BICKSD4/LRCKSD4) (Table 7). Clock Sync Domain Sync Domain x (x=1 ~ 3) MSNx bit Reference Clock MSNx = 0 Clocks from Input Pins (BICKx pin/LRCKx pin) Internal Dividing Clocks (MBICKx/MLRCKx) Reference clock is generated internally by CKSx[2:0], BDVx[9:0] and SDVx[2:0] bits settings. Internal Dividing Clocks (MBICK4/MLRCK4) Reference clock is generated internally by CKS4[2:0], BDV4[9:0] and SDV4[2:0] bits settings. Table 7. Reference Clock of Clock Sync Domain MSNx = 1 Sync Domain 4 LRCK1(pin Input) BICK1(pin Input) PLLMCLK BICK1~3 pin LRCKSD1 BICKSD1 CKS1[2:0] XTI pin DIV MBICK1 BDV1[9:0] p MSN1 DIV MLRCK1 SDV1[2:0] LRCK2(pin Input) BICK2(pin Input) CKS2[2:0] / BDV2[9:0] / LRCKSD2 BICKSD2 SDV2[2:0] MSN2 LRCK3(pin Input) BICK3(pin Input) CKS3[2:0] / BDV3[9:0] / LRCKSD3 BICKSD3 SDV3[2:0] MSN3 CKS4[2:0] / BDV4[9:0] / SDV4[2:0] LRCKSD4 BICKSD4 Figure 15. Definition of Clock Sync Domain 016014707-E-00 2016/12 - 40 - [AK7735] The clock source of internal dividing clock MBICKx is selected by CKSx[2:0] bits (Table 8). MBICKx is generated by dividing the selected clock source according to the BDVx[9:0] bits setting (Table 9). Additionally, MLRCKx is generated by dividing this MBICKx according to the SDVx[2:0] bits setting (Table 10). Clock Source CKSx[2:0] bits 000 TieLow (default) 001 PLLMCLK 010 XTI pin 011 BICK1 pin 100 BICK2 pin 101 BICK3 pin Others N/A Table 8. Clock Source of Internal Dividing Clock (N/A: Not Available) BDVx[9:0] bits Divide by 0x000 1 0x001 – 0x1FF BDVx+1 Table 9. MBICKx Setting (default) SDVx[2:0] bits Divide by 000 64 (default) 001 48 010 32 011 128 100 256 Others N/A Table 10. MLRCKx Setting (N/A: Not Available) Clock Sync Domain settings when PLLMCLK is selected as the clock source are shown in Table 11. When PLLMCLK is selected as the clock source, frequency settings other than shown in Table 11 are not available. Reference clocks for each setting are calculated as below. PLLMCLK = 147.456MHz (48kHz base)/ 135.4752MHz (44.1kHz base) MBICKx = PLLMCLK divided by BDVx[9:0] bits setting MLRCKx = MBICKx divided by SDVx[2:0] bits setting ex) When PLLMCLK = 147.456MHz, BDVx[9:0] bits = 0x02F(divide by 48) and SDVx[2:0] bits = “000”(divide by 64), MBICKx = 147.456MHz/48 = 3.072MHz, MLRCKx = 3.072MHz/64 = 48kHz. 016014707-E-00 2016/12 - 41 - [AK7735] BDVx[9:0] bits MBICKx Dividing 0x23F 0x17F 0x11F 0x08F 0x047 0x17F 0x0FF 0x0BF 0x05F 0x02F 576 384 288 144 72 384 256 192 96 48 MBICKx(MHz) 48kHz 44.1kHz Base Base 0.256 0.2352 0.384 0.3528 0.512 0.4704 1.024 0.9408 2.048 1.8816 0.384 0.3528 0.576 0.5292 0.768 0.7056 1.536 1.4112 3.072 2.8224 SDVx[2:0] bits MLRCKx Dividing 010 001 000 011 100 010 001 000 011 100 32 48 64 128 256 32 48 64 128 256 MLRCKx(kHz) 48kHz 44.1kHz Base Base 8 N/A N/A 8 N/A 8 N/A 8 N/A 8 12 11.025 12 11.025 12 11.025 12 11.025 12 11.025 0x11F 288 0.512 0.4704 010 32 16 14.7 0x0BF 192 0.768 0.7056 001 48 16 14.7 0x08F 144 1.024 0.9408 000 64 16 14.7 0x047 72 2.048 1.8816 011 128 16 14.7 0x023 36 4.096 3.7632 100 256 16 14.7 0x0BF 192 0.768 0.7056 010 32 24 22.05 0x07F 128 1.152 1.0584 001 48 24 22.05 0x05F 96 1.536 1.4112 000 64 24 22.05 0x02F 48 3.072 2.8224 011 128 24 22.05 0x017 24 6.144 5.6448 100 256 24 22.05 0x08F 144 1.024 0.9408 010 32 32 29.4 0x05F 96 1.536 1.4112 001 48 32 29.4 0x047 72 2.048 1.8816 000 64 32 29.4 0x023 36 4.096 3.7632 011 128 32 29.4 0x011 18 8.192 7.5264 100 256 32 29.4 0x05F 96 1.536 1.4112 010 32 48 44.1 0x03F 64 2.304 2.1168 001 48 48 44.1 0x02F 48 3.072 2.8224 000 64 48 44.1 0x017 24 6.144 5.6448 011 128 48 44.1 0x00B 12 12.288 11.2896 100 256 48 44.1 0x02F 48 3.072 2.8224 010 32 96 88.2 0x01F 32 4.608 4.2336 001 48 96 88.2 0x017 24 6.144 5.6448 000 64 96 88.2 0x00B 12 12.288 11.2896 011 128 96 88.2 0x005 6 24.576 22.5792 100 256 96 88.2 0x017 24 6.144 5.6448 010 32 192 176.4 0x00F 16 9.216 8.4672 001 48 192 176.4 0x00B 12 12.288 11.2896 000 64 192 176.4 0x005 6 24.576 22.5792 011 128 192 176.4 Table 11. Clock Sync Domain Setting when PLLMCLK is Clock Source (N/A: Not Available) For Clock Sync Domain, set BDVx[9:0] bits and SDVx[2:0] bits according to the input clock frequency when the XTI or BICK pin input is selected as the clock source, as well as the PLLMCLK. MBICKx = XTI pin or BICKx pin frequency divided by BDVx[9:0] bits setting MLRCKx = MBICKx divided by SDVx[2:0] bits setting 016014707-E-00 2016/12 - 42 - [AK7735] 3. Sampling Frequency Setting of ADC and DAC Blocks Available sampling modes for analog block of the AK7735 are shown below. Sampling frequency mode is set by FSMODE[4:0] bits. ADC1 can be operated by a different sampling frequency from ADC2, DAC1 and DAC2. Mode FSMODE[4:0] bits ADC2, DAC1, DAC2 ADC1 0 00000 8kHz 8kHz (default) 1 00001 12kHz 12kHz 2 00010 16kHz 16kHz 3 00011 24kHz 24kHz 4 00100 32kHz 32kHz 5 00101 32kHz 16kHz 6 00110 32kHz 8kHz 7 00111 48kHz 48kHz 8 01000 48kHz 24kHz 9 01001 48kHz 16kHz 10 01010 48kHz 8kHz 11 01011 96kHz 96kHz 12 01100 96kHz 48kHz 13 01101 96kHz 32kHz 14 01110 96kHz 24kHz 15 01111 96kHz 16kHz 16 10000 96kHz 8kHz 17 10001 192kHz 192kHz 18 10010 192kHz 96kHz 19 10011 192kHz 48kHz 20 10100 192kHz 32kHz 21 10101 192kHz 16kHz Others N/A N/A N/A Table 12. Sampling Frequency Settings of ADC and DAC Blocks (fs=48kHz base, N/A: Not Available) Clock Sync Domain of the ADC1 (SDADC1) is selected by SDADC1[2:0] bits and Clock Sync Domain of the ADC2, DAC1 and DAC2 (SDCODEC) is selected by SDCODEC[2:0] bits (Table 18). The sampling frequency of LRCKSDx for SDADC1 and the sampling frequency of the ADC1 should be the same. The sampling frequency of LRCKSDx for SDCODEC and the sampling frequency of the ADC2, DAC1 and DAC2 should also be the same. SDADC1 and SDCODEC must be synchronized with PLLMCLK. Set SDADC1[2:0] bits to “000” (reference clock is fixed to “L”) when not using the ADC1. In the same manner, SDCODEC[2:0] bits should be set to “000” when not using the ADC2, DAC1 and DAC2. 016014707-E-00 2016/12 - 43 - [AK7735] 4. Master Clock Output Setting The master clock output frequency setting of the CLKO pin is controlled by CLKOSEL[2:0] bits. Output Frequency Output Frequency (fs=48kHz base) (fs=44.1kHz base) 000 12.288MHz 11.2896MHz 001 24.576MHz 22.5792MHz 010 8.192MHz 7.5264MHz 011 6.144MHz 5.6448MHz 100 4.096MHz 3.7632MHz 101 2.048MHz 1.8816MHz N/A N/A N/A Table 13. CLKO Output Frequency Setting (N/A: Not Available) Mode CLKOSEL[2:0] bits 0 1 2 3 4 5 others (default) 5. SDINx/BICKx/LRCKx pin Setting The AK7735 has three BICK/LRCK pins and they are independent each other. MSNx bit selects Master/Slave mode setting of the BICKx pin and the LRCKx pin (x=1~3). (Table 14) MSNx bit (x=1~3) BICKx pin, LRCKx pin 0 Slave Mode (Input) 1 Master Mode (Output) Table 14. BICKx/LRCKx Pin Mode Selection (default) Note * 50. Set MSNx bit to “0” when using the BICKx pin as PLL reference clock input pin. When BICKx/LRCKx (x=1~3) pins are set to slave mode, the reference clocks of Clock Sync Domain x are the clocks from BICKx/LRCKx pins (Table 7). When BICKx/LRCKx pins are set to master mode, the output clocks of the BICKx/LRCKx pins can be selected from four Sync Domains by SDBCKx[2:0] bits (x= 1~3). (Table 15) MSNx bit SDBCKx[2:0] bits BICKx pin/LRCKx pin 1 000 TieLow (default) 1 001 BICKSD1, LRCKSD1 1 010 BICKSD2, LRCKSD2 1 011 BICKSD3, LRCKSD3 1 100 BICKSD4, LRCKSD4 1 Others N/A Table 15. Clock Sync Domain Setting of BICKx/LRCKx Pins in Master Mode (N/A: Not Available) Note * 51. SDBCKx[2:0] bits can be in the default setting “000” (TIeLow) when BICKx pin/LRCKx pin (x=1~3) are in slave mode. The AK7735 has four serial data input ports (SDINx pin). Synchronizing clock of SDINx pin can be selected from three BICKx/LRCKx pins by EXBCKx[1:0] bits. EXBCKx[1:0] bits BICK/LRCK Synchronizing with SDINx Pin 00 TieLow (default) 01 BICK1 pin, LRCK1 pin 10 BICK2 pin, LRCK2 pin 11 BICK3 pin, LRCK3 pin Table 16. BICK/LRCK Setting Synchronizing with SDINx Pin 016014707-E-00 2016/12 - 44 - [AK7735] 6. Clock Sync Domain Setting of DSP Clock sync domain of DSP1 is selected by SDDSP1[2:0] bits. The DSP1 input port inherits the sync domain of the input data. Clock sync domain of the output ports are set by SDDSP1O1[2:0] ~ SDDSP1O6[2:0] bits. Clock sync domain of DSP2 is selected by SDDSP2[2:0] bits. The DSP2 input port inherits the sync domain of the input data. Clock sync domain of the output ports are set by SDDSP2O1[2:0] ~ SDDSP2O6[2:0] bits. DSP’s Sync Domain DSP1 SDDSP1[2:0] bits DSP2 SDDSP2[2:0] bits Input Port Sync Domain Output Port Sync Domain Set by SDDSP1O1[2:0] bits ~ Inherit the Sync Domain of Input data SDDSP1O6[2:0] bits Set by SDDSP2O1[2:0] bits ~ Inherit the Sync Domain of Input data SDDSP2O6[2:0] bits Table 17. Sync Domain Setting of DSP Note * 52. The sync domains of Input/Output ports should synchronize with the sync domain of DSP. 016014707-E-00 2016/12 - 45 - [AK7735] ■ Audio Data Path Setting 1. Data Bus, In/Output Port The AK7735 has a 32-bit serial audio stereo data bus (Figure 17). Inputs and outputs of each internal block and all input/output pins of the AK7735 are connected to this serial audio data bus. The port that data is input to this serial audio data bus is defined as “input port” and the port that data is output from the audio data bus is defined as “output port”. Each port selects Clock Sync Domain and inputs (outputs) audio data that synchronized to the reference clock of the Clock Sync domain to the data bus (Figure 17). A stereo data on each port is defined as “data source”. All data sources are connected to the serial audio bus and a data source on any input port can be output to any output port. Data connection of the input port and the output port with the same sampling frequency via data bus is defined as “data path”. Input and output ports on the same data path should have the same Clock Sync Domain. If these ports have different Clock Sync Domains, reference clocks (BICKSDx, LRCKSDx) must be synchronized and the sampling frequency of LRCKSDx must be the same. However, phase synchronization of reference clocks is not necessary and frequencies of BICKSDx can be different. An SRC is necessary for data transmission between two ports that have clock sync domain with different sampling frequencies or asynchronous reference clocks. e.g.) Data Path Example (Figure 16) It is an example of outputting data from the DAC1 after converting fs=8kHz input data from the SDIN1 pin to fs=48kHz by SRC. Path 1 is defined from the SDIN1 pin to SRC1. Path2 is defined from SRC1 to DAC1. Set the same clock sync domain for data ports of the Path1 (SDIN1 input and SRC1 output ports), and for the data ports of the Path2 (SRC1 input port and DAC1), independently. SDIN1pin SDOUT1~ PATH1(fs=8kHz) SRC1 SRCI1 SDOUT1~ SRCO1 SDIN1 5 : Input Port SDIN1 SDIN1 SDIN1 5 : Output Port DACI1 SDOUT1~ DAC1 5 PATH2(fs=48kHz) Data Bus Figure 16. Data Path Example 016014707-E-00 2016/12 - 46 - [AK7735] DIN1 SDOUT1~ DOUT1 SDIN1 DIN2 5 SDOUT1~ DOUT2 SDIN1 DIN3 5 SDOUT1~ DOUT3 SDIN1 DIN4 5 SDOUT1~ DOUT4 SDIN1 DIN5 5 SDOUT1~ DOUT5 SDIN1 DIN6 5 SDOUT1~ DOUT6 SDIN1 5 SDIN1 SDIN1pin SDIN1 SDIN2pin SDIN1 SDIN3pin SDIN1 SDIN4pin SDIN1 SDIN2 SDIN3 SDIN4 SDOUT1 pin SDOUT1 SDOUT1~5 SDOUT2 pin SDOUT2 SDOUT1~5 SDOUT3 pin SDOUT3 SDOUT1~5 SDOUT4 pin SDOUT4 SDOUT1~5 SRC1 SRC2 DIN1 SDOUT1~ DOUT1 SDIN1 DIN2 5 SDOUT1~ DOUT2 SDIN1 DIN3 5 SDOUT1~ DOUT3 SDIN1 DIN4 5 SDOUT1~ DOUT4 SDIN1 DIN5 5 SDOUT1~ DOUT5 SDIN1 DIN6 5 SDOUT1~ DOUT6 SDIN1 5 SRCI1 SDOUT1~ SRCO1 SDIN1 5 SRCI2 SDOUT1~ SRCO2 SDIN1 5 ALL0 SDIN1 SDIN1 SDOUT1~ : Input Port 5 DSP2 ADC1 SDIN1 ADC1 ADC2 SDIN1 ADC2 DAC1 DAC1 DAC2 5 SDOUT1~ DAC2 SDOUT1~ : Output Port DSP1 Serial Data Bus (Stereo 32bit)5 Figure 17. AK7735 Audio Data Path 2. Data Bus Group Delay When the input and output ports with the same sampling frequency are connected via data bus, group delay of 2/fs occurs in total as audio data will have 1/fs group delay at each input and output port of the data bus (fs is the sampling frequency of the sync domain of the input and output ports). Therefore, this group delay will increase as the number of times that the data goes through the data path increases. In the example of Figure 16, 2/fs (fs=8kHz) group delay occurs when inputting the SDIN1 data to SRC via data bus and another 2/fs (fs=48kHz) group delay occurs when inputting the SRC1 output data to DAC1 via data bus. 016014707-E-00 2016/12 - 47 - [AK7735] 3. Clock Sync Domain Setting of Input/output Port Domain numbers are assigned to each Clock Sync Domain (Table 18). Each input/output port has setting registers for Clock Sync Domain (Figure 20). Set a domain number to clock sync domain setting registers for each input/output port. (Table 19, Table 20) Domain Number Clock Sync Domain 0x0 TieLow 0x1 LRCKSD1, BICKSD1 (SD1) 0x2 LRCKSD2, BICKSD2 (SD2) 0x3 LRCKSD3, BICKSD3 (SD3) 0x4 LRCKSD4, BICKSD4 (SD4) Table 18. Clock Sync Domain Number If the output port sync domain setting is in auto mode, the output port inherits the sync domain of the input data. e.g.) Data Path Example It is an example of outputting data from the DAC1 after converting fs=8kHz input data from the SDIN1 pin to fs=48kHz by SRC (Figure 16). The output port of SRC1 is in auto mode. Therefore the output port inherits the clock sync domain of SDIN1 input port. Clock Sync Domain of the SDINx pin is automatically selected by setting EXBCKx[1:0] bits, MSN bit and SDBCKx[2:0] bits (Table 15, Table 16). e.g.) Clock sync domain 3 is selected for the SDIN2 pin when EXBCK2[1:0] bits = “011” and MSN3 bit =“0” (Figure 18). Figure 18. Clock Sync Domain Setting Example1 of SDINx Pin e.g.) Clock sync domain 3 is selected for the SDIN1 pin when EXBCK1[1:0] bits = “001”, MSN2 bit =“1” and SDBCK2[2:0] bits = “011” (Figure 19). Figure 19. S Clock Sync Domain Setting Example2 of SDINx Pin 016014707-E-00 2016/12 - 48 - [AK7735] Figure 20. Clock Sync Domain Setting 016014707-E-00 2016/12 - 49 - [AK7735] 4. Source Address, Source Selecting Registers A source address is assigned to each input port source (Table 19). The output port can select any input port source by setting a source address to the source select register. Source Name Source Contents Input Port Clock Sync Domain Setting Register 0x0000 0000 fixed SDIN1 (pin) Input TDMI1 Slot1, 2 Input TDMI1 Slot3, 4 Input ALL0 * 53 0x02 ALL0 SDIN1 SDIN1A SDIN1B SDIN1 * 54 0x03 SDIN1C TDMI1 Slot5, 6 Input 0x04 SDIN1D TDMI1 Slot7, 8 Input 0x05 SDIN2 SDIN2A SDIN2 (pin) Input TDMI2 Slot1, 2 Input 0x06 SDIN2B TDMI2 Slot3, 4 Input SDIN2 * 54 0x07 SDIN2C TDMI2 Slot5, 6 Input 0x08 0x0A SDIN2D SDIN3 SDIN3A SDIN3B TDMI2 Slot7, 8 Input SDIN3 (pin) Input TDMI3 Slot1, 2 Input TDMI3 Slot3, 4 Input SDIN3 * 54 0x0B SDIN3C TDMI3 Slot5, 6 Input 0x0C 0x0E SDIN3D SDIN4 SDIN4A SDIN4B TDMI3 Slot7, 8 Input SDIN4 (pin) Input TDMI4 Slot1, 2 Input TDMI4 Slot3, 4 Input SDIN4 * 54 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 SDIN4C SDIN4D DOUT101 DOUT102 DOUT103 DOUT104 DOUT105 DOUT106 DOUT201 TDMI4 Slot5, 6 Input TDMI4 Slot7, 8 Input DSP1 Output 1 DSP1 Output 2 DSP1 Output 3 DSP1 Output 4 DSP1 Output 5 DSP1 Output 6 DSP2 Output 1 DOUT101 DOUT102 DOUT103 DOUT104 DOUT105 DOUT106 DOUT201 SDDSP1O1[2:0] SDDSP1O2[2:0] SDDSP1O3[2:0] SDDSP1O4[2:0] SDDSP1O5[2:0] SDDSP1O6[2:0] SDDSP2O1[2:0] 0x18 0x19 0x1A DOUT202 DOUT203 DOUT204 DSP2 Output 2 DSP2 Output 3 DSP2 Output 4 DOUT202 DOUT203 DOUT204 SDDSP2O2[2:0] SDDSP2O3[2:0] SDDSP2O4[2:0] 0x1B DOUT205 DSP2 Output 5 DOUT205 SDDSP2O5[2:0] 0x1C 0x1D 0x1E 0x1F DOUT206 ADC1 ADC2 SRCO1 DSP2 Output 6 ADC1 Output ADC2 Output SRC1 Output DOUT206 ADC1 ADC2 SRCO1 SDDSP2O6[2:0] SDADC1[2:0] SDCODEC[2:0] SDSRCO1[2:0] 0x20 Others SRCO2 N/A SRC2 Output N/A SRCO2 N/A SDSRCO2[2:0] N/A Source Address 0x00 0x01 0x09 0x0D Table 19. Source Addresses of Input Ports (N/A: Not Available) 016014707-E-00 2016/12 - 50 - [AK7735] Source Select Registers SELDO1A[5:0] SELDO1B[5:0] SELDO1C[5:0] SELDO1D[5:0] SELDO2A[5:0] SELDO2B[5:0] SELDO2C[5:0] SELDO2D[5:0] SELDO3A[5:0] SELDO3B[5:0] SELDO3C[5:0] SELDO3D[5:0] SELDO4A[5:0] SELDO4B[5:0] SELDO4C[5:0] SELDO4D[5:0] SELDA1[5:0] SELDA2[5:0] D1SELDI1[5:0] D1SELDI2[5:0] D1SELDI3[5:0] D1SELDI4[5:0] D1SELDI5[5:0] D1SELDI6[5:0] D2SELDI1[5:0] D2SELDI2[5:0] D2SELDI3[5:0] D2SELDI4[5:0] D2SELDI5[5:0] D2SELDI6[5:0] SELSRCI1[5:0] SELSRCI2[5:0] Contents Output Port Clock Sync Domain Setting Register SDOUT1(pin) Output TDMO1 Slot1, Slot2 TDMO1 Slot3, Slot4 SDOUT1 SDDO1[2:0] TDMO1 Slot5, Slot6 TDMO1 Slot7, Slot8 SDOUT2(pin) Output TDMO2 Slot1, Slot2 TDMO2 Slot3, Slot4 SDOUT2 SDDO2[2:0] TDMO2 Slot5, Slot6 TDMO2 Slot7, Slot8 SDOUT3(pin) Output TDMO3 Slot1, Slot2 TDMO3 Slot3, Slot4 SDOUT3 SDDO3[2:0] TDMO3 Slot5, Slot6 TDMO3 Slot7, Slot8 SDOUT4(pin) Output TDMO4 Slot1, Slot2 TDMO4 Slot3, Slot4 SDOUT4 SDDO4[2:0] TDMO4 Slot5, Slot6 TDMO4 Slot7, Slot8 DAC1 Input DAC1 SDCODEC[2:0] DAC2 Input DAC2 DSP1 Input 1 DIN101 (Auto) DSP1 Input 2 DIN102 (Auto) DSP1 Input 3 DIN103 (Auto) DSP1 Input 4 DIN104 (Auto) DSP1 Input 5 DIN105 (Auto) DSP1 Input 6 DIN106 (Auto) DSP2 Input 1 DIN201 (Auto) DSP2 Input 2 DIN202 (Auto) DSP2 Input 3 DIN203 (Auto) DSP2 Input 4 DIN204 (Auto) DSP2 Input 5 DIN205 (Auto) DSP2 Input 6 DIN206 (Auto) SRC1 Input SRCI1 (Auto) SRC2 Input SRCI2 (Auto) Table 20. Source Select Registers of Output Ports Notes * 53. If the output port source is changed to ALL0 when the clock sync domain setting is “Auto”, the clock sync domain before changing the data source will be kept. This clock sync domain should not be stopped immediately after changing the data source otherwise the output data will not become ALL0 correctly. * 54. Clock Sync Domain of the SDINx pin is automatically selected by setting EXBCKx[1:0] bits, MSNx bit and SDBCKx[2:0] bits (Table 14, Table 15, Table 16). * 55. SDINxB~D are only valid in TDM mode. These ports are fixed to “0” if it is not in TDM mode. * 56. Input data to the input port 1~6 of the DSP must be selected from a data based on a clock sync domain which is synchronized with PLLMCLK. 016014707-E-00 2016/12 - 51 - [AK7735] 5. Input/Output Serial Interface Format 5-1. Data Clocks The AK7735 has three LRCK/BICK pins that are input/output switchable to interface with external equipment. MSNx bit controls master and slave modes of LRCKx/BICKx pins (Table 14). DCFx[2:0] bits control each clock format of these pins independently. If LRCKx/BICKx pins are configured as slave mode, set DCFx[2:0] bits according to the input clock. If LRCKx/BICKx pins are configured as master mode, the output clock format is selected by DCFx[2:0] bits. Mode DCFx[2] 0 1 2 3 0 1 1 1 DCFx[1] DCFx[0] Clock Format 0 0 I2S Mode 0 1 DSP Mode 1 0 PCM Short Frame 1 1 PCM Long Frame Table 21. AK7735 Data Clock Format (default) BCKPx bit controls the relationship of BICKx and LRCKx edges. BCKPx bit BICKx edge referenced to LRCKx start edge 0 Falling Edge (default) 1 Rising Edge Table 22. Relationship of BICKx and LRCKx Edges 016014707-E-00 2016/12 - 52 - [AK7735] LRCKx Lch Rch BICKx Figure 21. I2S Mode LRCKx Lch Rch BICKx Figure 22. DSP Mode LRCKx Lch + Rch BICKx Figure 23. PCM Short Frame / PCM Long Frame (BCKPx bit = “0”) LRCKx Lch + Rch BICKx Figure 24. PCM Short Frame / PCM Long Frame (BCKPx bit = “1”) 016014707-E-00 2016/12 - 53 - [AK7735] 5-2. Data Definitions A serial bit stream that is sent or received by the AK7735 is a long sequence composed of “1” and “0”. This data sequence has hierarchical levels of slot, word and bit. Bit: It is a smallest component in a serial data stream. The bit duration is one serial clock cycle. Word: It is a group of multiple bits that composes transmitting data between external devices and the AK7735. Figure 25 shows an example of a word consists of eight bits. Slot: It is composed of a word and adequate additional bits for interfacing to an external device. In Figure 25, the audio data is an 8-bit valid data and a 12-bit slot needs additional four zeroes to satisfy an interface protocol of the external device. If the word length is shorter than the slot length, the data alignment of the word will be the beginning of the slot (MSB justified) or end of the slot (LSB justified). Figure 25 shows an example of MSB justified format. Bit Word Slot Figure 25. Bit, Word and Slot Definitions 016014707-E-00 2016/12 - 54 - [AK7735] 5-3. Input/ Output Interface Format The AK7735 has four digital input ports and four digital output ports. The data format can be set independently. The input data format is determined by a combination of DISLx[1:0], DIEDGENx, DILSBEx and DIDLx[1:0] bits settings (x=1~4). The output data format is determined by a combination of DOSLx[1:0], DOEDGENx, DOLSBEx and DODLx[1:0] bits settings (x=1~4). DISLx[1:0] bits / DOSLx[1:0] bits (x=1~4) control input/output data slot length. DISLx[1] bit DISLx[0] bit Mode Slot Length DOSLx[1] bit DOSLx[0] bit 0 0 0 24bit 1 0 1 20bit 2 1 0 16bit 3 1 1 32bit Table 23. Slot Length Setting of Input/Output Data (default) DIDLx[1:0] bits / DODLx[1:0] bits (x=1~4) control input/output audio data word length. DIDLx[1] bit DIDLx[0] bit Mode Word Length DODLx[1] bit DODLx[0] bit 0 0 0 24bit (default) 1 0 1 20bit 2 1 0 16bit 3 1 1 32bit Table 24. Word Length Setting of Input/Output Audio Data DILSBEx bit/ DOLSBEx bit (x=1~4) select the audio data format of a slot. DILSBEx bit Slot Data Format DOLSBEx bit 0 MSB First 1 LSB First Table 25. Slot Data Format Setting (default) DIEDGENx bit / DOEDGENx bit (x=1~4) select data transmission start timing of the data after second channel DIEDGENx bit Start Timing DOEDGENx bit 0 LRCK Edge Basis (default) 1 Slot Length Basis Table 26. Data Transmission Start Timing Selection of The Data After Second Channel If the data transmitting timing is set to Slot length basis, the next channel’s data is transmitted immediately without waiting a LRCK edge after transmitted one slot data (Figure 29~ Figure 33). If the data transmitting timing is set to LRCK edge basis, the next channel’s data will not be transmitted until a LRCK edge even finished transmitting one slot data (Figure 26 ~ Figure 28). 016014707-E-00 2016/12 - 55 - [AK7735] 5-3-1. Stereo Mode AK7735 supports stereo mode. The BICKx pin should be set to arbitrary frequency more than “word length x 2fs” when DIEDGENx bit = “0”. The BICKx pin should be set to arbitrary frequency more than “slot length x 2fs” when DIEDGENx bit = “1”. BICK clock is supported up to 256fs (Max.24.576MHz). The SDINx input pins of the AK7735 support stereo input mode. Two slots data input is available for each pin. A source address is assigned to each SDINx input pin when using stereo input mode (Table 19). DISLx[1:0] bits control input data slot length of the SDINx pin. DIDLx[1:0] bits control the input data word length of the SDINx pin. The slot data format is set by DILSBEx bit. In stereo mode, DIEDGENx bit should be set to “0” if the data transmission timing of second channel is LRCK edge basis. In this case, DISLx[1:0] bits setting are ignored. The SDOUTx output pins of the AK7735 support stereo output mode. Two slots data output is available for each pin. Each slot data can be assigned by setting SELDOxA[5:0] bits. DOSLx[1:0] bits control output data slot length of the SDOUTx pin. DODLx[1:0] bits control the output data word length of the SDOUTx pin. The slot data format is set by DOLSBEx bit. In stereo mode, DOEDGENx bit must be set to “0” if the data transmission timing of second channel is LRCK edge basis. In this case, DOSLx[1:0] bits setting are ignored. Setting example of stereo mode is shown in Table 27. Mode Data Format 0 1 2 3 4 I S Compatible PCM Short Frame PCM Long Frame 5 Irregular I S 2 MSB Justified LSB Justified DCFx[2:0] 000 101 101 110 111 DILSBEx DIEDGENx DOLSBEx DOEDGENx 0 0 0 0 1 0 0 1 0 1 2 DISLx[1:0] DOSLx[1:0] Slot Length Slot Length Slot Length 000 0 1 Table 27. Stereo Mode Setting Example (-: Do Not Care) 016014707-E-00 DIDLx[1:0] DODLx[1:0] Word Length Word Length Word Length Word Length Word Length Word Length 2016/12 - 56 - [AK7735] Mode 0: I²S Compatible Format LRCKx Lch Rch BICKx SDINx Lch Data (MSB First) SDOUTx Lch Data (MSB First) Don’t Care Don’t Care Rch Data (MSB First) Rch Data (MSB First) Figure 26. I²S Compatible Format Mode 1: MSB Justified Format LRCKx Lch Rch BICKx SDINx Lch Data (MSB First) SDOUTx Lch Data (MSB First) Don’t Care Don’t Care Rch Data (MSB First) Rch Data (MSB First) Figure 27. MSB Justified Format Mode 2: LSB Justified Format LRCKx Lch Rch BICKx SDINx SDOUTx Don’t Care Don’t Care Lch Data (MSB First) Lch Data (MSB First) Rch Data (MSB First) Rch Data (MSB First) Figure 28. LSB Justified Format 016014707-E-00 2016/12 - 57 - [AK7735] Mode 3: PCM Short Frame Format tBCLK LRCKx BICKx SDINx Lch Data (MSB First) Rch Data (MSB First) SDOUTx Lch Data (MSB First) Rch Data (MSB First) Don’t Care tBCLK x SlotLength tBCLK x 2 x SlotLength Figure 29. PCM Short Frame Format (BCKPx bit = “0”) tBCLK LRCKx BICKx SDINx Lch Data (MSB First) Rch Data (MSB First) SDOUTx Lch Data (MSB First) Rch Data (MSB First) Don’t Care tBCLK x SlotLength tBCLK x 2 x SlotLength Figure 30. PCM Short Frame Format (BCKPx bit = “1”) 016014707-E-00 2016/12 - 58 - [AK7735] Mode 4: PCM Long Frame Format tBCLK LRCKx(Master) LRCKx(Slave) Don’t Care BICKx SDINx Lch Data (MSB First) Rch Data (MSB First) SDOUTx Lch Data (MSB First) Rch Data (MSB First) Don’t Care tBCLK x SlotLength tBCLK x 2 x SlotLength Figure 31. PCM Long Frame Format (BCKPx bit = “0”) tBCLK LRCKx(Master) LRCKx(Slave) Don’t Care BICKx SDINx Lch Data (MSB First) Rch Data (MSB First) SDOUTx Lch Data (MSB First) Rch Data (MSB First) Don’t Care tBCLK x SlotLength tBCLK x 2 x SlotLength Figure 32. PCM Long Frame Format (BCKPx bit = “1”) Mode 5: Irregular I2S Format LRCKx Lch Rch BICKx SDINx Lch Data (MSB First) Rch Data (MSB First) SDOUTx Lch Data (MSB First) Rch Data (MSB First) Don’t Care Figure 33. Irregular I2S Format 016014707-E-00 2016/12 - 59 - [AK7735] 5-3-2. TDM Mode AK7735 supports TDM mode. BICK clock for data input/output should be set to 128fs, 192fs or 256fs when using TDM mode. Sampling frequency up to 192kHz in 128fs mode (max. fs=128kHz in 192 mode, max. fs=96kHz in 256 mode) is supported. The SDINx input pins of the AK7735 support TDM mode. Eight slots data input is available at a maximum. A source address is assigned to each 2 slot of SDINx input pins when using TDM mode. (Table 19). DISLx[1:0] bits control input data slot length of the SDINx pin. DIDLx [1:0] bits control the input data word length of the SDINx pin. The slot data format is set by DILSBEx bit. In TDM mode, DIEDGENx bit must be set to “1” since the data transmission timing after second channel is slot length basis. Slot length, word length and slot data format of each input data slot should be the same setting. The SDOUTx output pins of the AK7735 support TDM mode. Eight slots data output is available for each pin at a maximum. Each slot data can be assigned independently by setting SELDOxA-D[5:0] bits in every two slots. DOSLx[1:0] bits control output data slot length of the SDOUTx pin. DODLx[1:0] bits control the output data word length of the SDOUTx pin. The slot data format is set by DOLSBEx bit. In TDM mode, DOEDGENx bit must be set to “1” since the data transmission timing after second channel is slot length basis. Slot length, word length and slot data format of each input data slot should be the same setting. Setting example of TDM mode is shown in Table 28. Mode Data Format DCFx[2:0] 0 1 2 3 4 I2S Compatible MSB Justified LSB Justified PCM Short Frame PCM Long Frame 000 101 101 110 111 5 Irregular I2S DILSBEx DIEDGENx DISLx[1:0] DOLSBEx DOEDGENx DOSLx[1:0] 0 1 11 (32bit) 0 1 11 (32bit) 1 1 11 (32bit) 0 1 Slot Length Slot Length 0 1 Slot Length 0 1 000 Table 28. TDM Mode Setting Example 016014707-E-00 DIDLx[1:0] DODLx[1:0] Word Length Word Length Word Length Word Length Word Length Word Length 2016/12 - 60 - [AK7735] Mode 0: I²S Compatible Format 256BICK LRCKx BICKx 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 SDINx/SDOUTx Figure 34. TDM Mode I2S Compatible (BICK=256fs) 128BICK LRCKx BICKx 32 BICK 32 BICK 32 BICK 32 BICK SLOT1 SLOT2 SLOT3 SLOT4 SDINx/SDOUTx 2 Figure 35. TDM Mode I S Compatible (BICK=128fs) Mode 1: MSB Justified Format 256BICK LRCKx BICKx 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 SDINx/SDOUTx Figure 36. TDM Mode MSB Justified Format (BICK=256fs) 128BICK LRCKx BICKx 32 BICK 32 BICK 32 BICK 32 BICK SLOT1 SLOT2 SLOT3 SLOT4 SDINx/SDOUTx Figure 37. TDM Mode MSB Justified Format (BICK=128fs) 016014707-E-00 2016/12 - 61 - [AK7735] Mode 2: LSB Justified Format 256BICK LRCKx BICKx 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 SDINx/SDOUTx Figure 38. TDM Mode LSB Justified Format (BICK=256fs) 128BICK LRCKx BICKx 32 BICK 32 BICK 32 BICK 32 BICK SLOT1 SLOT2 SLOT3 SLOT4 SDINx/SDOUTx Figure 39. TDM Mode LSB Justified Format (BICK=128fs) Mode 3: PCM Short Frame Format 256BICK LRCKx BICKx Don’t Care SDINx SDOUTx SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 Figure 40. TDM Mode PCM Short Frame (BICK=256fs, BCKP bit = “0”) * 57 128BICK LRCKx BICKx Don’t Care SDINx SDOUTx SLOT1 SLOT2 SLOT3 SLOT4 Figure 41. TDM Mode PCM Short Frame (BICK=128fs, BCKP bit = “0”) * 57 Note * 57. When BCKP bit = “1”, a BICK rising edge “↑” corresponds to a LRCK rising edge “↑”. 016014707-E-00 2016/12 - 62 - [AK7735] Mode 4: PCM Long Frame Format 256BICK LRCKx(Master) Don’t Care LRCKx(Slave) BICKx Don’t Care SDINx SDOUTx SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 Figure 42. TDM Mode PCM Long Frame (BICK=256fs, BCKP bit = “0”) * 58 128BICK LRCKx(Master) Don’t Care LRCKx(Slave) BICKx Don’t Care SDINx SDOUTx SLOT1 SLOT2 SLOT3 SLOT4 Figure 43. TDM Mode PCM Long Frame (BICK=128fs, BCKP bit = “0”) * 58 Note * 58. When BCKP bit = “1”, a BICK rising edge “↑” corresponds to a LRCK rising edge “↑”. Mode 5: Irregular I2S Format 256BICK LRCKx BICKx Don’t Care SDINx SDOUTx SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 Figure 44. TDM Mode Irregular I2S Format (BICK=256fs) 128BICK LRCKx(Master) BICKx Don’t Care SDINx SDOUTx SLOT1 SLOT2 SLOT3 SLOT4 2 Figure 45. TDM Mode Irregular I S Format (BICK=128fs) 016014707-E-00 2016/12 - 63 - [AK7735] ■ Power-up Sequence The AK7735 should be powered up when the PDN pin = “L”. Set the PDN pin to “H” to start the power supply circuits for REF (reference voltage source) generator and digital circuits after all power supplies are fed. By setting the PDN pin to “H”, control registers are initialized. Control register settings should be made with an interval of 1ms or more after the PDN pin = “H”. The PLL starts operation by a clock reset release (CKRESETN bit = “0” → “1”) and generates the internal master clock after setting control registers. Therefore, necessary system clock must be input before a clock reset release. Interfacing with the AK7735 except control register settings should be made when PLL oscillation is stabilized after clock reset release (take a 10ms interval or confirm “H” output of PLLLOCK signal from the STO bit (Figure 46)). However, DSP program and coefficient data can be written even when the system clock is stopped or during clock reset (CKRESETN bit= “0”). DSP program and coefficient data can be written in 1ms by setting DLRDY bit “0” → “1”. DLRDY bit must be set to “0” after downloading programs or data ( Figure 47). 112H When using a crystal oscillator, release clock reset after crystal oscillation is stabilized. The stabilizing time of crystal oscillation is dependent on the crystal and external circuits. The system clock must not be stopped except during clock reset and power-down mode (PDN pin = “L”). Figure 46. Power-up Sequence 016014707-E-00 2016/12 - 64 - [AK7735] Figure 47. Power-up Sequence 2 (DLRDY bit Setting) ■ VREG (Internal Circuit Drive Regulator) The AK7735 has a regulator for driving internal digital circuits (VREG). Connect a 2.2μF (±30%) capacitor between the AVDRV pin and the DVSS3 pin. The regulator starts operation by releasing power-down mode, and control register settings can be made 1ms after the power-down release (PDN pin=“H”). The AK7735 has an overcurrent protection circuit to avoid abnormal heat of the device that is caused by a short of the AVDRV pin to VSS and etc., and an overvoltage protection circuit to protect from exceeded voltage when the voltage to the AVDRV pin gets too high. When these protection circuits perform, internal circuits are powered down. The internal circuit will not return to a normal operation until being reset by the PDN pin after removing the problems. 016014707-E-00 2016/12 - 65 - [AK7735] ■ Power-down and Reset 1. AK7735 Power-down and Reset Statuses and Power Management Power-down and power-down release of the AK7735 is controlled by the PDN pin. After power-down is released, the power management and reset of the AK7735 are controlled by registers such as CKRESETN bit (Clock Reset), HRESETN bit (HUB Reset), D1RESETN and D2RESETN bits (DSP reset), CRESETN bits (CODEC Reset) and power management bits for each block. There are three states for the AK7735 other than normal operation: Power-down, Clock Reset and System Reset. 1) The power-down state means the status that the PDN pin is “L”. In this state, all blocks of the AK7735 stop the operation. 2) The clock reset state means the status that the PDN pin is “H” and CKRESETN bit is “0”. In this state, the DSP, ADC, DAC and SRC blocks are not in operation because the PLL circuit and internal clocks are stopped. 3) The system reset state means the status that the PDN pin is “H”, CKRESETN bit is “1”, HRESETN bit is “0”, CRESETN bit is “0” and DxRESETN bit (x= 1, 2) is “0”. In this state, the DSP, ADC, DAC and SRC blocks are not in operation although the PLL circuit and internal clocks are started. The system reset is released by setting either HRESETN bit or CRESETN bit or DxRESETN bit (x=1, 2) to “1”. Setting PDN CKRESETN DxRESETN HRESETN CRESETN pin bit bit (x=1, 2) bit bit Power-down L x x x x Clock Reset H 0 0 0 0 System Reset * 59 H 1 0 0 0 System Reset Release * 60 H 1 1 1 1 Table 29. Reset State Definitions of the AK7735 (x: Don’t Care) Notes * 59. A stable clock should be supplied before releasing clock reset (CKRESETN bit = “1”). * 60. The system reset is released by setting either HRESETN bit or CRESETN bit or DxRESETN bit (x=1, 2) to “1”. State 2. Power-down The AK7735 can be powered down by bringing the PDN pin = “L”. Power-down status of output pins is shown in Table 3. 3. Power-down Release The REF generation circuit (reference voltage source) and a power supply circuit for internal digital circuit are powered-up by bringing the PDN pin to “H” from “L” after an interval of 600ns or more when AVDD, LVDD, TVDD and VDD33 are powered up. Control register settings should be made with an interval of 1ms or more after setting the PDN pin = “H”. 016014707-E-00 2016/12 - 66 - [AK7735] 4. Clock Reset When CKRESETN bit = “0” after power-down mode is released (PDN pin = “H”), the AK7735 is in clock reset state. All blocks except the power supply circuits for REF generation and digital circuits are in power-save mode. Even the internal PLL for master clock generation is powered down. Control register settings should be made with an interval of 1ms (min) after releasing the power-down mode. DSP program and coefficient data can be written in 1ms by setting DLRDY bit “0” → “1” during clock reset. DLRDY bit must be set to “0” after downloading ( Figure 47). 112H Necessary system clocks (Table 4, Table 5) should be input before the clock reset is released. The internal PLL starts operation and the master clock is generated when clock reset is released (CKRESETN bit = “1”). DSP program and coefficient data should be sent 10ms after clock reset release or after confirming “H” output of PLLLOCK signal from the STO pin (Figure 46). System clocks must be changed during clock reset or in power-down mode (PDN pin = “L”). The PLL and the internal clocks are stopped by this clock reset and the clock change can be done safely. Change register settings and system clock frequencies during the clock reset. After system clock is stabilized, the PLL starts operation by setting CKRESETN bit to “1”. Clock operated blocks (ADC, DAC and SRC) must be powered down before executing clock reset. These blocks can be powered down simultaneously by setting HRESETN bit to “0” from “1”. Set HRESETN bit to “1” from “0” with an interval of 10ms for stabilization of PLL after clock reset is released. REFSEL Mode 1 REFSEL Mode 0 XTI BICK1 CSN SCLK (Simplified) SI C0 00 6E 00 C0 00 01 00 C0 00 00 xx 8x C0 00 6E 0F HRESETN DxRESETN CKRESETN 10ms PLL Stop Blocks except PLL are PLL Stabilize Input clock and clock mode can be changed stopped Command Code Resume Operation & DSP Program Transition Figure 48. Clock Mode Switching Sequence 016014707-E-00 2016/12 - 67 - [AK7735] ■ RAM Clear The AK7735 has a RAM clear function. After a DSP reset release, DRAM and DLRAM are cleared by “0”. The internal PLL must have stable oscillation before a DSP reset release. A period of 8/fs (fs: DSP operating sampling rate) is required from a DSP reset release to the RAM clear start. The required time to clear RAM is about 112µs. During the RAM clear period, it is possible to send a command to the DSP. (The DSP is stopped during RAM clear sequence. The sent command is accepted automatically after this sequence is completed.) PDN(pin) DxRESETN bit (x=1,2) DSP1, DSP2 RAM Clear DSP1, DSP2 Operation Start Period before RAM Clear Start (8/fs) RAM Clear Period (112us) DSP Program Start Figure 49. RAM Clear Sequence Register and RAM settings of the AK7735 are not held if the PDN pin goes to “L”. The DRAM and DLRAM are not held by a clock reset or a DSP reset. State Register PRAM CRAM DRAM DLRAM OFREG Power Down x x x x x x (PDN pin = “L”) Clock Reset Hold Hold Hold x x Hold (CKRESETN bit = “0”) DSP Reset Hold Hold Hold x x Hold (DxRESETN bit = “0”) Table 30. Register and RAM Setting Status by Reset (x: Not Hold) 016014707-E-00 2016/12 - 68 - [AK7735] ■ STO pin Output Status The No. 23 pin has the function of the STO (status output) pin, the RDY pin and the SDOUT2 pin. DO2SEL[1:0] bits control the function of this pin. The STO pin function is selected in the default setting. When SDOUT2EN bit = “0” (default), the STO pin output is enabled. When SDOUT2EN bit = “1”, the STO pin outputs “L”. The STO pin outputs “L” when the AK7735 is powered up and the PDN pin is “L”. The STO pin outputs “H” when the internal digital power-supply circuit (VREG) is powered up after releasing the power-down (PDN pin = “H”). After the power-down state is released, VREG shut down signal, PLL lock signal, WDT1 and WDT2 (watchdog timer) errors of the DSP, CRC error and SRC1~2 lock signal can be output from the STO pin by control register settings. The AK7735 is distinguished as error state when the PDN pin = “H”, DO2SEL[1:0] bits = “00”, SDOUT2EN bit = “0” and the STO pin = “L”. VREG shut down status and WDT1-2 statuses, which are set by DSP instruction, are output from the STO pin when the control register settings are in the default value. PDN pin L H VREG D1WDTEN bit D2WDTEN bit CRCE bit PLLLOCKE bit SRCLOCKE1 bit SRCLOCKE2 bit - - - - L - - - - L 0 0 0 0 WDTnERR 1 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 CRCERR PLLLOCKERR SRCnLOCKERR WDTnERR & CRCERR & PLLLOCKERR & SRCLOCKERRn Power Down Error Normal Operation STO pin Note (default) * 61, * 62 * 61 * 61, * 62 Table 31. STO pin Output Setting ( -: Not Care ) Notes * 61. The STO pin outputs “L” if the one of status signal becomes “L” when setting multiple statuses to the STO pin. * 62. A DSP instruction setting is necessary when using WDT1 and WDT2 (watchdog timer). 016014707-E-00 2016/12 - 69 - [AK7735] ■ μP Interface Setting and Pin Statuses The AK7735 supports both SPI and I2C interfaces. When using SPI interface, release the power-down state of the AK7735 while the CSN pin is “H”. When using I2C interface, the CSN pin must be pulled up or down since it becomes a chip address pin. After a power-down release, the AK7735 is set to I2C interface mode. SPI interface mode become enabled by sending the dummy command mentioned below. Input “0xDE → 0xADDA → 0x7A” to the SI/I2CFIL pin while the CSN pin is “L” after a falling edge “↓” of the CSN pin for the dummy command. The data is in MSB first format. CSN SCLK SI don’tcare (L/H) 0xDE (8bit) 0xADDA (16bit) 0x7A(8bit) don’tcare (L/H) Statuses of the CSN, SO/SDA, SCLK/SCL and SI/I2CFIL pins are changed depending on the PDN pin. SPI Interface I2C Interface PDN pin L H CSN pin input (“H”) function L H pull-up / pull-down SO/SDA pin Hi-Z function (pull-up / pull-down) “Hi-Z”→ pull-up SCLK/SCL pin SI/I2CFIL pin input input function (pull-up) function function function input input “L”: I2C Fast Mode “H”: I2C Fast Mode Plus Table 32. μP Interface Setting Note * 63. The CSN pin and the SI/I2CFIL pin should be fixed to “L” or “H” when using I2C interface mode. The SO/SDA pin should be pulled-up/down when using SPI interface mode. 016014707-E-00 2016/12 - 70 - [AK7735] ■ SPI Interface 1. Configuration The access format consists of Command code (8bits) + Address (16bits) + Data (MSB first). Command code Address Data Bit Length 8 16 Mentioned in later section Description MSB bit is an R/W flag. The following 7 bits indicate access area such as PRAM/ CRAM/Registers. Address is fixed to 16bits. Read/Write Data Table 33. μP Interface Format Write CSN SCLK SI don’tcare (L/H) Command Code (8bit) Data (write) Address (16bit) SO Echo Back Hi-Z don’tcare (L/H) Hi-Z Figure 50. SPI Interface Timing (Write) Read (Except Read Operation during Run) CSN SCLK SI don’tcare (L/H) Command Code (8bit) SO Data (Read) Echo Back Hi-Z don’tcare (L/H) Address (16bit) Hi-Z Figure 51. SPI Interface Timing (Read) (Except Command 24H, 25H, 26H and 27H) Read (during Run) CSN SCLK SI don’tcare (L/H) don’tcare (L/H) Command Code (8bit) SO Address (16bit) Hi-Z Data (Read) Hi-Z Figure 52. SPI Interface Timing (Read) (Command 24H, 25H, 26H and 27H) 016014707-E-00 2016/12 - 71 - [AK7735] 1-1. Write Command Address Data Length 80H ~ 8FH 16bit 24bit x n 90H ~ 9FH 16bit 24bit x n A2H 16bit - A3H 16bit - A4H 16bit - A5H 16bit - B2H B3H B4H B5H B8H B9H C0H 16bit 16bit 16bit 16bit 16bit 16bit 16bit 24bit x n 24bit x n 24bit x n 24bit x n 40bit x n 40bit x n 8bit x n F2H 16bit 16bit F4H 16bit 8bit F5H 16bit 8bit Description Write preparation to CRAM of DSP1/DSP2 during RUN (80H: write 1data, 81H: write 2data, ----, 8FH: write 16data) If the actual amount of write operations exceeds the defined amount, the data will be ignored. Write preparation to OFREG of DSP1/DSP2 during RUN (90H: write 1data, 91H: write 2data, ----, 9FH: write 16data) If the actual amount of write operations exceeds the defined amount, the data will be ignored. Write execution to OFREG of DSP1 during RUN. 0 address should be written. Write execution to OFREG of DSP2 during RUN. 0 address should be written. Write execution to CRAM of DSP1 during RUN. 0 address should be written. Write execution to CRAM of DSP2 during RUN. 0 address should be written. Write operation to OFREG of DSP1 (during DSP reset) Write operation to OFREG of DSP2 (during DSP reset) Write operation to CRAM of DSP1 (during DSP reset) Write operation to CRAM of DSP2 (during DSP reset) Write operation to PRAM of DSP1 (during DSP reset) Write operation to PRAM of DSP2 (during DSP reset) Sequential Control Register Write CRC Result Write 0 address should be written. Write operation of DSP1 JX code 0 address should be written. Write operation of DSP2 JX code 0 address should be written. The data length is defined by the command code which specifies the area to be accessed. Writing other than the above-mentioned command code is prohibited. 016014707-E-00 2016/12 - 72 - [AK7735] 1-2. Read Command 24H 25H 26H 27H 32H 33H 34H 35H 38H 39H 40H Address 0bit 0bit 0bit 0bit 16bit 16bit 16bit 16bit 16bit 16bit 16bit Data Length 16bit + 24bit x n 16bit + 24bit x n 16bit + 24bit x n 16bit + 24bit x n 24bit x n 24bit x n 24bit x n 24bit x n 40bit x n 40bit x n 8bit x n 40H 16bit 8bit 40H 16bit 8bit 72H 16bit 16bit 76H 16bit 32bit x n 77H 16bit 32bit x n Description Read CRAM write preparation data of DSP1 Read OFREG write preparation data of DSP1 Read CRAM write preparation data of DSP2 Read OFREG write preparation data of DSP2 Read operation from OFREG of DSP1 (during DSP reset) Read operation from OFREG of DSP2 (during DSP reset) Read operation from CRAM of DSP1 (during DSP reset) Read operation from CRAM of DSP2 (during DSP reset) Read operation from PRAM of DSP1 (during DSP reset) Read operation from PRAM of DSP2 (during DSP reset)) Sequential Control Register Read Device Identification No. (recognized as Register: Address = 0100H) Device Revision No. (recognized as Register: Address = 0101H) CRC result Read 0 address should be written. Sequential Read operation from MIR of DSP1. (max. 8) 0 address should be written. 28bits are upper-bit justified. Lower 4 bits are for validity flags. Valid at “0000”. * 64 Sequential Read operation from MIR of DSP2. (max. 8) 0 address should be written. 28bits are upper-bit justified. Lower 4 bits are for validity flags. Valid at “0000”. * 64 Note * 64. Lower 4 bits for validity flags are common in eight MIR data. If the MIR data is updated by a DSP program, all eight data flags become “0000”. If an MIR read command by a microcontroller is executed, all eight data flags become “1111”. When accessing RAM or control registers, data may be read from sequential address locations by reading data continuously. Reading other than the above-mentioned command code is prohibited. 016014707-E-00 2016/12 - 73 - [AK7735] 2. Echo-Back Mode The AK7735 has Echo-back mode that outputs the writing data sequentially from the SO pin. 2-1. Write CSN SI COMMAND ADDRESS1 COMMAND SO ADDRESS2 ADDRESS1 DATA1 ADDRESS2 DATA2 DATA1 don’tcare (L/H) COMMAND ADDRESS1 COMMAND Hi-Z Figure 53. Echo-back Mode Writing (SPI) The input data of the SI pin is echoed back on the SO pin by shifting 8-bits to the right. The last 1 byte written data is not echoed-back. The data will not echoed-back when writing dummy command. 2-2. Read CSN SI COMMAND SO ADDRESS1 COMMAND don’tcare (L/H) ADDRESS2 DummyData READ DATA READ DATA COMMAND Hi-Z ADDRESS1 COMMAND Figure 54. Echo-back Mode Reading (SPI) Data of the address1/2 fields are not echoed back in read operation. The read data on the SO pin is output after writing to the address2 field. 016014707-E-00 2016/12 - 74 - [AK7735] 3. Command Format 3-1. DSP RAM Write and Read 3-1-1. Write Operation during DSP Reset (1) Program RAM (PRAM) Write (during DSP reset) Field Write data (1) COMMAND Code 0xB8 (DSP1) / 0xB9 (DSP2) (2) ADDRESS1 0 0 0 0 A11 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 0 0 0 0 D35 D34 D33 D32 (5) DATA2 D31~D24 (6) DATA3 D23~D16 (7) DATA4 D15~D8 (8) DATA5 D7~D0 Five bytes of data may be written continuously for each address. (2) Coefficient RAM (CRAM) Write (during DSP reset) Field Write data (1) COMMAND Code 0xB4 (DSP1) / 0xB5 (DSP2) (2) ADDRESS1 0 0 0 A12 A11 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 D23~D16 (5) DATA2 D15~D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. (3) Offset REG (OFREG) Write (during system reset) Field Write data (1) COMMAND Code 0xB2 (DSP1) / 0xB3 (DSP2) (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 A5 A4 A3 A2 A1 A0 (4) DATA1 00000000 (5) DATA2 0 0 D13 D12 D11 D10 D9 D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. 016014707-E-00 2016/12 - 75 - [AK7735] 3-1-2. Write Operation during RUN中 (1) Coefficient RAM (CRAM) Write Preparation (during RUN) Preparation Write data (1) COMMAND Code 0x80~0x8F (one data at 0x80, sixteen data at 0x8F) (2) ADDRESS1 0 0 0 A12 A11 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 D23~D16 (5) DATA2 D15~D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. (2) Coefficient RAM (CRAM) Write Operation (during RUN) Execute Write data (1) COMMAND Code 0xA4 (DSP1) / 0xA5 (DSP2) (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 (3). Offset REG (OFREG) Write Preparation (during RUN) Preparation Write data (1) COMMAND Code 0x90~0x9F (one data at 0x90, sixteen data at 0x9F) (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 A5 A4 A3 A2 A1 A0 (4) DATA1 00000000 (5) DATA2 0 0 D13 D12 D11 D10 D9 D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. (4). Offset REG (OFREG) Write Operation (during RUN) Execute Write data (1) COMMAND Code 0xA2 (DSP1) / 0xA3 (DSP2) (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 016014707-E-00 2016/12 - 76 - [AK7735] 3-1-3. Read Operation during DSP Reset (1) Program RAM (PRAM) Read (during DSP reset) Field Write data Readout data (1) COMMAND Code 0x38 (DSP1) / 0x39 (DSP2) (2) ADDRESS1 0 0 0 0 A11 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 0 0 0 0 D35 D34 D33 D32 (5) DATA2 D31~D24 (6) DATA3 D23~D16 (7) DATA4 D15~D8 (8) DATA5 D7~D0 Five bytes of data may be read continuously for each address. (2) Coefficient RAM (CRAM) Read (during DSP reset) Field Write data Readout data (1) COMMAND Code 0x34 (DSP1) / 0x35 (DSP2) (2) ADDRESS1 0 0 0 A12 A11 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 D23~D16 (5) DATA2 D15~D8 (6) DATA3 D7~D0 Three bytes of data may be read continuously for each address. (3) Offset REG (OFREG) Read (during DSP reset) Field Write data Readout data (1) COMMAND Code 0x32 (DSP1) / 0x33 (DSP2) (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 A5 A4 A3 A2 A1 A0 (4) DATA1 00000000 (5) DATA2 0 0 D13 D12 D11 D10 D9 D8 (6) DATA3 D7~D0 Three bytes of data may be read continuously for each address. 016014707-E-00 2016/12 - 77 - [AK7735] 3-1-4. Read Operation during RUN (1) CRAM Write Preparation Read (during RUN) Field Write data (1) COMMAND Code 0x24 (DSP1) / 0x26 (DSP2) (2) ADDRESS1 (3) ADDRESS2 (4) DATA1 (5) DATA2 (6) DATA3 (2) OFREG Write Preparation Read (during RUN) Field Write data (1) COMMAND Code 0x25 (DSP1) / 0x27 (DSP2) (2) ADDRESS1 (3) ADDRESS2 (4) DATA1 (5) DATA2 (6) DATA3 Readout data 0 0 0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D23~D16 D15~D8 D7~D0 Readout data 00000000 0 0 A5 A4 A3 A2 A1 A0 00000000 0 0 D13 D12 D11 D10 D9 D8 D7~D0 (3) MIR Register Read (during RUN) Field Write data Readout data (1) COMMAND Code 0x76 (DSP1) / 0x77 (DSP2) (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 (4) DATA1 D27~D20 (5) DATA2 D19~D12 (6) DATA3 D11~D4 (7) DATA4 D3 D2 D1 D0 (flag3) (flag2) (flag1) (flag0) MIR register sequential read for DSP1/DSP2. Max 8 data (32 bytes) may be read continuously. The data is 28-bit MSB justified. Lower 4 bits are validity flags; the data is valid only when all flags are zero. 016014707-E-00 2016/12 - 78 - [AK7735] 3-2. Register Write and Read 3-2-1. Register Write (1) Control Register Write Field Write data (1) COMMAND Code 0xC0 (2) ADDRESS1 A15~A8 (3) ADDRESS2 A7~A0 (4) DATA D7~D0 One byte of data may be written continuously for each address. (2) External Conditional Jump Code (JX register) Write Field Write data (1) COMMAND Code 0xF4 (DSP1) / 0xF5 (DSP2) (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 (4) DATA D7~D0 (3) CRC Code Write Field (1) COMMAND Code (2) ADDRESS1 (3) ADDRESS2 (4) DATA1 (5) DATA2 Write data 0xF2 00000000 00000000 D15~D8 D7~D0 016014707-E-00 2016/12 - 79 - [AK7735] 3-2-2. Register Read (1) Control Register Read Field Write data Readout data (1) COMMAND Code 0x40 (2) ADDRESS1 A15~A8 (3) ADDRESS2 A7~A0 (4) DATA D7~D0 One byte of data may be written continuously for each address. (2) CRC Code Read Field (1) COMMAND Code (2) ADDRESS1 (3) ADDRESS2 (4) DATA1 (5) DATA2 Write data 0x72 00000000 00000000 Readout data D15~D8 D7~D0 016014707-E-00 2016/12 - 80 - [AK7735] 4. RAM and Register Write/Read Timing 4-1. RAM Write Timing during DSP Reset Write to Program RAM (PRAM), Coefficient RAM (CRAM) and Offset REG (OFREG) during DSP reset in the order of command code (8 bits), address (16 bits) and data. When writing the data to consecutive address locations, continue to input data only. Address is incremented by 1 automatically. DxRESETN bit (x=1,2) CSN SCLK don’t care (L/H) SI Command Address DATA DATA DATA DATA DATA don’t care (L/H) RDY = “H” Figure 55. Writing to RAM at Consecutive Address Locations (SPI) DxRESETN bit (x=1,2) CSN SCLK SI don’tcare (L/H) Command Address DATA don’tcare (L/H) Command Address DATA don’tcare (L/H) RDY = “H” Figure 56. Writing to RAM at Random Address Locations (SPI) 016014707-E-00 2016/12 - 81 - [AK7735] 4-2. RAM Write Timing during RUN These operations described below are to rewrite the Coefficient RAM (CRAM) and Offset REG (OFREG) during RUN. Data writing is executed in two steps; write preparation and write execution. The written data can be confirmed by reading the write preparation data. (1) Write Preparation After inputting the assigned command code (8 bits) to select the number of data from 1 to 16, input the starting address of write (16 bits) and the number of data assigned by command code in this order. (2) Write Preparation Data Confirmation After write preparation, prepared data for writing can be confirmed. Address and Data are read in this order by write preparation data confirmation command “24H/26H” (CRAM) or “25H/27H” (OFREG). The data will be “0x000001” when reading more than write preparation data. Execute write preparation again when the address and data are disturbed by external noise. (3) Write Execution Upon completion of the above operation, execute a RAM write during RUN by inputting the corresponding command code and address (16 bits, all “0”) in this order. Note * 65. Execute Write Preparation and Write Preparation Data Confirmation before Write Execution. A Write Preparation Data Confirmation sequence can be skipped, but a malfunction occurs when executing Write Execution to RAM without a Write Preparation sequence. Access operation by a microcontroller is prohibited until RDY changes to “H”. Write modification of the RAM content is executed whenever the RAM address for modification is accessed. For example, when 5 data are written, from RAM address “10”, it is executed as shown below. RAM execution address 7 8 9 10 ↓ ○ 11 ↓ ○ 13 16 11 12 ↓ ○ Write execution position wait Note * 66. Address “13” is not executed until rewriting address “12”. 13 ↓ ○ 14 ↓ ○ 15 DxRESETN bit= “1” (x= 1, 2) CSN (Ex.) When # of DATA is 4 CRAM Command Code 0x83 OFREG Command Code 0x93 SCLK SI don’tcare (L/H) RDY = “H” Command Address DATA0 Code DATA1 DATAn-1 DATAn CRAM 0x80(# of DATA: 1)~0x8F(# of DATA: 16) OFREG 0x90(# of DATA: 1)~0x9F(# of DATA: 16) don’tcare (L/H) Figure 57. CRAM/OFREG Write Preparation (SPI) 016014707-E-00 2016/12 - 82 - [AK7735] DxRESETN bit= “1” (x=1,2) CSN SCLK don’t care (L/H) SI Command don’t care (L/H) CRAM: 24H/26H, OFREG: 25H/27H SO Address Hi-Z DATA DATA DATA DATA DATA Hi-Z RDY= “H” Figure 58. CRAM/OFREG Write Preparation Data Read (SPI) DxRESETN bit= “1” (x=1,2) CSN SCLK SI don’tcare (L/H) Command 00000000 00000000 max 400ns CRAM: A4H/A5H, OFREG: A2H/A3H RDY RDYLG * 67 Figure 59. CRAM/OFREG Write (SPI) Notes * 67. The RDY pin rises to “H” in two LRCK cycles at maximum if the DSP program is designed to access the modification address in every sampling cycle. The RDY signal keeps “L” level even if a write command is completed internally while CSN is “L” level. * 68. Writing to a CRAM or OFREG address that is not used in the DSP program is prohibited during RUN. If it is executed, the RDY pin keeps “L” output until the PDN pin becomes “L”. In the case of I2C interface mode, communication will not be made correctly after that. 016014707-E-00 2016/12 - 83 - [AK7735] 4-3. External Conditional Jump External Conditional Jump Code Writing (1) COMMAND 0xF4 (DSP1) / 0xF5 (DSP2) (2) Address0 00000000 (3) Address1 00000000 (4) DATA D7~D0 An External Conditional Jump code can be input during both DSP Reset and RUN. Input data is set to the designated register on the rising edge of LRCK assigned to the DSP. The RDY pin changes to “L” when the command code is transferred, and it changes to “H” when write operations are completed. This Jump code is reset to 0 by setting the PDN pin to “L”, but it is not reset by DSP reset or Clock reset. A DSP instruction setting is necessary when using external conditional jump code. SCLK SI don’tcare (L/H) F4H / F5H 00H 00H D7…D0 don’tcare (L/H) CSN RDY Figure 60. External Conditional Jump Timing (SPI) 016014707-E-00 2016/12 - 84 - [AK7735] ■ I2C Interface Access to the AK7735 registers and RAM can be controlled by an I²C bus. The AK7735 supports fast-mode I2C-bus (max: 400kHz) and fast-mode plus (max: 1MHz). SI/I2CFIL pin Bus Mode L Fast Mode H Fast Mode Plus 2 Table 34. I C Bus Mode Setting Note * 69. The CSN pin and the SI/I2CFIL pin must be fixed to “L” or “H” when using I2C interface. The AK7735 does not support Hs mode (max: 3.4MHz). 1. Data Transfer In order to access any IC devices on the I2C bus, input a start condition first, followed by one byte of Slave address which includes the Device Address. IC devices on the BUS compare this Device address with their own addresses and the IC device which has an identical address with the Device address generates an acknowledgement. An IC device with the identical address then executes either a read or a write operation. After the command execution, input a Stop condition. 1-1. Data Change Change the data on the SDA line while the SCL line is “L”. The SDA line condition must be stable and fixed while the clock is “H”. Change the Data line condition between “H” and “L” only when the clock signal on the SCL line is “L”. Change the SDA line condition while the SCL line is “H” only when the start condition or stop condition is input. SCL SDA DATA LINE STABLE : DATA VALID CHANGE OF DATA ALLOWED Figure 61. Data Change I2C) 1-2. Start Condition and Stop Condition A start condition is generated by the transition of “H” to “L” on the SDA line while the SCL line is “H”. All instructions are initiated by a Start condition. A stop condition is generated by the transition of “L” to “H” on the SDA line while the SCL line is “H”. All instructions end by a Stop condition. SCL SDA START CONDITION STOP CONDITION Figure 62. Start Condition and Stop Condition (I2C) 016014707-E-00 2016/12 - 85 - [AK7735] 1-3. Repeated Start Condition When a Start condition is received again instead of a Stop condition, the bus changes to a Repeated Start condition. A Repeated Start condition is functionally the same as a Start condition. SCL SDA START CONDITION Repeated Start CONDITION Figure 63. Repeated Start Condition (I2C) 1-4. Acknowledge The IC device that sends data releases the SDA line (“H”) after sending one byte of data. The IC device that receives data then sets the SDA line to “L” at the next clock. This operation is called “acknowledgement”, and it enables verification that the data transfer has been properly executed. The AK7735 generates an acknowledgement upon receipt of a Start condition and a Slave address. For a write instruction, an acknowledgement is generated whenever receipt of each byte is completed. For a read instruction, succeeded by generation of an acknowledgement, the AK7735 releases the SDA line after outputting data at the designated address, and it monitors the SDA line condition. When the Master side generates an acknowledgement without sending a Stop condition, the AK7735 outputs data at the next address location. When no acknowledgement is generated, the AK7735 ends data output (not acknowledged). Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge START CONDITION Figure 64. Generation of Acknowledgement (I2C) 016014707-E-00 2016/12 - 86 - [AK7735] 1-5. The First Byte The First Byte, which includes the Slave-address, is input after the Start condition is set, and a target IC device that will be accessed on the bus is selected by the Slave-address. When the Slave-address is inputted, an external device that has the identical device address generates an acknowledgement and instructions are then executed. The 8th bit of the First Byte (lowest bit) is allocated as the R/W Bit. When the R/W Bit is “1”, the read instruction is executed, and when it is “0”, the write instruction is executed. The Slave-address of the AK7735 is set by the CSN pin. CSN pin = “H” 0 0 1 1 0 0 0 R/W CSN pin = “L” 0 0 1 1 1 0 0 R/W Figure 65. First Byte Configuration (I2C) Note * 70. In this document, there is a case that describes a “Write Slave-address assignment” when both address bits match and a Slave-address at R/W Bit = “0” is received. There is a case that describes “Read Slave-address assignment” when both address bits matches and a Slave-address at R/W Bit = “1” is received. 1-6. The Second and Succeeding Bytes The data format of the second and succeeding bytes of the AK7735 Transfer / Receive Serial data (command code, address and data in microcontroller interface format) on the I2C BUS are all configured with a multiple of 8-bits. When transferring or receiving those data on the I2C BUS, they are divided into an 8-bit data stream segment and they are transferred / received with the MSB side data first with an acknowledgement in-between. Example) When transferring / receiving A1B2C3 (hex) 24-bit serial data in microprocessor interface format: 2 (1) I C format (1) Microcomputer format A1 B2 C3 A1 B2 A 24BIT 8BIT C3 A 8BIT 8BIT A …Acknowledge Figure 66. Division of Data (I2C) Note * 71. In this document, there is a case that describes a write instruction command code which is received at the second byte as “Write Command”. There is a case that describes a read instruction command code which is received at the second byte as “Read Command”. 016014707-E-00 2016/12 - 87 - [AK7735] 2. Write Sequence In the AK7735, when a “Write-Slave-address assignment” is received at the first byte, the write command at the second byte, the address at the third and fourth bytes, and data at the fifth and succeeding bytes are received. The number of write data bytes is fixed by the received command code. S T A R T S T O P R/W=”0” Slave SDA S Address Command Code A C K Address(1) Address(0) A C K A C K Data(0) A C K A C K P Data(n) Data(1) A C K A C K A C K Figure 67. Write Sequence (I2C) 3. Read Sequence In the AK7735, when a “write- slave-address assignment” is received at the first byte, the read command at the second byte and the address at the third and fourth bytes are received. When the fourth byte is received and an acknowledgement is transferred, the read command waits for the next restart condition. When a “read slave-address assignment” is received at the first byte, data is transferred at the second and succeeding bytes. The number of readable data bytes is fixed by the received read command. After reading the last byte, assure that a “not acknowledged” signal is received. If this “not acknowledged” signal is not received, the AK7735 continues to send data regardless whether data is present or not, and since it did not release the BUS, the stop condition cannot be properly received. S T A R T R E S T A R T R/W=”0” Slave SDA S Address Command Code A C K Address(0) A C K Slave S Address Address(1) A C K A C K S T O P R/W=”1” Data(0) A C K MA AC SK T E R P Data(n) Data(1) MA AC SK T E R MA AC SK T E R MN A A S C T K E R Figure 68. Read Sequence (I2C) 016014707-E-00 2016/12 - 88 - [AK7735] 4. Not Acknowledge The AK7735 cannot receive instructions while the RDY pin (Data Write Ready pin) is at a low level. The maximum transition time of the RDY pin from low level to high level is 2 × LRCK. It is possible to confirm in a faster cycle than 2 x LRCK that the RDY pin becomes high by checking the AK7735 internal condition, which is made by verifying the acknowledgement. 4-1. Generation of “Not Acknowledge” The AK7735 does not accept command codes until the RDY pin becomes high, when a command is received to set the RDY pin to a low level. In order to confirm the RDY pin condition, a “Write Slave-Address assignment” should be sent after the Start condition. If the RDY pin is then at a low level, “Acknowledgement” is not generated at the succeeding clock (generation of “Not Acknowledged”). After sending “Not Acknowledged”, the BUS is released and all receiving data are ignored until the next start condition (behaves as if it received Slave address of other device). 4-2. When Read Slave-address assignment is received without receiving Read command code Data read in the AK7735 can be made only in the previously documented Read sequence. Data cannot be read out without receiving a read command code. In the AK7735, a “Not Acknowledged” is generated when a “Read Slave-address Assignment” without proper receipt of read command is received. 5. Limitation in use of I2C Interface The AK7735 does not operate in Hs Mode (max: 3.4MHz). The AK7735 supports Fast mode (max: 400kHz) and Fast plus mode (max: 1MHz). Note * 72. Do not turn off the power of the AK7735 whenever the power supplies of other devices of the same system are turned on. Pull-up resistors of SDA and SCL pins should be connected to TVDD or less voltage. (The diodes against TVDD exist in the SDA and SCL pins.) 016014707-E-00 2016/12 - 89 - [AK7735] ■ Simple Write Error Check The AK7735 have a cyclic redundancy check (CRC) function for a simple checking of writing data for RAM and registers. 1. Checked Data 1-1. SPI Interface SI data during CSN = “L” is checked. • Serial Data D(x): SI data which is input during a period from a falling edge to a rising edge of CSN • Generator Polynomial G(x)=x16+x12+x5+1 (Divisor=0x1021, Default=0, MSB-first, Not Inverted) • The remainder of D(x) divided by G(x) is R(x). 1-2. I2C Interface Command code, address and data from the second byte are checked. (Acknowledge is not included. Therefore, the checked result will be the same as the SPI interface if the same command code, address and data are written.) The first byte which includes a slave address is not checked. It can be checked by Acknowledge. • Serial Data D(x): Command Code, Address and Data (Slave Address is not included) • Generator Polynomial G(x)=x16+x12+x5+1 (Divisor=0x1021, Default=0, MSB-first, Not Inverted) • The remainder of D(x) divided by G(x) is R(x). 2. Simple Write Error Check Sequence There are two ways to check write error. 2-1. CRC Result (1) Write serial data D(x) to be checked. (2) Read out a CRC result (remainder R(x)) by the command code 72H. (3) Check the result by a microprocessor. (4) When checking other serial data, repeat the sequence from (1) to (3). Note * 73. The internal CRC result is not updated by command code 72H. 2-2. STO pin State (1) Set control register CRCE bit to “1”. (2) Write serial data D(x) to be checked. (3) Write the R(x) value to registers by the command code F2H. (4) If the remainder of D(x) divided by G(x) is equal to R(x), the STO pin outputs “H”. If not, it outputs “L”. (5) When checking other serial data, repeat the sequence from (2) to (4). Note * 74. The STO pin keeps outputting “L” until a correct value of R(x) is written in sequence (3). 016014707-E-00 2016/12 - 90 - [AK7735] ■ DSP Block 1. Settings of DSP Memory The AK7735 integrates two DSPs (DSP1 and DSP2) which have the same architecture. The DSP1 and the DSP2 share program RAM (PRAM), coefficient RAM (CRAM) data RAM (DRAM) and delay RAM (DLRAM). Assigned memory area for each DSP is set by register settings. Both DSPs must be in reset state when setting memory assignment. PRAMDIV bit controls PRAM assignment for DSP1 and DSP2. CRAMDIV[1:0] bits control CRAM assignment, DRAMDIV bit controls DRAM assignment and DLRAMDIV[1:0] bits control DLRAM assignment. Mode 0 1 PRAMDIV bit DSP1 DSP2 0 2048 word 2048 word 1 4096 word Reset Table 35. PRAM Assignment for DSP1 and DSP2 (default) Note * 75. The DSP2 must be reset when setting to Mode 1 (PRAMDIV bit = “1”). Mode CRAMDIV[1:0] bits DSP1 DSP2 0 00 4096 word 2048 word (default) 1 01 2048 word 4096 word 2 10 6144 word Reset 3 11 N/A N/A Table 36. CRAM Assignment for DSP1 and DSP2 (N/A: Not Available) Note * 76. The DSP2 must be reset when setting to Mode 2 (CRAMDIV[1:0] bits = “10”). Mode 0 1 DRAMDIV bit DSP1 DSP2 0 2048 word 2048 word 1 4096 word Reset Table 37. DRAM Assignment for DSP1 and DSP2 (default) Note * 77. The DSP2 must be reset when setting to Mode 1 (DRAMDIV bit = “1”). Mode 0 1 2 3 DLRAMDIV[1:0] bits DSP1 DSP2 00 12288 word Not Connected 01 8192 word 4096 word 10 4096 word 8192 word 11 Not Connected 12288 word Table 38. DLRAM Assignment for DSP1 and DSP2 (default) Note * 78. The DSP1 and DSP2 can be operated without connecting to DLRAM. However, program access to DLRAM is not permitted. 016014707-E-00 2016/12 - 91 - [AK7735] BANK size and BANK addressing mode of DRAM, that is assigned, can be set independently for the DSP1 and the DSP2. DRAM BANK sizes for DSP1 and DSP2 are controlled by D1DRMBK[1:0] bits and D2DRMBK[1:0] bits, respectively. D1DRMBK[1:0] bits Mode BANK 1 Size BANK 0 Size D2DRMBK[1:0] bits 0 00 1024 Rest of Area (default) 1 01 2048 Rest of Area 2 10 3072 Rest of Area 3 11 N/A N/A Table 39. DRAM BANK Size Setting for DSP1 and DSP2 (N/A: Not Available) DRAM BANK addressing modes for DSP1 and DSP2 are controlled by D1DRMA[1:0] bits and D2DRMA[1:0] bits, respectively. D1DRMA[1:0] bits Mode BANK 1 (DP1) BANK 0 (DP0) D2DRMA[1:0] bits 0 00 Ring Ring (default) 1 01 Ring Linear 2 10 Linear Ring 3 11 Linear Linear Table 40. DRAM BANK Addressing Mode Setting for DSP1 and DSP2 BANK size and BANK addressing mode of DLRAM, that is assigned, can be set independently for the DSP1 and DSP2. DLRAM BANK sizes for DSP1 and DSP2 are controlled by D1DLRMBK[2:0] bits and D2DLRMBK[2:0] bits, respectively. D1DLRMBK [2:0] bits Mode BANK 1 Size BANK 0 Size D2DLRMBK [2:0] bits 0 000 0 Rest of Area (default) 1 001 2048 word Rest of Area 2 010 4096 word Rest of Area 3 011 6144 word Rest of Area 4 100 8192 word Rest of Area 5 101 10240 word Rest of Area 6 110 12288 word 0 7 111 N/A N/A Table 41. DLRAM BANK Size Setting for DSP1 and DSP2 (N/A: Not Available) DLRAM BANK addressing modes for DSP1 and DSP2 are controlled by D1DLRMA bit and D2DLRMA bit, respectively. D1DLRMA bit Mode BANK 1 BANK 0 D2DLRMA bit 0 0 Ring Ring (default) 1 1 Linear Ring Table 42. DLRAM BANK Addressing Mode Setting for DSP1 and DSP2 016014707-E-00 2016/12 - 92 - [AK7735] Sampling mode of DLRAM BANK 0 for the DSP1 and DSP2 are controlled by D1SS[1:0] bits and D2SS[1:0] bits, respectively. D1SS[1:0] bits Mode Sampling Mode of DLRAM BANK 0 D2SS[1:0] bits 0 00 Update Address in Every Sampling (default) 1 01 Update Address in Every 2 Samplings 2 10 Update Address in Every 4 Samplings 3 11 Update Address in Every 8 Samplings Table 43. DLRAM BANK0 Sampling Mode setting of DSP1/DSP2 The DSP1 and DSP2 are able to generate a trigonometric COS table for trigonometric processing. Input 1/4 cycle data of the COS table to CRAM and the DSP generates rest of 3/4 cycle data automatically. COS table length for CRAM input is variable according to the cycle resolution setting. The cycle resolution of DSP1 and DSP2 is controlled by D1WAVP[2:0] bits and D2WAVP[2:0] bits, respectively. D1WAVP[2:0] bits Mode Cycle Resolution COS Table Length D2WAVP[2:0] bits 0 000 128 points 33 word (default) 1 001 256 points 65 word 2 010 512 points 129 word 3 011 1024 points 257 word 4 100 2048 points 513 word 5 101 4096 points 1025 word 6 110 N/A N/A 7 111 N/A N/A Table 44. Cycle Resolution Setting of Trigonometric Table for DSP1/DSP2 (N/A: Not Available) 2. Soft SRC Function DOUT1 port of DSP1 has a built-in FIFO to realize synchronous SRC program for sampling rate conversion. The output data of DOUT1 port of DSP1 can be up sampled by the FIFO. A DSP filtering process is necessary when using the soft SRC function. The soft SRC is capable of integral multiple conversion of a sampling rate between two synchronized clock sync domains, supporting 6 times up sampling at maximum. Up Sampling (6 word FIFO x2) DIN1 DIN2 DOUT2 DIN3 DIN4 DOUT1 DSP1 DIN5 DOUT3 DOUT4 DOUT5 DIN6 DOUT6 Figure 69. DSP1 Soft SRC Function 016014707-E-00 2016/12 - 93 - [AK7735] ■ Analog Input Block 1. Microphone Input Gain The AK7735 has gain amplifiers for microphone input. The gain of L and R channels can be independently selected by MGNL[3:0] and MGNR[3:0] bits (Table 45). The input impedance is typ. 20k when ADC1VL/R bits is “0” and it is typ.25 k when ADC1VL/R bits are “1”. This gain amplifier executes zero crossing detection when changing the gain by setting MICLZCE bit = “1” / MICRZCE bit = “1”. Zero crossing detection is executed independently for L and R channels. Zero crossing timeout period is 16ms (@fs=48kHz base). When MICLZCE bit = “0”/ MICRZCE bit = “0”, the volume is changed immediately by register settings. When writing to MGNL/R[3:0] bits continuously, take an interval of zero crossing timeout period or more. If the MGNL/R[3:0] bits are changed before zero crossing, the volume of Lch and Rch may differ. When the volume level that is same as the present volume is set, the zero crossing counter is not reset and time outs according to the previous writing timing. Therefore, in this case, writing to MGNL/R [3:0] bits continuously is possible with a shorter interval of the zero crossing timeout period. 1-1. Microphone Gain Mode 0 1 2 3 4 5 6 7 8 9 A B C D E F MGNL[3] MGNL[2] MGNL[1] MGNL[0] Input Gain MGNR[3] MGNR[2] MGNR[1] MGNR[0] 0 0 0 0 0dB (default) 0 0 0 1 2dB 0 0 1 0 4dB 0 0 1 1 6dB 0 1 0 0 8dB 0 1 0 1 10dB 0 1 1 0 12dB 0 1 1 1 14dB 1 0 0 0 16dB 1 0 0 1 18dB 1 0 1 0 21dB 1 0 1 1 24dB 1 1 0 0 27dB 1 1 0 1 30dB 1 1 1 0 33dB 1 1 1 1 36dB Table 45. Microphone Input Gain 1-2. Zero Crossing Timeout The microphone gain is changed independently on the timing of zero crossing detection or zero crossing timeout. 48kHz base 44.1kHz base 16ms 17.4ms Zero Crossing Timeout Period Table 46. Zero Crossing Timeout Period 016014707-E-00 2016/12 - 94 - [AK7735] 1-3. Start-up Time of MIC Input Pin The AK7735 starts to charge a DC cut capacitor when the PDN pin is set to “H” from “L”. Since the input impedance is 25kΩ, the time constant will be 25ms if the DC cut capacitor is 1µF. A wait time of about 100ms should be taken before power up the ADC to charge the DC cut capacitor sufficiently. A click noise may occur just after the ADC is powered up if this wait time is not enough. 2. Microphone Input Selector The AK7735 has microphone input selectors. Each microphone amplifier input is selectable between single-ended input and differential input by AD1LSEL bit or AD1RSEL bit. AK7735 AIN1L / INP1 pin ADC Lch INN1 pin MIC-Amp Lch AD1LSEL bit AIN1R / INP2 pin ADC Rch INN2 pin AD1RSEL bit MIC-Amp Rch Figure 70. Microphone Input Selector AD1LSEL bit 0 1 ADC Lch AD1RSEL bit INP1/INN1 (default) 0 AIN1L 1 Table 47. Microphone Input Selector ADC Rch INP2/INN2 AIN1R (default) Note * 79. When using differential input mode, it is prohibited to input signal to only one side like pseudo differential input. 016014707-E-00 2016/12 - 95 - [AK7735] 3. Microphone Bias Output The AK7735 has a line of microphone bias output. The power supply of microphone is supplied from the MPWR pin by setting PMMB bit = “1”. The output voltage is 2.5V (AVDD=3.3V) and the load resistance is min. 2kΩ. PMMB bit MPWR pin 0 Hi-Z (default) 1 Output Table 48. Microphone Bias Output AK7735 AK7735 PMMB bit PMMB bit MPWR pin MPWR pin 4.7k 4.7k 4.7k Microphone 4.7k Microphone INP1 AIN1L INN1 100nF 4.7k Microphone MIC-Amp Lch 100nF MIC-Amp Lch Microphone INP2 AIN1R INN2 100nF 4.7k 100nF MIC-Amp Rch MIC-Amp Rch Figure 71. MIC Block Circuit (Differential Input) 016014707-E-00 Figure 72. MIC Block Circuit (Single-end Input) 2016/12 - 96 - [AK7735] ■ ADC Block 1. ADC Block High Pass Filter The AK7735 has a digital high pass filter (HPF) for DC offset cancelling of each ADC. The cut-off frequency of the HPF is about 0.9Hz (fs=48kHz), depending on operation frequency. 2. ADC Digital Volume The AK7735 has independent digital volume controls for Lch and Rch (256 levels, 0.5dB steps) of each ADC. ADC1 ADC1 ADC2 ADC2 Attenuation VOLAD1L[7:0] VOLAD1R[7:0] VOLAD2L[7:0] VOLAD2R[7:0] Level 00h 00h 00h 00h +24.0dB 01h 01h 01h 01h +23.5dB 02h 02h 02h 02h +23.0dB : : : : : 2Fh 2Fh 2Fh 2Fh +0.5dB 30h 30h 30h 30h 0.0dB (default) 31h 31h 31h 31h -0.5dB : : : : : FDh FDh FDh FDh -102.5dB FEh FEh FEh FEh -103.0dB FFh FFh FFh FFh Mute (-∞) Table 49. ADC Digital Volume Control Setting The transition time between set values is selected by ATSPAD bit. Mode ATSPAD bit Transition Time 0 0 4/fs (default) 1 1 16/fs Table 50. ADC Volume Level Transition Time The transition between set values is soft transition. It takes 1020/fs (21.3ms@fs=48kHz) from 00h to FFh(MUTE) in Mode 0. If the PDN pin goes to “L”, the volume of each ADC channel is initialized to 30h. ATSPAD bit 0 1 00h ⇔ FFh Transition Time LRCK Cycle fs=48kHz fs=44.1kHz fs=8kHz 1020/fs 21.3ms 23.1ms 127.5ms 1020/fs x4 85.0ms 92.5ms 510.0ms Table 51. ADC Volume Transition Time from 00h to FFh 016014707-E-00 (default) 2016/12 - 97 - [AK7735] code 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh dB 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 code 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh dB 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 -.6.0 -6.5 -7.0 -7.5 code 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh dB -8.0 -8.5 -9.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 -12.5 -13.0 -13.5 -14.0 -14.5 -15.0 -15.5 -16.0 -16.5 -17.0 -17.5 -18.0 -18.5 -19.0 -19.5 -20.0 -20.5 -21.0 -21.5 -22.0 -22.5 -23.0 -23.5 code 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh dB -24.0 -24.5 -25.0 -25.5 -26.0 -26.5 -27.0 -27.5 -28.0 -28.5 -29.0 -29.5 -30.0 -30.5 -31.0 -31.5 -32.0 -32.5 -33.0 -33.5 -34.0 -34.5 -35.0 -35.5 -36.0 -36.5 -37.0 -37.5 -38.0 -38.5 -39.0 -39.5 code 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh dB -40.0 -40.5 -41.0 -41.5 -42.0 -42.5 -43.0 -43.5 -44.0 -44.5 -45.0 -45.5 -46.0 -46.5 -47.0 -47.5 -48.0 -48.5 -49.0 -49.5 -50.0 -50.5 -51.0 -51.5 -52.0 -52.5 -53.0 -53.5 -54.0 -54.5 -55.0 -55.5 code A0h A1h A2h A3h A4h A5h A6h A7h A8h A9h AAh ABh ACh ADh AEh AFh B0h B1h B2h B3h B4h B5h B6h B7h B8h B9h BAh BBh BCh BDh BEh BFh dB -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 code C0h C1h C2h C3h C4h C5h C6h C7h C8h C9h CAh CBh CCh CDh CEh CFh D0h D1h D2h D3h D4h D5h D6h D7h D8h D9h DAh DBh DCh DDh DEh DFh dB -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80.5 -81.0 -81.5 -82.0 -82.5 -83.0 -83.5 -84.0 -84.5 -85.0 -85.5 -86.0 -86.5 -87.0 -87.5 code E0h E1h E2h E3h E4h E5h E6h E7h E8h E9h EAh EBh ECh EDh EEh EFh F0h F1h F2h F3h F4h F5h F6h F7h F8h F9h FAh FBh FCh FDh FEh FFh dB -88.0 -88.5 -89.0 -89.5 -90.0 -90.5 -91.0 -91.5 -92.0 -92.5 -93.0 -93.5 -94.0 -94.5 -95.0 -95.5 -96.0 -96.5 -97.0 -97.5 -98.0 -98.5 -99.0 -99.5 -100.0 -100.5 -101.0 -101.5 -102.0 -102.5 -103.0 Mute Table 52. ADC Digital Volume Settings 016014707-E-00 2016/12 - 98 - [AK7735] 3. ADC Soft Mute The ADC block has a digital soft mute circuit. The soft mute operation is performed at digital domain. The output signal is attenuated to -∞ in “ATT setting level x ATT transition time” from the current ADC digital volume setting level by setting AD1MUTE bit or AD2MUTE bit to “1”. When the AD1MUTE bit or AD2MUTE bit returns to “0”, the mute is cancelled and the output attenuation level gradually changes to ATT setting level in “ATT setting level x ATT transition time”. If the soft mute is cancelled before attenuating to -∞ after starting the operation, the attenuation is discontinued and the volume level returns to original volume setting level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. The attenuation level transition takes 828/fs from 0dB to -∞ and from -∞ to 0dB. Soft mute function is available when each ADC is in operation. The attenuation value is initialized by setting the PDN pin = “L”. AD1MUTE, AD2MUTE, Group Delay (GD) GD 0dB Attenuation Level 828/fs -∞dB 828/fs Output Image Figure 73. ADC Soft Mute 4. ADC2 Input Selector ADC2 of the AK7735 has an input selector for 1 stereo differential input and 2 stereo single-ended inputs. These inputs are selected by AD2SEL[1:0] bits. In the case that these registers are changed during operation, mute output signal to reduce switching noise as needed. Mode 0 1 2 3 AD2SEL[1:0] bits Selected Pin 00 AIN2LP, AIN2LN, AIN2RP, AIN2RN 01 AIN3L, AIN3R 10 AIN4L, AIN4R 11 N/A Table 53. ADC2 Input Select (N/A: Not Available) (default) Note * 80. When using differential input mode, it is prohibited to input signal to only one side like pseudo differential input. 016014707-E-00 2016/12 - 99 - [AK7735] 4-1. Input Selector Switching Sequence The input selector should be changed after enabling soft mute function to avoid the switching noise of the input selector. ADC2 Input selector switching sequence: 1) Enable Soft Mute Function before Changing Channel 2) Change Channel 3) Disable Soft Mute Function AD2MUTE bit (2) DATT Level (1) (1) Attenuation (3) -∞ Channel IN3L/IN3R IN4L/IN4R Figure 74. ADC2 Input Channel Switching Sequence Example The period of (1) varies according to the setting value of the DATT level. Transition time of attenuation level from 0dB to - is shown below. (1) Period (Max) ATSPAD bit LRCK Cycle fs=48kHz fs=44.1kHz fs=8kHz 0 828/fs 17.25ms 18.78ms 103.5ms (default) 1 828/fs x 4 69ms 75.10ms 414ms The input channel should be changed during the period (2). An interval around 200ms is needed before releasing the soft mute after changing the channel (period (3)). 5. ADC Digital Filter Select The AK7735 has four kinds of digital filters in ADC block. ADSD and ADSL bits select a digital filter. ADC1 and ADC2 have a common setting for digital filter. Mode 0 1 2 3 ADSD bit 0 0 1 1 ADSL bit Digital Filter 0 Sharp Roll-Off Filter 1 Slow Roll-Off Filter 0 Short Delay Sharp Roll-Off Filter 1 Short Delay Slow Roll-Off Filter Table 54. ADC Digital Filter Select 016014707-E-00 (default) 2016/12 - 100 - [AK7735] 6. ADC Input Volume Selection Single-ended input amplitude (differential input amplitude) of ADC1 L/Rch and ADC2 L/Rch can be switched between 2.3Vpp (±2.3Vpp) and 2.83Vpp (±2.83Vpp) by ADC1VL/R bit and ADC2VL/R bit, respectively. Mode 0 1 Input Full Scale Voltage ADC1VL bit / ADC1VR bit ADC2VL bit / ADC2VR bit Single-end Input Differential Input 0 2.3Vpp ±2.3Vpp 1 2.83Vpp ±2.83Vpp Table 55. ADC Input Full Scale Voltage Selection 016014707-E-00 (default) 2016/12 - 101 - [AK7735] ■ DAC Block 1. DAC Digital Volume The AK7735 has channel-independent digital volume controls in DAC block. (256 levels, 0.5 steps) DAC1 Lch DAC1 Rch DAC2 Lch DAC2 Rch VOLDA1L[7:0] VOLDA1R[7:0] VOLDA2L[7:0] VOLDA2R[7:0] 00h 00h 00h 00h 01h 01h 01h 01h 02h 02h 02h 02h : : : : 17h 17h 17h 17h 18h 18h 18h 18h 19h 19h 19h 19h : : : : FDh FDh FDh FDh FEh FEh FEh FEh FFh FFh FFh FFh Table 56. DAC Digital Volume Setting Attenuation Level +12.0dB +11.5dB +11.0dB : +0.5dB 0.0dB -0.5dB : -114.5dB -115.0dB Mute (-∞) (default) Transition time between set values can be selected by ATSPDA bit. MODE ATSPDA Transition Time 0 0 4/fs (default) 1 1 16/fs Table 57. DAC Volume Transition Time Setting The transition between set values is soft transition. It takes 1020/fs (21.3ms@fs=48kHz) from 00h to FFh (MUTE) in Mode 0. If the PDN pin is set to “L”, the VOLDA1L[7:0], VOLDA1R[7:0], VOLDA2L[7:0] and VOLDA2R[7:0] bits are initialized to 18h. ATSPDA bit 0 1 00h ↔ FFh Transition Time LRCK Cycle fs=48kHz fs=44.1kHz fs=8kHz 1020/fs 21.3ms 23.1ms 127.5ms 1020/fs x4 85.0ms 92.5ms 510.0ms Table 58. DAC Volume Transition Time (00h ↔ FFh) 016014707-E-00 (default) 2016/12 - 102 - [AK7735] code 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh dB 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 code 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh dB -4.0 -4.5 -5.0 -5.5 -.6.0 -6.5 -7.0 -7.5 -8.0 -8.5 -9.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 -12.5 -13.0 -13.5 -14.0 -14.5 -15.0 -15.5 -16.0 -16.5 -17.0 -17.5 -18.0 -18.5 -19.0 -19.5 code 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh dB -20.0 -20.5 -21.0 -21.5 -22.0 -22.5 -23.0 -23.5 -24.0 -24.5 -25.0 -25.5 -26.0 -26.5 -27.0 -27.5 -28.0 -28.5 -29.0 -29.5 -30.0 -30.5 -31.0 -31.5 -32.0 -32.5 -33.0 -33.5 -34.0 -34.5 -35.0 -35.5 code 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh dB -36.0 -36.5 -37.0 -37.5 -38.0 -38.5 -39.0 -39.5 -40.0 -40.5 -41.0 -41.5 -42.0 -42.5 -43.0 -43.5 -44.0 -44.5 -45.0 -45.5 -46.0 -46.5 -47.0 -47.5 -48.0 -48.5 -49.0 -49.5 -50.0 -50.5 -51.0 -51.5 code 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh dB -52.0 -52.5 -53.0 -53.5 -54.0 -54.5 -55.0 -55.5 -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 code A0h A1h A2h A3h A4h A5h A6h A7h A8h A9h AAh ABh ACh ADh AEh AFh B0h B1h B2h B3h B4h B5h B6h B7h B8h B9h BAh BBh BCh BDh BEh BFh dB -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80.5 -81.0 -81.5 -82.0 -82.5 -83.0 -83.5 code C0h C1h C2h C3h C4h C5h C6h C7h C8h C9h CAh CBh CCh CDh CEh CFh D0h D1h D2h D3h D4h D5h D6h D7h D8h D9h DAh DBh DCh DDh DEh DFh DB -84.0 -84.5 -85.0 -85.5 -86.0 -86.5 -87.0 -87.5 -88.0 -88.5 -89.0 -89.5 -90.0 -90.5 -91.0 -91.5 -92.0 -92.5 -93.0 -93.5 -94.0 -94.5 -95.0 -95.5 -96.0 -96.5 -97.0 -97.5 -98.0 -98.5 -99.0 -99.5 code E0h E1h E2h E3h E4h E5h E6h E7h E8h E9h EAh EBh ECh EDh EEh EFh F0h F1h F2h F3h F4h F5h F6h F7h F8h F9h FAh FBh FCh FDh FEh FFh dB -100.0 -100.5 -101.0 -101.5 -102.0 -102.5 -103.0 -103.5 -104.0 -104.5 -105.0 -105.5 -106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 Mute Table 59. DAC Digital Volume Level Setting 016014707-E-00 2016/12 - 103 - [AK7735] 2. DAC Soft Mute The DAC block has a digital soft mute circuit. The soft mute operation is performed at digital domain. The output signal is attenuated to -∞ in “ATT setting level x ATT transition time” from the current DAC digital volume setting level by setting DA1MUTE bit or DA2MUTE bit to “1”. When the DA1MUTE bit or DA2MUTE bit returns to “0”, the mute is cancelled and the output attenuation level gradually changes to ATT setting level in “ATT setting level x ATT transition time”. If the soft mute is cancelled before attenuating to -∞ after starting the operation, the attenuation is discontinued and the volume level returns to original volume setting level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. The attenuation level transition takes 924/fs from 0dB to -∞ and from -∞ to 0dB. Soft mute function is available when each DAC is in operation. The attenuation value is initialized by setting the PDN pin = “L”. The DAC1 (DAC2) is reset by setting PMDA1 bit (PMDA2 bit) to “0”. A click noise may occur when reset the DAC block and releasing the reset. The output signal should be muted externally if the click noise adversely affects the system performance. DA1MUTE or DA2MUTE bit 924/fs 924/fs 0dB Attenuation Level -∞dB GD Group Delay (GD) Output Image Soft Mute Operation Figure 75. DAC Soft Mute Operation 016014707-E-00 2016/12 - 104 - [AK7735] Analog ouptut pins will output VCOM voltage by setting HRESETN bit = “1” → “0” while PMDAx bit is “1”. Use this mode when changing system clock during DAC operation to prevent a click noise caused by resuming DAC operation after changing the system clock (Figure 76, CASE1). Analog outputs goes to Hi-z state by setting HRESETN bi = “1” → “0” while PMDAx bit is “0”. Therefore a click noise may occur when resuming DAC operation after changing the system clock (Figure 76, CASE2). The output signal should be muted externally if the click noise adversely affects the system performance. PMDAx bit HRESETN bit Analog Output 0 0 Hi-Z Output 0 1 Hi-Z Output 1 0 VCOM Voltage Output 1 1 Normal Operation Table 60. Analog Output Status during HUB Reset HRESETN bit CASE 1 PMDAx bit = “1” VCOM Output Analog Output Operation Start CASE 2 Click Noise PMDAx bit Hi-Z Output Analog Output Operation Start Figure 76. Analog Output Status during HUB Reset 3. DAC Digital Filter Select The AK7735 has four kinds of digital filters in DAC block. DASD and DASL bits select a digital filter. DAC1 and DAC2 have a common digital filter setting. Mode 0 1 2 3 DASD bit 0 0 1 1 DASL bit Digital Filter 0 Sharp Roll-Off Filter 1 Slow Roll-Off Filter 0 Short Delay Sharp Roll-Off Filter 1 Short Delay Slow Roll-Off Filter Table 61. DAC Digital Filter Select 016014707-E-00 (default) 2016/12 - 105 - [AK7735] 4. DAC De-emphasis Filter Control The AK7735 has a digital de-emphasis filter (tc=50/15µs) that corresponds to three sampling frequencies (32kHz, 44.1kHz and 48kHz) by IIR filter. The de-emphasis filter frequency is selected by DEMx[1:0] bits (x=1, 2) (Table 62). The de-emphasis filer only corresponds to the frequencies shown in Table 62. DEMx[1:0] bits must be set to the default setting “01” when the AK7735 is operated with other sampling frequencies. DEMx[1] bit DEMx[0] bit Mode 0 0 44.1kHz 0 1 OFF (default) 1 0 48kHz 1 1 32kHz Table 62. DAC De-emphasis Filter Control 016014707-E-00 2016/12 - 106 - [AK7735] ■ SRC Block 1. Sampling Rate The AK7735 includes two stereo digital sampling rate converters (SRC). The input sampling rate (FSI) and the output sampling rate (FSO) are supported from 8kHz to 192kHz. Available sampling rate ratio is FSO/FSI = 0.167~6.0. 1-1. Up Sampling (1.00  FSO/FSI  6.00) Supported sampling rates are shown below. (Passband and Stopband are proportional to FSI when the FSO/FSI ratios are same.) FSO 192kHz 48kHz 48kHz 48kHz 48kHz 48kHz 48kHz 48kHz 192kHz 44.1kHz 44.1kHz 44.1kHz 44.1kHz 44.1kHz 44.1kHz 16kHz 16kHz 8kHz FSI FSO/FSI Passband 48kHz 4.00 22.00kHz 48kHz 1.00 22.00kHz 44.1kHz 1.09 20.21kHz 32kHz 1.50 14.67kHz 24kHz 2.00 11.00kHz 16kHz 3.00 7.33kHz 12kHz 4.00 5.50kHz 8kHz 6.00 3.67kHz 44.1kHz 4.35 20.21kHz 44.1kHz 1.00 20.21kHz 32kHz 1.38 14.67kHz 24kHz 1.84 11.00kHz 16kHz 2.76 7.33kHz 12kHz 3.68 5.50kHz 8kHz 5.51 3.67kHz 16kHz 1.00 7.33kHz 8kHz 2.00 3.67kHz 8kHz 1.00 3.67kHz Table 63. Up Sampling Example 016014707-E-00 Stopband 26.00kHz 26.00kHz 23.89kHz 17.33kHz 13.00kHz 8.67kHz 6.50kHz 4.33kHz 23.89kHz 23.89kHz 17.33kHz 13.00kHz 8.67kHz 6.50kHz 4.33kHz 8.67kHz 4.33kHz 4.33kHz 2016/12 - 107 - [AK7735] 1-2. Down Sampling (0.167  FSO/FSI < 1.00) Three kinds of filter mode can be selected by SRCFAUD bit and SRCFEC bit when down sampling. Supported sampling rates are shown below. (Passband and Stopband are proportional to FSI when the FSO/FSI ratios are same.) 1) Audio Mode (SRCFAUD bit = “1”, SRCFEC bit = “0”) FSO FSI FSO/FSI Passband Stopband 44.1kHz 48kHz 0.919 20.00kHz 24.10kHz 48kHz 88.2kHz 0.544 19.25kHz 26.23kHz 48kHz 96kHz 0.5 20.90kHz 27.00kHz 44.1kHz 88.2kHz 0.5 19.20kHz 24.81kHz 44.1kHz 96kHz 0.459 18.70kHz 25.00kHz 16kHz 44.1kHz 0.363 5.79kHz 7.95kHz 48kHz 192kHz 0.25 25.19kHz 34.60kHz 44.1kHz 192kHz 0.229 25.19kHz 34.60kHz 8kHz 48kHz 0.167 3.16kHz 4.66kHz 8kHz 44.1kHz 0.181 2.90kHz 4.28kHz Table 64. Down Sampling Example (Audio Mode) 2) Voice Mode (SRCFAUD bit = “0”, SRCFEC bit = “0”) FSO FSI FSO/FSI Passband Stopband 24kHz 32kHz 0.75 10.94kHz 11.95kHz 16kHz 24kHz 0.667 7.22kHz 7.97kHz 16kHz 32kHz 0.5 7.14kHz 7.97kHz 8kHz 16kHz 0.5 3.57kHz 3.98kHz 16kHz 48kHz 0.333 6.80kHz 7.97kHz 8kHz 32kHz 0.25 3.26kHz 3.99kHz Table 65. Down Sampling Example (Voice Mode) 3) Echo Canceller Mode (SRCFEC bit = “1”) In echo canceller mode, the input signal should be attenuated sufficiently for more than FSO/2 frequency. FSO FSI FSO/FSI Passband Stopband 32kHz 44.1kHz 0.726 20.21kHz 23.89kHz 32kHz 48kHz 0.667 22.00kHz 26.00kHz 24kHz 44.1kHz 0.544 20.21kHz 23.89kHz 24kHz 48kHz 0.5 22.00kHz 26.00kHz 16kHz 44.1kHz 0.363 20.21kHz 23.89kHz 16kHz 48kHz 0.333 22.00kHz 26.00kHz Table 66. Down Sampling Example (Echo Canceller Mode) 016014707-E-00 2016/12 - 108 - [AK7735] 2. SRC Input/Output Input sources of SRC1~2 are selected by SELSRCI1[5:0] and SELSRCI2[5:0] bits (Table 19, Table 20). The input clock sync domains are inherited from the input data. The output clock sync domains are set by SDSRCO1[2:0] and SDSRCO2[2:0] bits (Table 19, Table 20). Then the output data is sent to the data bus. 3. SRC Soft Mute The SRC1 and SRC2 have soft mute function independently. 3-1. Manual Mode When SMUTEx bit (x=1, 2) is set to “1”, the SRC output data are attenuated to  in 1024 FSO cycles. When the SMUTEx bit is set to “0”, the mute is cancelled and the output attenuation level gradually changes to 0dB in 1024 FSO cycles. If the soft mute is cancelled before mute state, the attenuation is discontinued and the attenuation level returns to 0dB by the same cycles. The soft mute is effective for changing the signal source without stopping the signal. SMUTEx bit 0dB Attenuation Level at SRCOx -dB (3) (1) (2) Figure 77. Soft Mute Manual Mode (1) SMUTEx bit (x=1, 2) = “0”→“1”: The output data is attenuated to  during 1024 FSO cycles. (2) SMUTEx bit (x=1, 2) =“1”→“0”: The output attenuation level gradually changes to 0dB from  in 1024 FSO cycles. (3) If the soft mute is cancelled within 1024 FSO cycles, the attenuation is discontinued and the attenuation level returns to 0dB by the same number of clock cycles. 016014707-E-00 2016/12 - 109 - [AK7735] 3-2. Semi-Auto Mode Semi-automatic soft mute mode is set by SAUTOx bit (x=1, 2) = “1”. In this mode, soft mute is released within 21.25ms after continuing the mute when PMSRCx bit (x=1, 2) is set to “1”. If SMUTEx bit is “1” when PMSRCx bit is released (“0” → “1”), the soft mute is not cancelled. “0” PMSRCx bit “0” Don’t Care SMUTEx bit (1) 0dB Attenuation -∞dB
AK7735EQ 价格&库存

很抱歉,暂时无法提供与“AK7735EQ”相匹配的价格&库存,您可以联系我们找货

免费人工找货