0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AS4C128M16MD4-062BAN

AS4C128M16MD4-062BAN

  • 厂商:

    ALSC

  • 封装:

    WFBGA-200

  • 描述:

    IC DRAM 2GBIT LVSTL 200FBGA

  • 数据手册
  • 价格&库存
AS4C128M16MD4-062BAN 数据手册
2Gb/4Gb/8Gb LPDDR4 Revision History For 2Gb/4Gb/8Gb LPDDR4 200ball FBGA Package Revision Details Date Rev 1.0 Initial Release Aug 2020 Confidential - 1 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1 Overview The LPDDR4 SDRAM is organized as 1 or 2 channels per device, and individual channel is 8-banks and 16-bits. This product uses a double-data-rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 16n prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. This product offers fully synchronous operations referenced to both rising and falling edges of the clock. The data paths are internally pipelined and 16n bits prefetched to achieve very high bandwidth. 1.1 Features The 2Gb/4Gb/8Gb LPDDR4 SDRAM offers the following key features:  Configuration: - x32 for 2-channels per device (AS4C64M32MD4 , AS4C128M32MD4, AS4C256M32MD4) - x16 for 1-channel per device (AS4C128M16MD4, AS4C256M16MD4) - 8 internal banks per each channel  On-Chip ECC: - Single-bit error correction (per 64-bits), which will maximize reliability - Optional ERR output signal per channel, which indicates ECC event occurrence - ECC Register, which controls ECC function  Low-voltage Core and I/O Power Supplies: - VDD2 /VDDQ = 1.06-1.17V, VDD1 = 1.70-1.95V  LVSTL(Low Voltage Swing Terminated Logic) I/O Interface  Internal VREF and VREF Training  Dynamic ODT : - DQ ODT :VSSQ Termination - CA ODT :VSS Termination  Selectable output drive strength (DS)  Max. Clock Frequency : 1.6GHz (3.2Gbps for one channel)  16-bit Pre-fetch DDR data bus  Single data rate (multiple cycles) command/address bus             Bidirectional/differential data strobe per byte of data (DQS, DQS) DMI pin support for write data masking and DBI functionality Programmable READ and WRITE latencies (RL/WL) Programmable and on-the-fly burst lengths (BL =16, 32) Support non-targert DRAM ODT control Directed per-bank refresh for concurrent bank operation and ease of command scheduling ZQ Calibration Operation Temperature: - Automotive A2 (TC = -40°C to 105°C) On-chip temperature sensor to control self refresh rate On-chip temperature sensor whose status can be read from MR4 RoHS-compliant, “green” packaging Package: 2Gb/4Gb : 200 ball FBGA (10mm x 14.5mm x 0.8mm) 8Gb : 200 ball FBGA (10mm x 14.5mm x 1.1mm) Table 1. Speed Grade Information Speed Grade DDR4L-3200 Clock Frequency RL tCK (ns) 1600MHz 28 0.625 *Other clock frequencies/data rates supported; please refer to AC timing tables Confidential - 2 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.2 Product List Table 2 shows all possible products within the 2Gbit/4Gbit/8Gbit LPDDR4 SDRAM component generation. Availability depends on application needs. Table2. Ordering Information for 2Gb/4Gb/8Gb LPDDR4 Product part No Org Temperature Max Clock (MHz) Package AS4C128M16MD4-062BAN 128M x 16 Automotive -40°C to 105°C 1600 200-ball FBGA AS4C128M32MD4-062BAN 128M x 32 Automotive -40°C to 105°C 1600 200-ball FBGA AS4C256M16MD4-062BAN 256M x 16 Automotive -40°C to 105°C 1600 200-ball FBGA AS4C256M32MD4-062BAN 256M x 32 Automotive -40°C to 105°C 1600 200-ball FBGA AS4C64M32MD4-062BAN Automotive -40°C to 105°C 1600 200-ball FBGA Confidential 64M x 32 - 3 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.3 Addressing Table 4 - 2Gb/4Gb/8Gb LPDDR4 SDRAM Addressing Memory Density 4Gb 4Gb 8Gb 2Gb 2Gb Organization x32 x16 x32 x32 x16 Number of Channels 2 1 2 2 1 Density per channel 2Gb 4Gb 4Gb 1Gb 2Gb Configuration 16Mb x 16DQ x 8 banks x 2 channels 32Mb x 16DQ x 8 banks x 1 channel 32Mb x 16DQ x 8 banks x 2 channels 8Mb x 16DQ x 8 banks x 2 channels 16Mb x 16DQ x 8 banks x 1 channel Number of Banks (per Channel) 8 8 8 8 8 Array Pre-Fetch (Bits, per channel) 256 256 256 256 266 8,192 16,384 Number of Rows (per channel) 16,384 32,768 32,768 Number of Columns (fetch boundaries) 64 64 64 64 64 Page Size (Bytes) 2,048 2,048 2048 2048 2048 BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2 R0-R13 R0-R14 R0-R14 R0-R12 R0-R13 C0-C9 C0-C9 C0-C9 C0-C9 C0-C9 64-bit 64-bit 64-bit 64-bit 64-bit Bank Address X16 Row Addresses Column Addresses Burst Starting Address Boundary NOTE 1 The lower two column addresses (C0 - C1) are assumed to be “zero” and are not transmitted on the CA bus. NOTE 2 Row and Column address values on the CA bus that are not used for a particular density be at valid logic levels. NOTE 3 For non - binary memory densities,only half of the row address space is valid. When the MSB address bit is “HIGH”, then the MSB - 1 address bit must be “LOW”. NOTE 4 The row address input which violates restriction described in note 3 may result in undefined or vendor specific behavior. Consult memory vendor for more information. Confidential - 4 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.4 Package Block Diagram Figure 1 – Dual Channel Package Block Diagram Part number: AS4C64M32MD4 ,AS4C128M32MD4, AS4C256M32MD4 Figure 2 – Single Channel Package Block Diagram Part number: AS4C128M16MD4, AS4C256M16MD4 Confidential - 5 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.5 Package Ballout Figure 3 - 200-ball x32 Discrete Package, 0.80mm x 0.65mm using MO-311 1 2 3 4 5 A NC NC VSS VDD2 B NC DQ0_A VDDQ C VSS DQ1 _A D VDDQ E 0.80mm Pitch 6 7 8 9 10 11 12 ZQ0 NC VDD2 VSS ERR_A NC DQ7_A VDDQ VDDQ DQ15_A VDDQ DQ8_A NC DMI0_A DQ6_A VSS VSS DQ14_A DMI1 _A DQ9_A VSS VSS DQS0_T _A VSS VDDQ VDDQ VSS DQS1_T _A VSS VDDQ VSS DQ2 _A DQS0_C _A DQ5_A VSS VSS DQ13_A DQS1_C _A DQ10_A VSS F VDD1 DQ3_A VDDQ DQ4_A VDD2 VDD2 DQ12_A VDDQ DQ11 _A VDD1 G VSS ODT_CA _A VSS VDD1 VSS VSS VDD1 VSS NC VSS H VDD2 CA0_A NC CS0_A VDD2 VDD2 CA2 _A CA3_A CA4_A VDD2 J VSS CA1_A VSS CKE0_A NC CK_t_A CK_ c_A VSS CA5_A VSS K VDD2 VSS VDD2 VSS NC NC VSS VDD2 VSS VDD2 N VDD2 VSS VDD2 VSS NC NC VSS VDD2 VSS VDD2 P VSS CA1_B VSS CKE0_B NC CK_t_B CK_c_B VSS CA5_B VSS R VDD2 CA0_B NC CS0_B VDD2 VDD2 CA2_B CA3_B CA4_B VDD2 T VSS ODT_CA _B VSS VDD1 VSS VSS VDD1 VSS RESET_ n VSS U VDD1 DQ3_B VDDQ DQ4_B VDD2 VDD2 DQ12_B VDDQ DQ11_B VDD1 V VSS DQ2_B DQS0_C _B DQ5_B VSS VSS DQ13_B DQS1_C _B DQ10_B VSS W VDDQ VSS DQS0_T _B VSS VDDQ VDDQ VSS DQS1_T _B VSS VDDQ Y VSS DQ1_B DMI0_B DQ6_B VSS VSS DQ14_B DMI1_B DQ9_B VSS AA NC DQ0_B VDDQ DQ7_B VDDQ VDDQ DQ15_B VDDQ DQ8_B NC AB NC NC VSS VDD2 VSS VSS VDD2 VSS ERR_B NC L M NOTE 1 0.8mm pitch (X-axis), 0.65mm pitch (Y-axis), 22 rows. NOTE 2 Top View, A1 in top left corner. NOTE 3 ODT_CA_[x] balls are wired to ODT_CA_[x] pads of Rank 0 DRAM die. ODT_CA_[x] pads for other ranks (if present) are disabled in the package. NOTE 4 Die pad VSS and VSSQ signals are combined to VSS package balls. NOTE 5 11A and 11AB are optional ERR signals. Confidential - 6 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Figure 4 - 200-ball x16 Discrete Package, 0.80mm x 0.65mm using MO-311 1 2 3 4 5 A NC NC VSS VDD2 B NC DQ0_A VDDQ C VSS DQ1 _A D VDDQ E 0.80mm Pitch 6 7 8 9 10 11 12 ZQ0 NC VDD2 VSS ERR_A NC DQ7_A VDDQ VDDQ DQ15_A VDDQ DQ8_A NC DMI0_A DQ6_A VSS VSS DQ14_A DMI1 _A DQ9_A VSS VSS DQS0_T _A VSS VDDQ VDDQ VSS DQS1_T _A VSS VDDQ VSS DQ2 _A DQS0_C _A DQ5_A VSS VSS DQ13_A DQS1_C _A DQ10_A VSS F VDD1 DQ3_A VDDQ DQ4_A VDD2 VDD2 DQ12_A VDDQ DQ11 _A VDD1 G VSS ODT_CA _A VSS VDD1 VSS VSS VDD1 VSS NC VSS H VDD2 CA0_ A NC CS0_A VDD2 VDD2 CA2 _A CA3_A CA4_A VDD2 J VSS CA1 _ A VSS CKE0_A NC CK_t_A CK_ c_A VSS CA5_A VSS K VDD2 VSS VDD2 VSS NC NC VSS VDD2 VSS VDD2 N VDD2 VSS VDD2 VSS NC NC VSS VDD2 VSS VDD2 P VSS NC VSS NC NC NC NC VSS NC VSS R VDD2 NC NC NC VDD2 VDD2 NC NC NC VDD2 T VSS NC VSS VDD1 VSS VSS VDD1 VSS RESET_ n VSS U VDD1 NC VDDQ NC VDD2 VDD2 NC VDDQ NC VDD1 V VSS NC NC NC VSS VSS NC NC NC VSS W VDDQ VSS NC VSS VDDQ VDDQ VSS NC VSS VDDQ Y VSS NC NC NC VSS VSS NC NC NC VSS AA NC NC VDDQ NC VDDQ VDDQ NC VDDQ NC NC AB NC NC VSS VDD2 VSS VSS VDD2 VSS NC NC L M NOTE 1 0.8mm pitch (X-axis), 0.65mm pitch (Y-axis), 22 rows. NOTE 2 Top View, A1 in top left corner. NOTE 3 ODT_CA_[x] balls are wired to ODT_CA_[x] pads of Rank 0 DRAM die. ODT_CA_[x] pads for other ranks (if present) are disabled in the package. NOTE 4 Die pad VSS and VSSQ signals are combined to VSS package balls. NOTE 5 11A is optional ERR signal. Confidential - 7 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.6 Pin Functional Description Table 5 - Pin Functional Description Symbol CK_t_A, CK_c_A, CK_t_B, CK_c_B CKE_A CKE_B CS_A CS_B CA[5:0]_A CA[5:0]_B ODT_CA_A ODT_CA_B DQ[15:0]_A, DQ[15:0]_B DQS[1:0]_t_A, DQS[1:0]_c_A, DQS[1:0]_t_B, DQS[1:0]_c_B DMI[1:0]_A, DMI[1:0]_B ZQ Type Input Input Input Input Input I/O Function Clock: CK_t and CK_c are differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c. AC timings for CA parameters are referenced to CK. Each channel (A & B) has its own clock pair. Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock circuits, input buffers, and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is part of the command code. Each channel (A & B) has its own CKE signal. Chip Select: CS is part of the command code. Each channel (A & B) has its own CS signal. Command/Address Inputs: CA signals provide the Command and Address inputs according to the Command Truth Table. Each channel (A&B) has its own CA signals. CA ODT Control: The ODT_CA pin is used in conjunction with the Mode Register to turn on/off the On-Die-Termination for CA pins. Data Input/Output: Bi-direction data bus. Data Strobe: DQS_t and DQS_c are bi-directional differential output clock signals used to strobe data during a READ or WRITE. The Data Strobe is generated by the DRAM for a READ and is edge-aligned with Data. The Data Strobe is generated by the Memory I/O Controller for a WRITE and must arrive prior to Data. Each byte of data has a Data Strobe signal pair. Each channel (A & B) has its own DQS strobes. Data Mask Inversion: DMI is a bi-directional signal which is driven HIGH when the data on the data bus is inverted, or driven LOW when the data is in its normal state. Data Inversion can be disabled via a mode register setting. Each byte of data has a DMI signal. Each I/O channel (A & B) has its own DMI signals. This signal is also used along with the DQ signals to provide write data masking information to the DRAM. The DMI pin function - Data Inversion or Data mask - depends on Mode Register setting. Calibration Reference: Used to calibrate the output drive strength and the termination Refere resistance. There is one ZQ pin per die. The ZQ pin shall be connected to VDDQ through a nce 240Ω ± 1% resistor. VDDQ, VDD1, VDD2 Supply Power Supplies: Isolated on the die for improved noise immunity. VSS, VSSQ GND RESET_n Input Ground Reference: Power supply ground reference. RESET: When asserted LOW, the RESET_n signal resets all channels of the die. There is one RESET_n pad per die. NOTE 1 "_A" and "_B" indicate DRAM channel "_A" pads are present in all devices. "_B" pads are present in dual channel SDRAM devices only. Confidential - 8 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.7 Power-up, Initialization and Power-off Procedure For power-up and reset initialization, in order to prevent DRAM from functioning improperly, default values of the following MR settings are defined as Table 6. Table 6 - MRS defaults settings Item MRS Default Setting Description FSP-OP/WR MR13 OP[7:6] 00B FSP-OP/WR[0] are enabled WLS MR2 OP[6] 0B Write Latency Set 0 is selected WL MR2 OP[5:3] 000B WL = 4 RL MR2 OP[2:0] 000B RL = 6, nRTP=8 nWR MR1 OP[6:4] 000B nWR = 6 DBI-WR/RD MR3 OP[7:6] 00B Write & Read DBI are disabled CA ODT MR11 OP[6:4] 000B CA ODT is disabled DQ ODT MR11 OP[2:0] 000B DQ ODT is disabled VREF(CA) Setting MR12 OP[6] 1B VREF(CA) Range[1] enabled VREF(CA) Value MR12 OP[5:0] 001101B Range1 : 27.2% of VDD2 VREF(DQ) Setting MR14 OP[6] 1B VREF(DQ) Range[1] enabled VREF(DQ) Value MR14 OP[5:0] 001101B Range1 : 27.2% of VDDQ 1.7.1 Voltage Ramp and Device Initialization The following sequence shall be used to power up the LPDDR4 device. Unless specified otherwise, these steps are mandatory. Note that the power-up sequence of all channels must proceed simultaneously. 1. While applying power (after Ta), RESET_n is recommended to be LOW (≤0.2 x VDD2) and all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while RESET_n is held LOW. Power supply voltage ramp requirements are provided in Table 7. VDD1 must ramp at the same time or earlier than VDD2. VDD2 must ramp at the same time or earlier than VDDQ. Table 7 - Voltage Ramp Conditions After Ta is reached Applicable Conditions VDD1 must be greater than VDD2 VDD2 must be greater than VDDQ - 200 mV NOTE 1 Ta is the point when any power supply first reaches 300 mV. NOTE 2 Voltage ramp conditions in Table 8 apply between Ta and power-off (controlled or uncontrolled). NOTE 3 Tb is the point at which all supply and reference voltages are within their defined ranges. NOTE 4 Power ramp duration tINIT0 (Tb-Ta) must not exceed 20ms. NOTE 5 The voltage difference between any of VSS and VSSQ pins must not excess 100 mV. 2. Following the completion of the voltage ramp (Tb), RESET_n must be maintained LOW. DQ, DMI, DQS_t and DQS_c voltage levels must be between VSSQ and VDDQ during voltage ramp to avoid latch- up. CKE, CK_t, CK_c, CS_n and CA input levels must be between VSS and VDD2 during voltage ramp to avoid latch-up. 3. Beginning at Tb, RESET_n must remain LOW for at least tINIT1(Tc), after which RESET_n can be deasserted to HIGH(Tc). At least 10ns before RESET_n de-assertion, CKE is required to be set LOW. All other input signals are "Don't Care". Confidential - 9 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.7.1 Voltage Ramp and Device Initialization (cont’d) NOTES : 1. Training is optional and may be done at the system architects discretion. The training sequence after ZQ_CAL Latch(Th, Sequence7~9) in Figure 5 is simplified recommendation and actual training sequence may vary depending on systems. Figure 5 - Power Ramp and Initialization Sequence 4. After RESET_n is de-asserted(Tc), wait at least tINIT3 before activating CKE. Clock(CK_t,CK_c) is required to be started and stabilized for tINIT4 before CKE goes active(Td). CS is required to be maintained LOW when controller activates CKE. 5. After setting CKE high, wait minimum of tINIT5 to issue any MRR or MRW commands(Te). For both MRR and MRW commands, the clock frequency must be within the range defined for tCKb. Some AC parameters (for example, tDQSCK) could have relaxed timings (such as tDQSCKb) before the system is appropriately configured. 6. After completing all MRW commands to set the Pull-up, Pull-down and Rx termination values, the DRAM controller can issue ZQCAL Start command to the memory(Tf). This command is used to calibrate VOH level and output impedance over process, voltage and temperature. In systems where more than one LPDDR4 DRAM devices share one external ZQ resistor, the controller must not overlap the ZQ calibration sequence of each LPDDR4 device. ZQ calibration sequence is completed after tZQCAL (Tg) and the ZQCAL Latch command must be issued to update the DQ drivers and DQ+CA ODT to the calibrated values. 7. After tZQLAT is satisfied (Th) the command bus (internal VREF(CA), CS, and CA) should be trained for high-speed operation by issuing an MRW command (Command Bus Training Mode). This command is used to calibrate the device's internal VREF and align CS/CA with CK for high-speed operation. The LPDDR4 device will power-up with receivers configured for low-speed operations, and VREF(CA) set to a default factory setting. Normal device operation at clock speeds higher than tCKb may not be possible until command bus training has been completed. NOTE The command bus training MRW command uses the CA bus as inputs for the calibration data stream, and outputs the results asynchronously on the DQ bus. See 4.29, (item 1.), MRW for information on how to enter/exit the training mode. 8. After command bus training, DRAM controller must perform write leveling. Write leveling mode is enabled when MR2 OP[7] is high (Ti). See 4.31, Mode Register Write-WR Leveling Mode, for detailed description of write leveling entry and exit sequence. In write leveling mode, the DRAM controller adjusts write DQS_t/_c timing to the point where the LPDDR4 device recognizes the start of write DQ data burst with desired write latency. 9. After write leveling, the DQ Bus (internal VREF(DQ), DQS, and DQ) should be trained for high-speed operation using the MPC training commands and by issuing MRW commands to adjust VREF(DQ)(Tj). The LPDDR4 device will power-up with receivers configured for low-speed operations and VREF(DQ) set to a default factory setting. Normal device operation at clock speeds higher than tCKb should not be attempted until DQ Bus training has been completed. The MPC Read Calibration command is used together with MPC FIFO Write/Read commands to train Confidential - 10 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 DQ bus without disturbing the memory array contents. See DQ Bus Training section for detailed DQ Bus Training sequence. 10. At Tk the LPDDR4 device is ready for normal operation, and is ready to accept any valid command. Any more registers that have not previously been set up for normal operation should be written at this time. Table 8 - Initialization Timing Parameters Value Parameter Unit Comment Min Max tINIT0 - 20 ms Maximum voltage-ramp time tINIT1 200 - us Minimum RESET_n LOW time after completion of voltage ramp tINIT2 10 - ns Minimum CKE low time before RESET_n high tINIT3 2 - ms Minimum CKE low time after RESET_n high tINIT4 5 - tCK Minimum stable clock before first CKE high tINIT5 2 - us Minimum idle time before first MRW/MRR command tZQCAL 1 - us ZQ calibration time tZQLAT Max(30ns, 8tCK) Note *1,2 - ns ZQCAL latch quiet time. Note *1,2 ns Clock cycle time during boot tCKb NOTE 1 Min tCKb guaranteed by DRAM test is 18 ns. NOTE 2 The system may boot at a higher frequency than dictated by min tCKb. The higher boot frequency is system dependent. 1.7.2 Reset Initialization with Stable Power The following sequence is required for RESET at no power interruption initialization. 1. Assert RESET_n below 0.2 x VDD2 anytime when reset is needed. RESET_n needs to be maintained for minimum tPW_RESET. CKE must be pulled LOW at least 10 ns before de-asserting RESET_n. 2. Repeat steps 4 to 10 in1.6.1. Table 9 - Reset Timing Parameter Value Parameter tPW_RESET 1.7.3 Min Max 100 - Unit ns Comment Minimum RESET_n low Time for Reset Initialization with stable power Power-off Sequence The following procedure is required to power off the device. While powering off, CKE must be held LOW (0.2 X VDD2) and all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW. DQ, DMI, DQS_t and DQS_c voltage levels must be between VSSQ and VDDQ during voltage ramp to avoid latch-up. RESET_n, CK_t, CK_c, CS and CA input levels must be between VSS and VDD2 during voltage ramp to avoid latch-up. Tx is the point where any power supply drops below the minimum value specified. Tz is the point where all power supplies are below 300mV. After Tz, the device is powered off. Table 10 - Power Supply Conditions After Tx and Tz Applicable Conditions VDD1 must be greater than VDD2 VDD2 must be greater than VDDQ - 200 mV The voltage difference between any of VSS, VSSQ pins must not exceed 100 mV. Confidential - 11 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.7.4 Uncontrolled Power-off Sequence When an uncontrolled power-off occurs, the following conditions must be met: At Tx, when the power supply drops below the minimum values specified, all power supplies must be turned off and all power supply current capacity must be at zero, except any static charge remaining in the system. After Tz (the point at which all power supplies first reach 300mV), the device must power off. During this period the relative voltage between power supplies is uncontrolled. VDD1 and VDD2 must decrease with a slope lower than 0.5 V/μs between Tx and Tz. An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the device. Table 11 - Timing Parameters Power Off Confidential Value Symbol Min Max Unit tPOFF - 2 s - 12 of 64 - Comment Maximum Power-off ramp item Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.8 Mode Register Definition Table 12 shows the mode registers for LPDDR4 SDRAM. Each register is denoted as "R" if it can be read but not written, "W" if it can be written but not read, and "R/W" if it can be read and written. A Mode Register Read command is used to read a mode register. A Mode Register Write command is used to write a mode register. Table 12 - Mode Register Assignment in LPDDR4 SDRAM MR# OP[7] OP[6] OP[5] 0 CATR RFU RFU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 RPST WR Lev DBI-WR TUF 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Confidential OP[4] OP[3] RZQI OP[2] OP[1] RFU RFU nWR (for AP) RD-PRE WR-PRE WLS WL DBI-RD PDDS PPRP Thermal Offset PPRE SR Abort LPDDR4 Manufacturer ID Revision ID-1 Revision ID-2 IO Width Density Vendor Specific Test Register RFU RFU CA ODT RFU RFU VR-CA VREF(CA) FSP-OP FSP-WR DMD RRO VRCG VRO RFU VR(dq) VREF(DQ) Lower-Byte Invert Register for DQ Calibration PASR Bank Mask PASR Segment Mask DQS Oscillator Count - LSB DQS Oscillator Count - MSB Upper-Byte Invert Register for DQ Calibration RFU RFU ODTD-CA ODTE-CS ODTE-CK DQS interval timer run time setting TRR Mode TRR Mode BAn Unlimited MAC OP[0] Refresh mode BL RL WR PST PU-CAL Refresh Rate Type ZQ-Reset DQ ODT RPT CBT SOC ODT MAC Value PPR Resource RFU RFU RFU RFU Reserved for testing - SDRAM will ignore RFU D Calibration Pattern “A” (default = 5AH) ECC control ECC error count RFU RFU RFU RFU Reserved for testing - SDRAM will ignore D Calibration Pattern “B” (default = 3CH) - 13 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR0 Register Information (MA[5:0] = 00H) OP[7] OP[6] CATR RFU Function OP[5] OP[4] RFU Register Type OP[3] RZQI Operand OP[2] RFU OP[1] Latency Mode OP[0] 0B : Both legacy & modified refresh mode supported 1B : Only modified refresh mode supported Latency Mode OP[1] 0B : Device supports normal latency 1B : Device supports byte mode latency RZQI (Built-in Self-Test for RZQ) CATR (CA Terminating Rank) OP[4:3] OP[7] Refresh mode Data Refresh mode Read-only OP[0] Notes 6,7 00B: RZQ Self-Test Not Supported 01B: ZQ pin may connect to VSSQ or float 10B: ZQ-pin may short to VDDQ 11B: ZQ-pin Self-Test Completed, no error condition detected (ZQ-pin may not connect to VSSQ or float, nor short to VDDQ) 0B: CA for this rank is not terminated 1B: Vendor specific 1,2,3,4 5 NOTE 1: RZQI MR value, if supported, will be valid after the following sequence: a. Completion of MPC ZQCAL Start command to either channel. b. Completion of MPC ZQCAL Latch command to either channel then tZQLAT is satisfied. RZQI value will be lost after Reset. NOTE 2: If the ZQ-pin is connected to VSSQ to set default calibration, OP[4:3] shall be set to 01B. If the ZQ-pin is not connected to VSSQ, either OP[4:3] = 01B or OP[4:3] = 10B might indicate a ZQ-pin assembly error. It is recommended that the assembly error is corrected. NOTE 3: In the case of possible assembly error, the LPDDR4-SDRAM device will default to factory trim settings for RON, and will ignore ZQ Calibration commands. In either case, the device may not function as intended. NOTE 4: If ZQ Self-Test returns OP[4:3] = 11B, the device has detected a resistor connected to the ZQ-pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor tolerance meets the specified limits (i.e., 240Ω ± 1%). NOTE 5: CATR functionality is Vendor specific. CATR can either indicate the connection status of the ODTCA pad for the die or whether CA for the rank is terminated. Consult the vendor device datasheet for details. NOTE 6: See byte mode addendum spec for byte mode latency details. NOTE 7: Byte mode latency for 2Ch. x16 device is only allowed when it is stacked in a same package with byte mode device. Confidential - 14 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR1 Register Information (MA[5:0] = 01H) OP[7] OP[6] RPST OP[5] OP[4] nWR (for AP) Function OP[3] OP[2] RD-PRE WR-PRE Register Operand Type BL (Burst Length) OP[1:0] OP[1] OP[0] BL Data Notes 00B: BL=16 Sequential (default) 01B: BL=32 Sequential 10B: BL=16 or 32 Sequential (on-the-fly) 1,7 All Others: Reserved WR-PRE (WR Pre-amble Length) OP[2] 0B: Reserved RD-PRE (RD Pre-amble Type) OP[3] 0B: RD Pre-amble = Static (default) 3,5,6 1B: RD Pre-amble = Toggle 000B: nWR = 6 (default) 001B: nWR = 10 Write-only nWR (Write-Recovery for AutoPrecharge commands) 5,6 1B: WR Pre-amble = 2*tCK 010B: nWR = 16 OP[6:4] 011B: nWR = 20 100B: nWR = 24 101B: nWR = 30 2,5,6 110B: nWR = 34 111B: nWR = 40 RPST (RD Post-Amble Length) OP[7] 0B: RD Post-amble = 0.5*tCK (default) 4,5,6 1B: RD Post-amble = 1.5*tCK NOTE 1: Burst length on-the-fly can be set to either BL=16 or BL=32 by setting the “BL” bit in the command operands. See the Command Truth Table. NOTE 2: The programmed value of nWR is the number of clock cycles the LPDDR4-SDRAM device uses to determine the starting point of an internal Precharge operation after a Write burst with AP (auto-precharge) enabled. (Ref. See Latency Code Frequency Table for allowable Frequency Ranges for RL/WL/nWR, available in next revision of this document.) NOTE 3: For Read operations this bit must be set to select between a "toggling" pre-amble and a "Non-toggling" Pre-amble. See 4.5, Read Preamble and Postamble, for a drawing of each type of pre-amble. NOTE 4: OP[7] provides an optional READ post-amble with an additional rising and falling edge of DQS_t. The optional postamble cycle is provided for the benefit of certain memory controllers. NOTE 5: There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address. NOTE 6: There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. NOTE 7: Supporting the two physical registers for Burst Length: MR1 OP[1:0] as optional feature. Applications requiring support of both vendor options shall assure that both FSP-OP[0] and FSP-OP[1] are set to the same code. Refer to vendor datasheets for detail. Confidential - 15 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 13 - Burst Sequence for READ Burst Burst Length Type 16 32 SEQ SEQ C4 C3 C2 C1 C0 V 0 0 0 V 0 1 V 1 V 0 0 Burst Cycle Number and Burst Address Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 1 2 3 4 5 6 7 8 9 A B C D E F 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0 0 4 5 6 7 8 9 A B C D E F 0 1 2 3 0 0 0 8 9 A B C D E F 0 1 2 3 4 5 6 7 1 1 0 0 C D E F 0 1 2 3 4 5 6 7 8 9 A B 0 0 0 1 0 0 0 0 0 4 1 5 2 6 3 7 4 8 5 9 6 A 7 B 8 C 9 D A E B F C 0 D 1 E 2 F 3 10 14 11 15 12 16 13 17 14 18 15 19 16 1A 17 1B 18 1C 19 1D 1A 1E 1B 1F 1C 10 1D 11 1E 12 1F 13 0 0 1 1 0 1 0 0 0 0 8 C 9 D A E B F C 0 D 1 E 2 F 3 0 4 1 5 2 6 3 7 4 8 5 9 6 A 7 B 18 1C 19 1D 1A 1E 1B 1F 1C 10 1D 11 1E 12 1F 13 10 14 11 15 12 16 13 17 14 18 15 19 16 1A 17 1B 1 1 0 0 0 1 0 0 0 0 10 14 11 15 12 16 13 17 14 18 15 19 16 1A 17 1B 18 1C 19 1D 1A 1E 1B 1F 1C 10 1D 11 1E 12 1F 13 0 4 1 5 2 6 3 7 4 8 5 9 6 A 7 B 8 C 9 D A E B F C 0 D 1 E 2 F 3 1 1 1 1 0 1 0 0 0 0 18 1C 19 1D 1A 1E 1B 1F 1C 10 1D 11 1E 12 1F 13 10 14 11 15 12 16 13 17 14 18 15 19 16 1A 17 1B 8 C 9 D A E B F C 0 D 1 E 2 F 3 0 4 1 5 2 6 3 7 4 8 5 9 6 A 7 B NOTE 1: C0-C1 are assumed to be '0', and are not transmitted on the command bus. NOTE 2: The starting burst address is on 64-bit (4n) boundaries. Table 14 - Burst Sequence for Write Burst Burst Length Type C4 C3 C2 C1 C0 Burst Cycle Number and Burst Address Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 SEQ V 0 0 0 0 0 1 2 3 4 5 6 7 8 9 A B C D E F 32 SEQ 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 A B C D E F 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F NOTE 1: C0-C1 are assumed to be '0', and are not transmitted on the command bus. NOTE 2: The starting address is on 256-bit (16n) boundaries for Burst length 16. NOTE 3: The starting address is on 512-bit (32n) boundaries for Burst length 32. NOTE 4: C2-C3 shall be set to '0' for all Write operations. Confidential - 16 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR2 Register Information (MA[5:0] = 02H) OP[7] OP[6] WR Lev WLS Function OP[5] OP[4] OP[3] OP[2] WL Register Type OP[1] OP[0] RL Operand Data Notes RL & nRTP for DBI-RD Disabled (MR3 OP[6]=0B) 000B: RL=6, nRTP = 8 (Default) 001B: RL=10, nRTP = 8 010B: RL=14, nRTP = 8 011B: RL=20, nRTP = 8 100B: RL=24, nRTP = 10 RL (Read latency) OP[2:0] 101B: RL=28, nRTP = 12 110B: RL=32, nRTP = 14 111B: RL=36, nRTP = 16 RL & nRTP for DBI-RD Enabled (MR3 OP[6]=1B) 1,3,4 000B: RL=6, nRTP = 8 001B: RL=12, nRTP = 8 010B: RL=16, nRTP = 8 011B: RL=22, nRTP = 8 100B: RL=28, nRTP = 10 101B: RL=32, nRTP = 12 110B: RL=36, nRTP = 14 111B: RL=40, nRTP = 16 Write-only WL Set "A” (MR2 OP[6]=0B) 000B: WL=4 (Default) 001B: WL=6 010B: WL=8 011B: WL=10 WL (Write latency) OP[5:3] 100B: WL=12 101B: WL=14 110B: WL=16 111B: WL=18 1,3,4 WL Set "B" (MR2 OP[6]=1B) 000B: WL=4 001B: WL=8 010B: WL=12 011B: WL=18 100B: WL=22 101B: WL=26 110B: WL=30 111B: WL=34 WLS (Write Latency Set) OP[6] 0B: WL Set "A" (default) 1B: WL Set "B" WR LEV (Write Leveling) OP[7] 0B: Disabled (default) 1B: Enabled Confidential - 17 of 64 - 1,3,4 2 Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Notes: 1. (Ref. See Latency Code Frequency Table for allowable Frequency Ranges for RL/WL/nWR/nRTP, available in next revision of this document). 2. After a MRW to set the Write Leveling Enable bit (OP[7]=1B), the LPDDR4-SDRAM device remains in the MRW state until another MRW command clears the bit (OP[7]=0B). No other commands are allowed until the Write Leveling Enable bit is cleared. 3. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address. 4. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. Confidential - 18 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR3 Register Information (MA[5:0] = 03H) OP[7] OP[6] DBI-WR DBI-RD Function OP[5] OP[4] OP[3] PDDS OP[2] OP[1] OP[0] PPRP WR PST PU-CAL Register Operand Type Data Notes PU-Cal (Pull-up Calibration Point) OP[0] 0B: VDDQ/2.5 1B: VDDQ/3 (default) WR PST(WR Post-Amble Length) OP[1] 0B: WR Post-amble = 0.5*tCK (default) 1B: WR Post-amble = 1.5*tCK(Vendor specific function) Post Package Repair Protection OP[2] 0B: PPR protection disabled (default) 1B: PPR protection enabled 2,3,5 6 000B: RFU 001B: RZQ/1 Write-only PDDS (Pull-Down Drive Strength) 1,4 OP[5:3] 010B: RZQ/2 011B: RZQ/3 100B: RZQ/4 101B: RZQ/5 110B: RZQ/6 (default) 1,2,3 111B: Reserved DBI-RD (DBI-Read Enable) OP[6] DBI-WR (DBI-Write Enable) OP[7] 0B: Disabled (default) 1B: Enabled 0B: Disabled (default) 1B: Enabled 2,3 2,3 Notes: 1. All values are "typical". The actual value after calibration will be within the specified tolerance for a given voltage and temperature. Re-calibration may be required as voltage and temperature vary. 2. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address. 3. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. 4. For dual channel devices, PU-CAL setting is required as the same value for both Ch.A and Ch.B before issuing ZQ Cal start command. 5. Refer to the supplier data sheet for vender specific function. 1.5*tCK apply > 1.6GHz clock. 6. If MR3 OP[2] is set to 1b then PPR protection mode is enabled. The PPR Protection bit is a sticky bit and can only be set to 0b by a power on reset. MR4 OP[4] controls entry to PPR Mode. If PPR protection is enabled then DRAM will not allow writing of 1 to MR4 OP[4]. Confidential - 19 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR4 Register Information (MA[5:0] = 04H) OP[7] OP[6] TUF OP[5] Thermal Offset Function Refresh Rate OP[4] OP[3] PPRE SR Abort OP[2] Register Operand Type Read OP[2:0] OP[1] OP[0] Refresh Rate Data 000B: SDRAM Low temperature operating limit exceeded 001B: 4x refresh 010B: 2x refresh 011B: 1x refresh (default) 100B: 0.5x refresh 101B: 0.25x refresh, no de-rating 110B: 0.25x refresh, with de-rating 111B: SDRAM High temperature Notes 1,2,3,4, 7,8,9 operating limit exceeded SR Abort (Self Refresh Abort) PPRE (Post-package repair entry/exit) Thermal Offset (Vender Specific Function) Write OP[3] Write OP[4] Write 0B: Disable (default) 1B: Enable OP[6:5] 9,11 0B: Exit PPR mode (default) 1B: Enter PPR mode 5,9 00B 01B: 5°C offset, 5~10°C gradient 10B: 10°C offset, 10~15°C gradient 10 11B: Reserved TUF (Temperature Update Flag) Read OP[7] 0B: No change in OP[2:0] since last MR4 read (default) 1B: Change in OP[2:0] since last MR4 read 6,7,8 Notes: 1. The refresh rate for each MR4-OP[2:0] setting applies to tREFI, tREFIpb, and tREFW. OP[2:0]=011B corresponds to a device temperature of 85 °C. Other values require either a longer (2x, 4x) refresh interval at lower temperatures, or a shorter (0.5x, 0.25x) refresh interval at higher temperatures. If OP[2]=1B, the device temperature is greater than 85 °C. 2. At higher temperatures (>85 °C), AC timing derating may be required. If derating is required the LPDDR4SDRAM will set OP[2:0]=110B. 3. DRAM vendors may or may not report all of the possible settings over the operating temperature range of the device. Each vendor guarantees that their device will work at any temperature within the range using the refresh interval requested by their device. 4. The device may not operate properly when OP[2:0]=000B or 111B. 5. Post-package repair can be entered or exited by writing to OP[4]. 6. When OP[7]=1, the refresh rate reported in OP[2:0] has changed since the last MR4 read. A mode register read from MR4 will reset OP[7] to '0'. 7. OP[7] = 0 at power-up. OP[2:0] bits are valid after initialization sequence(Te). 8. See the section on “temperature Sensor” for information on the recommended frequency of reading MR4. 9. OP[6:3] bits that can be written in this register. All other bits will be ignored by the DRAM during a MRW to this register. 10. Refer to the supplier data sheet for vender specific function. 11. Self Refresh abort feature is available for higher density devices starting with 12Gb device. Confidential - 20 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR5 Register Information (MA[5:0] = 05H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] LPDDR4 Manufacturer ID Function Register Type Manufacturer ID Read-Only Operand Data Function 0101 0010: Alliance Memory Inc Manufacturer ID All Others: Reserved OP[7:0] MR6 Register Information (MA[7:0] = 06H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Revision ID-1 Function LPDDR4 Revision ID-1 Register Operand Type Data Notes 00000000B: A-version Read-only OP[7:0] 1 00000001B: B-version NOTE 1 MR6 is vendor specific. MR7 Register Information (MA[7:0] = 07H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Revision ID-2 Function LPDDR4 Revision ID-2 Register Operand Type Read-only OP[7:0] Data 00000000B: A-version 00000001B: B-version Notes 1 NOTE 1 MR7 is vendor specific. Confidential - 21 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR8 Register Information (MA[5:0] = 08H) OP[7] OP[6] OP[5] OP[4] IO Width Function OP[2] OP[1] Density OP[1:0] Read-only IO Width OP[5:2] OP[7:6] OP[0] Type Register Type Operand Type Density OP[3] Data Notes 00B: S16 SDRAM (16n pre-fetch) All Others: Reserved 0000B: 4Gb dual channel die / 2Gb single channel die 0001B: 6Gb dual channel die / 3Gb single channel die 0010B: 8Gb dual channel die / 4Gb single channel die 0011B: 12Gb dual channel die / 6Gb single channel die 0100B: 16Gb dual channel die / 8Gb single channel die 0101B: 24Gb dual channel die / 12Gb single channel die 0110B: 32Gb dual channel die / 16Gb single channel die All Others: Reserved 00B: x16 (per channel) All Others: Reserved MR9 Register Information (MA[7:0] = 09H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[2] OP[1] OP[0] Vendor Specific Test Register NOTE 1 Only 00H should be written to this register. MR10 Register Information (MA[7:0] = 0AH) OP[7] OP[6] OP[5] OP[4] OP[3] RFU Function ZQ-Reset Register Type Write-only OP[0] ZQ-Reset Operand OP[0] Data 0B: Normal Operation (Default) 1B: ZQ Reset Notes 1,2 NOTE 1 ZQCal Timing Parameters for calibration latency and timing. NOTE 2 If the ZQ-pin is connected to VDDQ through RZQ, either the ZQ calibration function or default calibration (via ZQ-Reset) is supported. If the ZQ-pin is connected to VSS, the device operates with default calibration, and ZQ calibration commands are ignored. In both cases, the ZQ connection shall not change after power is applied to the device. Confidential - 22 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR11 Register Information (MA[5:0] = 0BH) OP[7] OP[6] DQ ODTnt Function OP[5] OP[4] CA ODT OP[3] OP[2] DQ ODTnt Register Operand Type OP[1] OP[0] DQ ODT Data Notes 000B: Disable (Default) 001B: RZQ/1 010B: RZQ/2 DQ ODT (DQ Bus Receiver On-DieTermination) OP[2:0] 011B: RZQ/3 100B: RZQ/4 101B: RZQ/5 1,2,3 110B: RZQ/6 111B: RFU 00B: Disable (Default) DQ ODTnt (DQ Bus Receiver On-Die Termination for non-target DRAM) Write-only OP[7,3] 01B: RZQ/3 10B: RZQ/5 11B: RZQ/6 1,2,3,4 000B: Disable (Default) CA ODT (CA Bus Receiver On-DieTermination) OP[6:4] 001B: RZQ/1 010B: RZQ/2 011B: RZQ/3 100B: RZQ/4 101B: RZQ/5 1,2,3 110B: RZQ/6 111B: RFU NOTE 1: All values are "typical". The actual value after calibration will be within the specified tolerance for a given voltage and temperature. Re-calibration may be required as voltage and temperature vary. NOTE 2: There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address. NOTE 3: There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. NOTE 4: ODT for non-target DRAM is optional. Confidential - 23 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR12 Register Information (MA[5:0] = 0CH) OP[7] OP[6] RFU VR-CA Function VREF(CA) (VREF(CA) Setting) OP[5] OP[4] (VREF(CA) Range) OP[2] OP[1] OP[0] VREF(CA) Register Operand Type Read/ OP[5:0] Write VR-CA OP[3] OP[6] Data 000000B: -- Thru -110010B: See table below All Others: Reserved 0B: VREF(CA) Range[0] enabled 1B: VREF(CA) Range[1] enabled (default) Notes 1,2,3, 5,6 1,2,4, 5,6 NOTE 1: This register controls the VREF(CA) levels. Refer to Table 15 - VREF Settings for Range[0] and Range[1] for actual voltage of VREF(CA). NOTE 2: A read to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ's shall be set to '0'. See the section on MRR Operation. NOTE 3: A write to OP[5:0] sets the internal VREF(CA) level for FSP[0] when MR13 OP[6]=0B, or sets FSP[1] when MR13 OP[6]=1B. The time required for VREF(CA) to reach the set level depends on the step size from the current level to the new level. See the section on VREF(CA) training for more information. NOTE 4: A write to OP[6] switches the LPDDR4-SDRAM between two internal VREF(CA) ranges. The range (Range[0] or Range[1]) must be selected when setting the VREF(CA) register. The value, once set, will be retained until overwritten, or until the next power-on or RESET event. NOTE 5: There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address. NOTE 6: There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. Confidential - 24 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 15 - VREF Settings for Range[0] and Range[1] Function Operand VREF Settings for MR12 Range[0] Values (% of VDD2) Range[1] Values (% of VDD2) 000000B: 10.0% 011010B: 20.4% 000000B: 22.0% 011010B: 32.4% 000001B: 10.4% 000010B: 10.8% 011011B: 20.8% 011100B: 21.2% 000001B: 22.4% 000010B: 22.8% 011011B: 32.8% 011100B: 33.2% 000011B: 11.2% 011101B: 21.6% 000011B: 23.2% 011101B: 33.6% 000100B: 11.6% 011110B: 22.0% 000100B: 23.6% 011110B: 34.0% 000101B: 12.0% 011111B: 22.4% 000101B: 24.0% 011111B: 34.4% 000110B: 12.4% 000111B: 12.8% 100000B: 22.8% 100001B: 23.2% 000110B: 24.4% 000111B: 24.8% 100000B: 34.8% 100001B: 35.2% 001000B: 13.2% 001001B: 13.6% 100010B: 23.6% 100011B: 24.0% 001000B: 25.2% 001001B: 25.6% 100010B: 35.6% 100011B: 36.0% 001010B: 14.0% 100100B: 24.4% 001010B: 26.0% 100100B: 36.4% 001011B: 14.4% 100101B: 24.8% 001011B: 26.4% 100101B: 36.8% 001100B: 14.8% 100110B: 25.2% 001100B: 26.8% 100110B: 37.2% OP[5:0] 001101B: 15.2% 100111B: 25.6% 100111B: 37.6% 001110B: 15.6% 101000B: 26.0% 001111B: 16.0% 101001B: 26.4% 001101B: 27.2% (Default) 001110B: 27.6% 001111B: 28.0% 010000B: 16.4% 101010B: 26.8% 010000B: 28.4% 101010B: 38.8% 010001B: 16.8% 101011B: 27.2% 010001B: 28.8% 101011B: 39.2% 010010B: 17.2% 101100B: 27.6% 010010B: 29.2% 101100B: 39.6% 010011B: 17.6% 101101B: 28.0% 010011B: 29.6% 101101B: 40.0% 010100B: 18.0% 101110B: 28.4% 010100B: 30.0% 101110B: 40.4% 010101B: 18.4% 101111B: 28.8% 010101B: 30.4% 101111B: 40.8% 010110B: 18.8% 010111B: 19.2% 110000B: 29.2% 110001B: 29.6% 010110B: 30.8% 010111B: 31.2% 110000B: 41.2% 110001B: 41.6% 011000B: 19.6% 011001B: 20.0% 110010B: 30.0% 011000B: 31.6% 011001B: 32.0% 110010B: 42.0% All Others: Reserved Notes 1,2,3 101000B: 38.0% 101001B: 38.4% All Others: Reserved NOTE 1 These values may be used for MR12 OP[5:0] to set the VREF(CA) levels in the LPDDR4-SDRAM. NOTE 2 The range may be selected in the MR12 register by setting OP[6] appropriately. NOTE 3 The MR12 registers represents either FSP[0] or FSP[1]. Two frequency-set-points each for CA and DQ are provided to allow for faster switching between terminated and un-terminated operation, or between different high frequency setting which may use different terminations values. Confidential - 25 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR13 Register Information (MA[5:0] = 0DH) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] FSP-OP FSP-WR DMD RRO VRCG VRO RPT CBT Function Register Type Operand CBT (Command Bus Training) OP[0] RPT (Read Preamble Training Mode) 0B: Normal Operation (default) 1B: Command Bus Training Mode Enabled OP[1] 0B : Disable (default) 1B : Enable VRO (VREF Output) OP[2] VRCG Write-only (VREF Current Generator) OP[3] Notes Data 1 0B: Normal operation (default) 1B: Output the VREF(CA) and VREF(DQ) values on DQ bits 0B: Normal Operation (default) 1B: VREF Fast Response (high current) mode RRO Refresh rate option OP[4] 0B: Disable codes 001 and 010 in MR4 OP[2:0] DMD (Data Mask Disable) OP[5] 0B: Data Mask Operation Enabled (default) FSP-WR (Frequency Set Point Write/Read) FSP-OP (Frequency Set Point Operation Mode) 1B: Enable all codes in MR4 OP[2:0] 1B: Data Mask Operation Disabled 2 3 4, 5 6 OP[6] 0B: Frequency-Set-Point[0] (default) 1B: Frequency-Set-Point [1] 7 OP[7] 0B: Frequency-Set-Point[0] (default) 1B: Frequency-Set-Point [1] 8 Notes: 1. A write to set OP[0]=1 causes the LPDDR4-SDRAM to enter the Command Bus Training mode. When OP[0]=1 and CKE goes LOW, commands are ignored and the contents of CA[5:0] are mapped to the DQ bus. CKE must be brought HIGH before doing a MRW to clear this bit (OP[0]=0) and return to normal operation. See the Command Bus Training section for more information. 2. When set, the LPDDR4-SDRAM will output the VREF(CA) and VREF(D ) voltages on D pins. Only the “active” frequency-set-point, as defined by MR13 OP[7], will be output on the DQ pins. This function allows an external test system to measure the internal VREF levels. The DQ pins used for VREF output are vendor specific. 3. When OP[3]=1, the VREF circuit uses a high-current mode to improve VREF settling time. 4. MR13 OP4 RRO bit is valid only when MR0 OP0 = 1. For LPDDR4 devices with MR0 OP0 = 0, MR4 OP[2:0] bits are not dependent on MR13 OP4. 5. When OP[4] = 0, only 001b and 010b in MR4 OP[2:0] are disabled. LPDDR4 devices must report 011b instead of 001b or 010b in this case. Controller should follow the refresh mode reported by MR4 OP[2:0], regardless of RRO setting. TCSR function does not depend on RRO setting. 6. When enabled (OP[5]=0B) data masking is enabled for the device. When disabled (OP[5]=1B), masked write command is illegal. See 4.16, LPDDR4 Data Mask (DM) and Data Bus Inversion (DBIdc) Function. 7. FSP-WR determines which frequency-set-point registers are accessed with MRW commands for the following functions such as VREF(CA) Setting, VREF(CA) Range, VREF(DQ) Setting, VREF(DQ) Range. For more information, refer to 4.30, Frequency Set Point. 8. FSP-OP determines which frequency-set-point register values are currently used to specify device operation for the following functions such as VREF(CA) Setting, VREF(CA) Range, VREF(DQ) Setting, VREF(DQ) Range. For more information, refer to 4.30 Frequency Set Point section. Confidential - 26 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR14 Register Information (MA[5:0] = 0EH) OP[7] OP[6] RFU VR(DQ) Function VREF(DQ) (VREF(DQ) Setting) OP[5] OP[4] (VREF(DQ) Range) OP[2] OP[1] OP[0] VREF(DQ) Register Operand Type Read/ OP[5:0] Write VR(dq) OP[3] OP[6] Data 000000B: -- Thru -110010B: See table below All Others: Reserved 0B: VREF(DQ) Range[0] enabled 1B: VREF(DQ) Range[1] enabled (default) Notes 1,2,3, 5,6 1,2,4, 5,6 Notes: 1. This register controls the VREF(DQ) levels for Frequency-Set-Point[1:0]. Values from either VR(DQ)[0] or VR(dq)[1] may be selected by setting OP[6] appropriately. 2. A read (MRR) to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ's shall be set to‘0’. See the section on MRR Operation. 3. A write to OP[5:0] sets the internal VREF(DQ) level for FSP[0] when MR13 OP[6]=0B, or sets FSP[1] when MR13 OP[6]=1B. The time required for VREF(DQ) to reach the set level depends on the step size from the current level to the new level. See the section on VREF(DQ) training for more information. 4. A write to OP[6] switches the LPDDR4-SDRAM between two internal VREF(DQ) ranges. The range (Range[0] or Range[1]) must be selected when setting the VREF(DQ) register. The value, once set, will be retained until overwritten, or until the next power-on or RESET event. 5. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address. 6. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. Confidential - 27 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 16 - VREF Settings for Range[0] and Range[1] Function Operand VREF Settings OP[5:0] for MR14 Range[0] Values (% of VDDQ) Range[1] Values (% of VDDQ) 000000B: 10.0% 011010B: 20.4% 000000B: 22.0% 011010B: 32.4% 000001B: 10.4% 011011B: 20.8% 000001B: 22.4% 011011B: 32.8% 000010B: 10.8% 011100B: 21.2% 000010B: 22.8% 011100B: 33.2% 000011B: 11.2% 011101B: 21.6% 000011B: 23.2% 011101B: 33.6% 000100B: 11.6% 011110B: 22.0% 000100B: 23.6% 011110B: 34.0% 000101B: 12.0% 011111B: 22.4% 000101B: 24.0% 011111B: 34.4% 000110B: 12.4% 100000B: 22.8% 000110B: 24.4% 100000B: 34.8% 000111B: 12.8% 100001B: 23.2% 000111B: 24.8% 100001B: 35.2% 001000B: 13.2% 100010B: 23.6% 001000B: 25.2% 100010B: 35.6% 001001B: 13.6% 100011B: 24.0% 001001B: 25.6% 100011B: 36.0% 001010B: 14.0% 100100B: 24.4% 001010B: 26.0% 100100B: 36.4% 001011B: 14.4% 100101B: 24.8% 001011B: 26.4% 100101B: 36.8% 001100B: 14.8% 100110B: 25.2% 001100B: 26.8% 100110B: 37.2% 001101B: 15.2% 100111B: 25.6% 001101B: 27.2% (Default) 100111B: 37.6% 001110B: 15.6% 101000B: 26.0% 001110B: 27.6% 101000B: 38.0% 001111B: 16.0% 101001B: 26.4% 001111B: 28.0% 101001B: 38.4% 010000B: 16.4% 101010B: 26.8% 010000B: 28.4% 101010B: 38.8% 010001B: 16.8% 101011B: 27.2% 010001B: 28.8% 101011B: 39.2% 010010B: 17.2% 101100B: 27.6% 010010B: 29.2% 101100B: 39.6% 010011B: 17.6% 101101B: 28.0% 010011B: 29.6% 101101B: 40.0% 010100B: 18.0% 101110B: 28.4% 010100B: 30.0% 101110B: 40.4% 010101B: 18.4% 101111B: 28.8% 010101B: 30.4% 101111B: 40.8% 010110B: 18.8% 110000B: 29.2% 010110B: 30.8% 110000B: 41.2% 010111B: 19.2% 110001B: 29.6% 010111B: 31.2% 110001B: 41.6% 011000B: 19.6% 110010B: 30.0% All Others: Reserved 011000B: 31.6% 110010B: 42.0% All Others: Reserved 011001B: 20.0% 011001B: 32.0% Notes 1,2,3 Notes: 1. These values may be used for MR14 OP[5:0] to set the VREF(DQ) levels in the LPDDR4-SDRAM. 2. The range may be selected in the MR14 register by setting OP[6] appropriately. 3. The MR14 registers represents either FSP[0] or FSP[1]. Two frequency-set-points each for CA and DQ are provided to allow for faster switching between terminated and un-terminated operation, or between different high frequency setting which may use different terminations values. Confidential - 28 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR15 Register Information (MA[5:0] = 0FH) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Lower-Byte Invert Register for DQ Calibration Register Operand Type Function Write-only Lower-Byte Invert for DQ Calibration OP[7:0] Data Notes The following values may be written for any operand OP[7:0], and will be applied to the corresponding DQ locations DQ[7:0] within a byte lane: 1,2,3 0B: Do not invert 1B: Invert the DQ Calibration patterns in MR32 and MR40 Default value for OP[7:0]=55H Notes: 1. This register will invert the DQ Calibration pattern found in MR32 and MR40 for any single DQ, or any combination of DQ's. Example: If MR15 OP[7:0]=00010101B, then the DQ Calibration patterns transmitted on DQ[7,6,5,3,1] will not be inverted, but the DQ Calibration patterns transmitted on DQ[4,2,0] will be inverted. 2. DMI[0] is not inverted, and always transmits the “true” data contained in MR32/MR40. 3. No Data Bus Inversion (DBI) function is enacted during DQ Read Calibration, even if DBI is enabled in MR3OP[6]. Table 17 - MR15 Invert Register Pin Mapping PIN DQ0 DQ1 DQ2 DQ3 DMI0 DQ4 DQ5 DQ6 DQ7 MR15 OP0 OP1 OP2 OP3 NO-Invert OP4 OP5 OP6 OP7 Confidential - 29 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR16 Register Information (MA[5:0] = 10H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] PASR Bank Mask Function Register Type Bank[7:0] Mask Write-only Operand OP[7:0] Data Notes 0B: Bank Refresh enabled (default) : Unmasked 1 1B: Bank Refresh disabled : Masked OP[n] Bank Mask 8-Bank SDRAM 0 xxxxxxx1 Bank 0 1 xxxxxx1x Bank 1 2 xxxxx1xx Bank 2 3 xxxx1xxx Bank 3 4 xxx1xxxx Bank 4 5 xx1xxxxx Bank 5 6 x1xxxxxx Bank 6 7 1xxxxxxx Bank 7 Notes: 1. When a mask bit is asserted (OP[n]=1), refresh to that bank is disabled. 2. PASR bank-masking is on a per-channel basis. The two channels on the die may have different bank masking in dual channel devices. Confidential - 30 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR17 Register Information (MA[5:0] = 11H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] PASR Segment Mask Register Operand Type Function PASR Segment Mask Write-only OP[7:0] 2Gb per channel R13:R11 3Gb per channel R14:R12 Data 0B: Segment Refresh enabled (default) 1B: Segment Refresh disabled 4Gb per channel R14:R12 6Gb per channel R15:R13 000B Segment OP[n] Segmen t Mask 0 0 xxxxxxx1 1 1 xxxxxx1x 2 2 001B xxxxx1xx 3 3 010B xxxx1xxx 4 4 011B xxx1xxxx 5 5 100B xx1xxxxx 6 6 101B x1xxxxxx 7 7 110B 1xxxxxxx 111B Not Allowed Notes 110B 111B Not Allowed 8Gb per channel R15:R13 12Gb per channel R16:R14 16Gb per channel R16:R14 110B Not Allowed 110B 111B 111B Notes: 1. This table indicates the range of row addresses in each masked segment. "X" is don't care for a particular segment. 2. PASR segment-masking is on a per-channel basis. The two channels on the die may have different segment masking in dual channel devices. For 3Gb, 6Gb, and 12Gb per channel densities, OP[7:6] must always be LOW (=00B). Confidential - 31 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR18 Register Information (MA[5:0] = 12H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] DQS Oscillator Count - LSB Function DQS Oscillator (WR Training DQS Oscillator) Register Operand Type Read-only OP[7:0] Data 0 - 255 LSB DRAM DQS Oscillator Count Notes 1,2,3 Notes: 1. MR18 reports the LSB bits of the DRAM DQS Oscillator count. The DRAM DQS Oscillator count value is used to train DQS to the DQ data valid window. The value reported by the DRAM in this mode register can be used by the memory controller to periodically adjust the phase of DQS relative to DQ. 2. Both MR18 and MR19 must be read (MRR) and combined to get the value of the DQS Oscillator count. 3. A new MPC [Start DQS Oscillator] should be issued to reset the contents of MR18/MR19. Confidential - 32 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR19 Register Information (MA[5:0] = 13H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] DQS Oscillator Count - MSB Function DQS Oscillator (WR Training DQS Oscillator) Register Operand Type Read-only OP[7:0] Data 0-255 MSB DRAM DQS Oscillator Count Notes 1,2,3 Notes: 1. MR19 reports the MSB bits of the DRAM DQS Oscillator count. The DRAM DQS Oscillator count value is used to train DQS to the DQ data valid window. The value reported by the DRAM in this mode register can be used by the memory controller to periodically adjust the phase of DQS relative to DQ. 2. Both MR18 and MR19 must be read (MRR) and combined to get the value of the DQS Oscillator count. 3. A new MPC [Start DQS Oscillator] should be issued to reset the contents of MR18/MR19. Confidential - 33 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR20 Register Information (MA[5:0] = 14H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Upper-Byte Invert Register for DQ Calibration Register Operand Type Function Write-only Upper-Byte Invert for DQ Calibration OP[7:0] Data Notes The following values may be written for any operand OP[7:0], and will be applied to the corresponding DQ locations DQ[15:8] within a byte lane: 1,2 0B: Do not invert 1B: Invert the DQ Calibration patterns in MR32 and MR40 Default value for OP[7:0] = 55H Notes: 1. This register will invert the DQ Calibration pattern found in MR32 and MR40 for any single DQ, or any combination of DQ's. Example: If MR20 OP[7:0]=00010101B, then the DQ Calibration patterns transmitted on DQ[15,14,13,11,9] will not be inverted, but the DQ Calibration patterns transmitted on DQ[12,10,8] will be inverted. 2. DMI[1] is not inverted, and always transmits the "true" data contained in MR32/MR40. 3. No Data Bus Inversion (DBI) function is enacted during DQ Read Calibration, even if DBI is enabled in MR3OP[6]. Table 18 - MR20 Invert Register Pin Mapping PIN DQ8 DQ9 DQ10 DQ11 DMI1 DQ12 DQ13 DQ14 DQ15 MR20 OP0 OP1 OP2 OP3 NO-Invert OP4 OP5 OP6 OP7 Confidential - 34 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR22 Register Information (MA[5:0] = 16H) OP[7] OP[6] ODTD for x8_2ch(Byte) mode Function OP[5] OP[4] OP[3] ODTD-CA ODTE-CS ODTE-CK Register Type Operand OP[2] OP[1] OP[0] SOC ODT Data Notes 000B: Disable (Default) SoC ODT (Controller ODT Value for VOH calibration) OP[2:0] 001B: RZQ/1 010B: RZQ/2 011B: RZQ/3 100B: RZQ/4 1,2,3 101B: RZQ/5 110B: RZQ/6 ODTE-CK (CK ODT enabled for nonterminating rank) ODTE-CS (CS ODT enable for nonterminating rank) ODTD-CA (CA ODT termination disable) ODTD for x8_2ch(Byte) mode 111B: RFU Write-only OP[3] 0B: ODT-CK Over-ride Disabled (Default) 1B: ODT-CK Over-ride Enabled 2,3,4, 6,8 OP[4] 0B: ODT-CS Over-ride Disabled (Default) 1B: ODT-CS Over-ride Enabled 2,3,5, 6,8 OP[5] 0B: ODT-CA Obeys ODT_CA bond pad (default) 1B: ODT-CA Disabled OP[7:6] 2,3,6, 7,8 See x8_2ch (Byte) mode addendum Notes: 1. All values are “typical". 2. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW com- mand to this MR address, or read from with an MRR command to this address. 3. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation. 4. When OP[3]=1, then the CK signals will be terminated to the value set by MR11-OP[6:4] regardless of the state of the ODT_CA bond pad. This overrides the ODT_CA bond pad for configurations where CA is shared by two or more DRAMs but CK is not, allowing CK to terminate on all DRAMs. 5. When OP[4]=1, then the CS signal will be terminated to the value set by MR11-OP[6:4] regardless of the state of the ODT_CA bond pad. This overrides the ODT_CA bond pad for configurations where CA is shared by two or more DRAMs but CS is not, allowing CS to terminate on all DRAMs. 6. For system configurations where the CK, CS, and CA signals are shared between packages, the package design should provide for the ODT_CA ball to be bonded on the system board outside of the memory package. This provides the necessary control of the ODT function for all die with shared Command Bus signals. 7. When OP[5]=0, CA[5:0] will terminate when the ODT_CA bond pad is HIGH and MR11-OP[6:4] is VALID, and disables termination when ODT_CA is LOW or MR11-OP[6:4] is disabled. When OP[5]=1, termination for CA[5:0] is disabled, regardless of the state of the ODT_CA bond pad or MR11-OP[6:4]. 8. To ensure proper operation in a multi-rank configuration, when CA, CK or CS ODT is enabled via MR11 OP[6:4] and also via MR22 or CA-ODT pad setting, the rank providing ODT will continue to terminate the command bus in all DRAM states including Active Self Refresh, Self Refresh Power-down, Active Power-down and Precharge Power-down. Confidential - 35 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR23 Register Information (MA[5:0] = 17H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] DQS interval timer run time setting Function Register Operand Type Data Notes 00000000B: DQS interval timer stop via MPC Command (Default) 00000001B: DQS timer stops automatically at 16th clocks after timer start 00000010B: DQS timer stops automatically at 32nd clocks after timer start 00000011B: DQS timer stops automatically at 48th clocks after timer start DQS interval timer run time Write-only OP[7:0] 00000100B: DQS timer stops automatically at 64th clocks after timer start 1, 2 Thru 00111111B: DQS timer stops automatically at (63X16)th clocks after timer start 01XXXXXXB: DQS timer stops automatically at 2048th clocks after timer start 10XXXXXXB: DQS timer stops automatically at 4096th clocks after timer start 11XXXXXXB: DQS timer stops automatically at 8192nd clocks after timer start Notes: 1. MPC command with OP[6:0]=1001101B (Stop DQS Interval Oscillator) stops DQS interval timer in case of MR23 OP[7:0] = 00000000B. 2. MPC command with OP[6:0]=1001101B (Stop DQS Interval Oscillator) is illegal with non-zero values in MR23 OP[7:0]. Confidential - 36 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR24 Register Information (MA[5:0] = 18H) OP[7] OP[6] TRR Mode Function OP[5] OP[4] OP[2] Unlimited TRR Mode BAn Register Type OP[3] Operand OP[1] OP[0] MAC Value Data Notes 000B: Unknown when bit OP3=0 (Note 1) Unlimited when bit OP3=1 (Note 2) 001B: 700K MAC Value Read-only OP[2:0] 010B: 600K 011B: 500K 100B: 400K 101B: 300K 110B: 200K 111B: Reserved Unlimited MAC TRR Mode BAn 0B: OP[2:0] define MAC value 1B: Unlimited MAC value (Note 2, Note 3) OP[3] Write-only OP[6:4] 000B: Bank 0 001B: Bank 1 010B: Bank 2 011B: Bank 3 100B: Bank 4 101B: Bank 5 110B: Bank 6 111B: Bank 7 TRR Mode OP[7] 0B: Disabled (default) 1B: Enabled Notes: 1. Unknown means that the device is not tested for tMAC and pass/fail value in unknown. 2. There is no restriction to number of activates. 3. MR24 OP [2:0] is set to zero. Confidential - 37 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR25 Register Information (MA[5:0] = 19H) Mode Register 25 contains one bit of readout per bank indicating that at least one resource is available for Post Package Repair programming. OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Bank7 Bank6 Bank5 Bank4 Bank3 Bank2 Bank1 Bank0 Function PPR Resource Confidential Register Operand Type Read-only OP[7:0] Data Notes 0B: PPR Resource is not available 1B: PPR Resource is available - 38 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR30 Register Information (MA[5:0] = 1EH) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Valid 0 or 1 Function SDRAM will ignore Register Operand Type Write-only OP[7:0] Data Don't care Notes 1 Notes: 1. This register is reserved for testing purposes. The logical data values written to OP[7:0] shall have no effect on SDRAM operation, however timings need to be observed as for any other MR access command. Confidential - 39 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR32 Register Information (MA[5:0] = 20H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] D Calibration Pattern “A” (default = 5AH) Function Return DQ Calibration Pattern MR32 + MR40 Confidential Register Operand Type Write OP[7:0] Notes Data XB: An MPC command with OP[6:0]= 1000011B causes the device to return the DQ Calibration Pattern contained in this register and (followed by) the contents of MR40. A default pattern “5AH”is loaded at power-up or RESET, or the pattern may be overwritten with a MRW to this register. The contents of MR15 and MR20 will invert the data pattern for a given DQ (See MR15 for more information) - 40 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR33 Register Information (MA[5:0] = 21H) OP[7] OP[6] OP[5] OP[4] ECCON ERRON CLR ECC RFU Register Type Operand Data Function ECCON ERRON CLR ECC ECC 2err ECC Event READ/WRITE WRITE only READ only OP[3] OP[2] OP[1] OP[0] ECC 2err ECC Event OP[7] 0: ECC function off 1: ECC function on(default) OP[6] 0: ECC ERR info output through ECC pad function off(default) 1: ECC ERR info output through ECC pad function on OP[5] OP[1] OP[0] 0: ECC Event Record Clear off(default) 1: ECC Event Record Clear on 0: No 2bit err 1: 2bit err detect 0: No ECC event 1: ECC Event detect Bit “ERRON”(op6) is valid only if bit “ECCON”(bit7) is valid first. Bit “CLR ECC”(op5) is self clean and will clear both “ECC 2err”(op1) and “ECC Event”(op0) if it is write with “1”. Bit “ECC 2err” and “ECC Event” will keep error status valid once set by ECC err information until “CLR ECC” bit sent. Confidential - 41 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR34 Register Information (MA[5:0] = 22H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] ECC event Number Function ECC event Number Register Type READ only Operand OP[7:0] Data 00000000B: No ECC event detect 00000001B: 1 time ECC event detect 00000010B: 2 times ECC event detect 00000011B: 3 times ECC event detect . . . 11111111B: 255 times ECC event detect The ecc event number will hold max value (0xFF) if it is overflow. And it can also be cleared by MR33 bit “CLR ECC”. Confidential - 42 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR39 Register Information (MA[5:0] = 27H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] Valid 0 or 1 Function SDRAM will ignore Register Operand Type Write-only OP[7:0] Data Don't care Notes 1 Notes: 1. This register is reserved for testing purposes. The logical data values written to OP[7:0] shall have no effect on SDRAM operation, however timings need to be observed as for any other MR access command. Confidential - 43 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 MR40 Register Information (MA[5:0] = 28H) OP[7] OP[6] OP[5] OP[4] OP[3] OP[2] OP[1] OP[0] D Calibration Pattern “B” (default = 3CH) Function Return DQ Calibration Pattern MR32 + MR40 Register Operand Type Write only OP[7:0] Data Notes XB: A default pattern “3CH” is loaded at powerup or RESET, or the pattern may be overwritten 1,2,3 with a MRW to this register. See MR32 for more information. Notes: 1. The pattern contained in MR40 is concatenated to the end of MR32 and transmitted on DQ[15:0] and DMI[1:0] when DQ Read Calibration is initiated via a MPC command. The pattern transmitted serially on each data lane, organized “little endian” such that the low-order bit in a byte is transmitted first. If the data pattern in MR40 is 27H , then the first bit transmitted with be a '1', followed by '1', '1', '0', '0', '1', '0', and '0'. The bit stream will be 00100111B. 2. MR15 and MR20 may be used to invert the MR32/MR40 data patterns on the DQ pins. See MR15 and MR20 for more information. Data is never inverted on the DMI[1:0] pins. 3. The data pattern is not transmitted on the DMI[1:0] pins if DBI-RD is disabled via MR3-OP[6]. 4. No Data Bus Inversion (DBI) function is enacted during DQ Read Calibration, even if DBI is enabled in MR3-OP[6]. Confidential - 44 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 1.9 Refresh Requirement Between SRX command and SRE command, at least one extra refresh command is required. After the DRAM Self Refresh Exit command, in addition to the normal Refresh command at tREFI interval, the LPDDR4 DRAM requires minimum of one extra Refresh command prior to Self Refresh Entry command. Table 19 - Refresh Requirement Parameters per die for Dual Channel SDRAM devices Refresh Requirements Symbol 2Gb Density per Channel Number of banks per channel Refresh Window (tREFW) (TCASE ≤ tREFW 85°C) Refresh Window (tREFW) (1/2 Rate tREFW Refresh) Refresh Window (tREFW) (1/4 Rate tREFW Refresh) Required Number of REFRESH R Commands in a tREFW window REFAB tREFI Average Refresh Interval REFPB tREFIpb Refresh Cycle Time (All Banks) tRFCab Refresh Cycle Time (Per Bank) tRFCpb 1Gb 2Gb 4Gb 2Gb 130 60 8 4Gb 8Gb Units Notes 4Gb 32 ms 16 ms 8 ms 8192 - 3.904 488 us ns ns ns 180 90 NOTE1 Refresh for each channel is independent of the other channel on the die, or other channels in a package. Power delivery in the user's system should be verified to make sure the DC operating conditions are maintained when multiple channels are refreshed simultaneously. NOTE2 Self refresh abort feature is available for higher density devices starting with 12 Gb device and tXSR一abort(min) is defined as tRFCpb + 17.5ns. Confidential - 45 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 2 Operating Conditions and Interface Specification 2.1 Absolute Maximum Ratings Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Table 20 - Absolute Maximum DC Ratings Parameter VDD1 supply voltage relative to Vss Symbol VDD1 Min -0.4 Max 2.1 Units V Notes 1 VDD2 supply voltage relative to Vss VDD2 -0.4 1.5 V 1 VDDQ supply voltage relative to VSSQ VDDQ -0.4 1.5 V 1 Voltage on any ball except VDD1 relative to Vss VIN, VOUT -0.4 1.5 V Storage Temperature TSTG -55 125 °C 2 Notes: 1. See “Power-Ramp” for relationships between power supplies. 2. Storage Temperature is the case surface temperature on the center/top side of the LPDDR4 device. For the measurement conditions, please refer to JESD51-2. Confidential - 46 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 2.2 AC and DC Operating Conditions Table 21 - Recommended DC Operating Conditions DRAM Core 1 Power Symbol VDD1 Min 1.70 Typ 1.80 Max 1.95 Unit V Notes 1,2 Core 2 Power/Input Buffer Power VDD2 1.06 1.10 1.17 V 1,2,3 I/O Buffer Power VDDQ 1.06 1.10 1.17 V 2,3 Notes: 1. VDD1 uses significantly less current than VDD2. 2. The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 20MHz at the DRAM package ball. 3. VdIVW and TdIVW limits described elsewhere in this document apply for voltage noise on supply voltages of up to 45 mV (peak-topeak) from DC to 20MHz. Table 22 - Input Leakage Current Parameter/Condition Symbol Min Max Unit Notes Input Leakage current lL -4 4 uA 1,2 Notes: 1. For CK_t,CK_c,CKE, CS, CA, ODT_CA and RESET_n. Any input 0V ≤ VIN ≤ VDD2 (All other pins not under test = 0V). 2. CA ODT is disabled for CK_t, CK_c, CS, and CA. Table 23 - Input/Output Leakage Current Parameter/Condition Symbol Min Max Unit Notes Input/Output Leakage current IOZ -5 5 uA 1,2 Notes: 1. For DQ,DQS_t,DQS_c and DM I. Any I/O 0V ≤ VOUT≤ VDDQ. 2. I/Os status are disabled: High Impedance and ODT Off. Table 24 - Operating Temperature Range Parameter/Condition Standard Elevated Symbol TOPER Min -40 Max 85 Unit °C 85 105 °C Notes: 1. Operating Temperature is the case surface temperature on the center-top side of the LPDDR4 device. For the measurement conditions, please refer to JESD51-2. 2. Some applications require operation of LPDDR4 in the maximum temperature conditions in the Elevated Temperature Range between 85 °C and 105 °C case temperature. For LPDDR4 devices, de-rating may be neccessary to operate in this range. See MR4. 3. Either the device case temperature rating or the temperature sensor may be used to set an appropriate refresh rate, determine the need for AC timing de-rating and/or monitor the operating temperature. When using the temperature sensor, the actual device case temperature may be higher than the TOPER rating that applies for the Standard or Elevated Temperature Ranges. For example, TCASE may be above 85°C when the temperature sensor indicates a temperature of less than 85°C. Confidential - 47 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 2.3 Interface Capacitance Table 25 - Input/output capacitance Parameter Input capacitance, CK_t and CK_c Input capacitance delta, CK_t and CK_c Input capacitance, All other input-only pins Input capacitance delta, All other input-only pins Input/output capacitance, DQ, DMI, DQS_t, DQS_c Input/output capacitance delta, DQS_t,DQS_c LPDDR4 Symbol CCK CDCK Cl CDI CIO CDDQS Input/output capacitance delta, DQ, DMI CDIO Input/output capacitance, ZQ pin CZQ Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max 1600-3200 0.5 0.9 0.0 0.09 0.5 0.9 -0.1 0.1 0.7 1.3 0.0 0.1 -0.1 0.1 0.0 5.0 Units Notes pF 1,2 pF 1,2,3 pF 1,2,4 pF 1,2,5 pF 1,2,6 pF 1,2,7 pF 1,2,8 pF 1,2 Notes: 1. This parameter applies to die device only (does not include package capacitance). 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSSQ applied and all other pins floating. 3. Absolute value of CCK_ t, CCK_ c. 4. Cl applieds to CS_n, CKE, CA0~CA5. 5. CDI = Cl - 0.5 * (CCK_t + CCK_c) 6. DMI loading matches DQ and DQS. 7. Absolute value of CDQS_t and CDQS_c. 8. CDIO = CIO - 0.5 * (CDQS_t + CDQS_c) in byte-lane. Confidential - 48 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 3 Speed Bins, AC Timing and IDD 3.1 Speed Bins Table 26 - Read and Write Latencies Read Latency Write Latency No DBI w/DBI Set A Set B 6 10 14 20 24 28 6 12 16 22 28 32 4 6 8 10 12 14 4 8 2 18 22 26 nWR 6 10 16 20 24 30 nRTP Lower Clock Frequency Upper Clock Frequency Limit [MHz] Limit [MHz] (>) 10 266 533 800 1066 1333 8 8 8 8 10 12 (≤) 266 533 800 1066 1333 1600 Notes 1,2,3,4 ,5,6 Notes: 1. The LPDDR4 SDRAM device should not be operated at a frequency above the Upper Frequency Limit, or below the Lower Frequency Limit, shown for each RL, WL, nRTP, or nWR value. 2. DBI for Read operations is enabled in MR3 OP[6]. When MR3 OP[6]=0, then the "No DBI" column should be used for Read Latency. When MR3 OP[6]=1, then the "w/DBI" column should be used for Read Latency. 3. Write Latency Set “A” and Set "B" is determined by MR2 OP[6]. When MR2 OP[6]=0, then Write Latency Set "A" should be used. When MR2 OP[6]=1,then Write Latency Set "B" should be used. 4. The programmed value of nWR is the number of clock cycles the LPDDR4 SDRAM device uses to determine the starting point of an internal Precharge operation after a Write burst with AP (Auto Pre- charge). It is determined by RU(tWR/tCK). 5. The programmed value of nRTP is the number of clock cycles the LPDDR4 SDRAM device uses to determine the starting point of an internal Precharge operation after a Read burst with AP (Auto Pre-charge). It is determined by RU(tRTP/tCK). 6. nRTP shown in this Table 26 is valid for BL16 only. For BL32, the SDRAM will add 8 clocks to the nRTP value before starting a precharge. The ODT Mode is enabled if MR11 OP[3:0] are non-zero. In this case, the value of RTT is determined by the settings of those bits. The ODT Mode is disabled if MR11 OP[3] = 0. Table 27 - ODTLon and ODTLoff Latency ODTLon Latency1 tWPRE = 2tCK ODTLoff Latency2 Upper Clock Lower Clock Frequency Limit[MHz] Frequency Limit[Mhz] WL Set “A" N/A WL Set "B" N/A WL Set "A" N/A WL Set "B" N/A (>) (≤) 10 266 N/A N/A N/A N/A 266 533 N/A 4 4 6 6 12 14 18 N/A 20 22 24 22 28 32 36 533 800 1066 1333 800 1066 1333 1600 Notes: 1. ODTLon is referenced from CAS-2 command. 2. ODTLoff as shown in table assumes BL=16. For BL32, 8 tCK should be added. The ODT Mode for non-target DRAM ODT control is enabled if MR11 OP[7,3] is set to a non-zero value. The ODT Mode for non-target DRAM is disabled if MR11 OP[7,3] = 00B. Confidential - 49 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 28 - ODTLon_rd and ODTLoff_rd Latency Values (MR0 [OP1=0] Normal Latency Support) ODTLon_rd Latency ODTLoff_rd Latency1,2 No DBI w/DBI No DBI w/ DBI N/A N/A N/A 14 18 22 N/A N/A N/A 16 22 26 N/A N/A N/A 32 36 42 N/A N/A N/A 34 40 46 Lower Clock Upper Clock Frequency Limit[Mhz] Frequency Limit[Mhz] (>) 10 266 533 800 1066 1333 (≤) 266 533 800 1066 1333 1600 Notes: 1. ODTLoff_rd assumes BL=16, For BL32, 8tCK should be added. 2. ODTLoff_rd assumes a fixed tRPST of 1.5tCK Confidential - 50 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 3.2 AC Timing Table 29 - Clock AC Timing Parameter Symbol LPDDR4-1600 Min Max LPDDR4-2400 Min Max Clock Timing 0.833 100 LPDDR4-3200 Units Min Max 0.625 100 ns Average clock period tCK(avg) 1.25 100 Average High pulse width tCH(avg) 0.46 0.54 0.46 0.54 0.46 0.54 tCK(avg) Average Low pulse width tCL(avg) 0.46 0.54 0.46 0.54 0.46 0.54 tCK(avg) Absolute clock period tCK(abs) tCK(avg) MIN + tJIT(per) MIN - tCK(avg) MIN + tJIT(per) MIN - tCK(avg) MIN + tJIT(per) MIN - ns Absolute High clock pulse width tCH(abs) 0.43 0.57 0.43 0.57 0.43 0.57 tCK(avg) tCL(abs) 0.43 0.57 0.43 0.57 0.43 0.57 tCK(avg) tJIT(per) -70 70 -50 50 -40 40 ps tJIT(cc) - 140 - 100 - 80 ps Absolute Low clock pulse width Clock period jitter Maximum Clock Jitter between consecutive cycles Confidential - 51 of 64 - Notes Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 30 - Core AC Timing Parameter Symbol Core Parameters ACTIVATE-to-ACTlVATE command period (same tRC bank) Minimum Self Refresh tSR Time (Entry to Exit) Self Refresh exit to next tXSR valid command delay Exit Power-Down to next tXP valid command delay CAS-to-CAS delay tCCD Min/ Data Rate Max 1600 2400 Unit MIN tRAS + tRPab (with all bank precharge) tRAS + tRPpb (with per bank precharge) ns MIN max(15ns, 3nCK) ns MIN max(tRFCab + 7.5ns, 2nCK) ns MIN max(7.5ns, 5nCK) ns MIN 8 tCK(avg) Internal READ to PRECHARGE command delay tRTP MIN max(7.5ns, 8nCK) ns RAS-to-CAS delay tRCD MIN max(18ns, 4nCK) ns Row precharge time (single bank) Row precharge time (all banks) tRPpb MIN max(18ns, 4nCK) ns tRPab MIN max(21ns, 4nCK) ns Row active time tRAS MIN max(42ns, 3nCK) ns MAX Min(9 * tREFI * Refresh Rate, 70.2) us (Refresh Rate is specified by MR4, OP[2:0]) - WRITE recovery time tWR MIN max(18ns, 6nCK) ns WRITE-to-READ delay tWTR MIN max(10ns, 8nCK) ns tRRD MIN max(10ns, 4nCK) ns tPPD MIN 4 tCK tFAW MIN 40 ns Active bank-A to active bank-B Precharge to Precharge Delay Four-bank ACTIVATE window Notes 3200 1, 2 Notes: 1. Precharge to precharge timing restriction does not apply to Auto-Precharge commands. 2. The value is based on BL16. For BL32 need additional 8 tCK(avg) delay. Confidential - 52 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 31 - Read output timings (Unit UI = tCK(avg)min/2) Parameter Symbol LPDDR4-1600 LPDDR4-2400 LPDDR4-3200 Min Max Min Max Min Max 0.18 - 0.18 - 0.18 Ul - min(tQSH, tQSL) - min(tQSH, tQSL) - Ul - 0.73 - 0.7 - Ul 3 - tbd - tbd - Ul 2,3 0.18 - 0.18 - 0.18 Ul - min(tQSH_ DBI, tQSL_DBI) - min(tQSH_ DBI, tQSL_DBI) - Ul - 0.73 - 0.70 - Ul 3 - tCL(abs) -0.05 - tCL(abs) -0.05 - tCK(av g) 3,4 - tCH(abs) -0.05 - tCH(abs) -0.05 - tCK(av g) 3,5 - tCL(abs) -0.045 - tCL(abs) -0.045 - tCK(av g) 4,6 - tCH(abs) -0.045 - tCH(abs) -0.045 - tCK(av g) 5,6 Data Timing DQS_t,DQS_c to DQ Skew total, per group, tDQSQ per access (DBIDisabled) DQ output hold time min(tQSH, total from DQS_t, tQH tQSL) DQS_c (DBI-Disabled) DQ output window time tQW_tota 0.75 total, per pin (DBIl Disabled) DQ output window time tQW_dj tbd deterministic, per pin (DBI-Disabled) DQS_t,DQS_c to DQ tDQSQ_ Skew total,per group, DBI per access (DBIEnabled) DQ output hold time total from DQS_t, DQS_c (DBI-Enabled) tQH_DBI min(tQSH_ DBI, tQSL_DBI) DQ output window time tQW_tota total, per pin (DBI0.75 l_DBI Enabled) Data Strobe Timing DQS, DQS# differential tCL(abs) tQSL output low time (DBI-0.05 Disabled) DQS, DQS# differential tCH(abs) tQSH output high time (DBI-0.05 Disabled) DQS, DQS# differential tQSL_DB tCL(abs) output low time (DBI-0.045 I Enabled) DQS, DQS# differential tQSH_D tCH(abs) output high time (DBI-0.045 BI Enabled) Units Notes Notes: 1. The deterministic component of the total timing. Measurement method tbd. 2. This parameter will be characterized and guaranteed by design. 3. This parameter is function of input clock jitter. These values assume the min tCH(abs) and tCL(abs). When the input clock jitter min tCH(abs) and tCL(abs) is 0.44 or greater of tck(avg) the min value of tQSL will be tCL(abs)-0.04 and tQSH will be tCH(abs) -0.04. 4. tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as it measured the next rising edge from an arbitrary falling edge. 5. tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as it measured the next rising edge from an arbitrary falling edge. 6. This parameter is function of input clock jitter. These values assume the min tCH(abs) and tCL(abs). When the input clock jitter min tCH(abs) and tCL(abs) is 0.44 or greater of tck(avg) the min value of tQSL will be tCL(abs)-0.04 and tQSH will be tCH(abs) -0.04. Confidential - 53 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 32 - Read AC Timing Parameter Symbol Min/Max Read Timing READ preamble tRPRE 0.5 tCK READ postamble tRPST 1.5 tCK READ postamble tRPST DQ low-impedance time tLZ(DQ) from CK_t, CK_c DQ high impedance time tHZ(DQ) from CK_t, CK_c DQS_c low-impedance tLZ(DQS) time from CK_t, CK_c DQS_c high impedance tHZ(DQS) time from CK_t, CK_c DQS-DQ skew tDQSQ 1600 Data Rate 2400 3200 Unit Min Min Min 1.8 0.4 1.4 tCK(avg) tCK(avg) tCK(avg) Min (RL x tCK) + tDQSCK(Min) - 200ps ps Max Min Max Max (RL x tCK) + tDQSCK(Max) + tDQSQ(Max) + (BL/2xtCK)-100ps (RL x tCK) + tDQSCK(Min) -(tRPRE(Max) x tCK) - 200ps (RL x tCK) + tDQSCK(Max) +(BL/2 x tCK) + (RPST(Max) x tCK) • 100ps 0.18 Notes ps ps ps Ul Table 33 - tDQSCK Timing Parameter DQS Output Access Time from CK_t/CK_c DQS Output Access Time from CK_t/CK_c - Temperature Variation DQS Output Access Time from CK_t/CK_c - Voltage Variation CK to DQS Rank to Rank variation Symbol Min Max Unit Notes tDQSCK 1.5 3.5 ns 1 tDQSCK_temp - 4 ps/°C 2 tDQSCK_volt - 7 ps/mV 3 tDQSCK_rank2rank - 1.0 ns 4,5 Notes: 1. Includes DRAM process, voltage and temperature variation. It includes the AC noise impact for frequencies> 20 MHz and max voltage of 45 mV pk-pk from DC-20 MHz at a fixed temperature on the package. The voltage supply noise must comply to the component Min-Max DC Operating conditions. 2. tDQSCK_temp max delay variation as a function of Temperature. 3. tDQSCK_volt max delay variation as a function of DC voltage variation for VDDQ and VDD2. tDQSCK_volt should be used to calculate timing variation due to VDDQ and VDD2 noise < 20 MHz. Host controller do not need to account for any variation due to VDDQ and VDD2 noise > 20 MHz. The voltage supply noise must comply to the component Min-Max DC Operating conditions. The voltage variation is defined as the Max[abs{tDQSCKmin@V1- tDQSCKmax@V2}, abs{tDQSCKmax@V1-tDQSCKmin@V2}]/abs{V1-V2}. For tester measurement VDDQ = VDD2 is assumed. 4. The same voltage and temperature are applied to tDQS2CK_rank2rank. 5. tDQSCK_rank2rank parameter is applied to multi-ranks per byte lane within a package consisting of the same design dies. Confidential - 54 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 34 - DRAM DQs In Receive Mode (UI = tCK(avg)min/2) Symbol Parameter VdlVW_total LPDDR4-1600 LPDDR4-2400 LPDDR4-3200 Unit Notes 140 mV 1,2,3,4 - 0.25 UI 1.2,4 TBD - TBD Ul 1,2,4, 12 - 180 - mV 5,13 Ul 6 ps ps 7 8 min max min max min max Rx Mask voltage - p-p total - 140 - 140 - TdlVW_total Rx timing window total (At VdlVW voltage levels) - 0.22 - 0.22 TdlVW_1bit Rx timing window 1 bit toggle (At VdlVW voltage levels) - TBD - 180 - 180 DQ AC input pulse amplitude pk-pk Input pulse width (At TdlPW DQ Vcent_DQ) tDQS2DQ DQ to DQS offset tDQ2DQ DQ to DQ offset DQ to DQS offset temperature tDQS2DQ_temp variation DQ to DQS offset voltage tDQS2DQ_volt variation Input Slew Rate over SRIN_dlVW VdlVWJotal tDQS2DQ_rank2ra DQ to DQS offset rank to rank nk variation VIHL_AC 0.45 0.45 0.45 200 - 800 30 200 - 800 30 200 - 800 30 - 0.6 - 0.6 - 0.6 - 33 - 33 - 33 ps/50 mV 10 1 7 1 7 1 7 V/ns 11 - 200 - 200 - 200 ps 14,15 ps/°C 9 Notes: 1. Data Rx mask voltage and timing parameters are applied per pin and includes the DRAM DQ to DQS voltage AC noise impact for frequencies >20 MHz and max voltage of 45mv pk-pk from DC-20MHz at a fixed temperature on the package. The voltage supply noise must comply to the component Min-Max DC operating conditions. 2. The design specification is a BER 20MHz and max voltage of 45mv pk-pk from DC-20MHz at a fixed temperature on the package. For tester measurement VDDQ = VDD2 is assumed. 11. Input slew rate over VdIVW Mask centered at Vcent_DQ(pin_mid). 12. Rx mask defined for a one pin toggling with other DQ signals in a steady state. 13. VIHL_AC does not have to be met when no transitions are occurring. 14. The same voltage and temperature are applied to tDQS2DQ_rank2rank. 15. tDQS2DQ_rank2rank parameter is applied to multi-ranks per byte lane within a package consisting of the same design dies. Confidential - 55 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 35 - Write AC Timing Parameter Symbol Min/Max Write Timing Data Rate 1600 2400 3200 Unit Notes Write command to 1st DQS tDQSS latching Min 0.75 Max 1.25 DQS input high-level tDQSH Min 0.4 tCK(avg) DQS input low-level width tDQSL Min 0.4 tCK(avg) tDSS Min 0.2 tCK(avg) tDSH Min 0.2 tCK(avg) Write preamble tWPRE Min 1.8 tCK(avg) 0.5 tCK Write postamble tWPST Min 0.4 tCK(avg) 1 1.5 tCK Write postamble tWPST Min 1.4 tCK(avg) 1 DQS falling edge to CK setup time DQS falling edge hold time from CK tCK(avg) Notes: 1. The length of Write Postamble depends on MR3 OP1 setting. Confidential - 56 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 36 - Power-Down AC Timing Parameter Symbol Power Down Timing CKE minimum pulse width (HIGH and LOW pulse width) Delay from valid command to CKE input LOW Valid Clock Requirement after CKE Input low Valid CS Requirement before CKE Input Low Valid CS Requirement after CKE Input low Valid Clock Requirement before CKE Input High Exit power- down to next valid command delay Valid CS Requirement before CKE Input High Valid CS Requirement after CKE Input High Valid Clock and CS Requirement after CKE Input low after MRW Command Valid Clock and CS Requirement after CKE Input low after ZQ Calibration Start Command Min/ Data Rate Max Unit Notes Max(7.5ns, 4nCK) Max(1.75ns, 3nCK) Max(5ns, 5nCK) ns 1 ns 1 1.75 ns tCKE Min - tCMDCKE Min tCKELCK Min tCSCKE Min tCKELCS Min tCKCKEH Min tXP Min tCSCKEH Min 1.75 ns tCKEHCS Min Max(7.5ns, 5nCK) ns tMRWCKEL Min Max(14ns, 10nCK) ns 1 tZQCKE Min Max(1.75ns, 3nCK) ns 1 Max(5ns, 5nCK) Max(1.75ns, 3nCK) Max(7.5ns, 5nCK) ns ns 1 ns 1 Notes: 1. Delay time has to satisfy both analog time(ns) and clock count(nCK). Table 37 - Command Address Input Parameters (UI = tCK(avg)min/2) Symbol VclVW TclVW VIHL_AC TclPW SRIN_cIVW Parameter Rx Mask voltage - p-p Rx timing window CA AC input pulse amplitude pk-pk CA input pulse width Input Slew Rate over VclVW LPDDR4-1600 LPDDR4-3200 min - max 175 0.3 min - max 155 0.3 210 - 190 - 0.55 1 0.6 7 1 7 Unit Notes mV UI 1,2,3 1,2,3 mV 4,7 UI 5 V/ns 6 Notes: 1. CA Rx mask voltage and timing parameters at the pin including voltage and temperature drift. 2. Rx mask voltage VcIVW total(max) must be centered around Vcent_CA(pin mid). 3. Vcent_CA must be within the adjustment range of the CA internal Vref. 4. CA only input pulse signal amplitude into the receiver must meet or exceed VIHL AC at any point over the total UI. No timing requirement above level. VIHL AC is the peak to peak voltage centered around Vcent_CA(pin mid) such that VIHL_AC/2 min must be met both above and below Vcent_CA. 5. CA only minimum input pulse width defined at the Vcent_CA(pin mid). 6. Input slew rate over VcIVW Mask centered at Vcent_CA(pin mid). 7. VIHL_AC does not have to be met when no transitions are occurring. Confidential - 57 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 38 - Mode Register Read/Write AC timing Parameter Symbol Mode Register Read/Write Timing Additional time after tXP has tMRRI expired until MRR command may be issued MODE REGISTER READ tMRR command period MODE REGISTER WRITE tMRW command period Mode register set command tMRD delay Min/ Data Rate Unit Min tRCD + 3nCK - Min 8 nCK Max MAX(10ns, 10nCK) max(14ns, 10nCK) Min Min Notes - Table 39 - Asynchronous ODT Turn On and Turn Off Timing Parameter tODTon, min tODTon, max tODToff, min tODToff, max 800-2133 tCK 1.5 3.5 1.5 3.5 Unit ns ns ns ns Notes Unit Note ns 1 ns 1 ns 1,2 Table 40 - Self-Refresh Timing Parameters Parameter Self Refresh Timing Delay from SRE command to CKE Input low Minimum Self Refresh Time Exit Self Refresh to Valid commands Symbol Min/ Data Rate Max tESCKE Min tSR Min Max(1.75ns, 3tCK) Max(15ns, 3tCK) tXSR Min Max(tRFCab + 7.5ns, 2tCK) Notes: 1. Delay time has to satisfy both analog time(ns) and clock count(tCK). It means that tESCKE will not expire until CK has toggled through at least 3 full cycles (3 *tCK) and 1.75ns has transpired. 2. MRR-1, CAS-2, DES, MPC, MRW-1 and MRW-2 except PASR Bank/Segment setting are only allowed during this period. Confidential - 58 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Table 41 - Command Bus Training AC Timing Parameter Symbol Command Bus Training Timing Valid Clock Requirement tCKELCK after CKE Input low Data Setup for VREF tDStrain Training Mode Data Hold for VREF tDHtrain Training Mode Asynchronous Data Read tADR CA Bus Training tCACD Command to CA Bus Training Command Delay Valid Strobe Requirement tDQSCKE before CKE Low First CA Bus Training Command Following CKE tCAENT Low VREF Step Time -multiple tVREFCA_LONG steps Vref Step Time -one step tVREFCA_SHORT Valid Clock Requirement tCKPRECS before CS High Valid Clock Requirement tCKPSTCS after CS High Minimum delay from CS to tCS_VREF DQS toggle in command bus training Minimum delay from CKE tCKEHDQS High to Strobe High Impedance Valid Clock Requirement tCKCKEH before CKE input High CA Bus Training CKE High tMRZ to DQ Tri-state ODT turn-on Latency from tCKELODTon CKE ODT tum-off Latency from tCKELODToff CKE tXCBT_Short Exit Command Bus Training Mode to next valid tXCBT_Middle command delay tXCBT_Long Min/ Max Data Rate 1600 2400 3200 Unit Notes Min Max(5ns, 5nCK) - Min 2 ns Min 2 ns Max 20 ns Min RU(tADR/tCK ) tCK 2 Min 10 ns 1 Min 250 ns Max 250 ns Max 80 ns Min 2tck + tXP (tXP = max(7.5ns, 5nCK)) - Min max(7.5ns, 5nCK)) - Min 2 tCK 10 ns Min Max(1.75ns, 3nCK) - Min 1.5 ns Min 20 ns Min 20 ns Min Min Min Max(5nCK, 200ns) Max(5nCK, 200ns) Max(5nCK, 250ns) - 3 Notes: 1. DQS_t has to retain a low level during tDQSCKE period, as well as DQS_c has to retain a high level. 2. If tCACD is violated, the data for samples which violate tCACD will not be available, except for the last sample (where tCACD after this sample is met). Valid data for the last sample will be available after tADR. 3. Exit Command Bus Training Mode to next valid command delay Time depends on value of VREF(CA) setting: MR12 OP[5:0] and VREF(CA) Range: MR12 OP[6] of FSP-OP 0 and 1. Additionally exit Command Bus Training Mode to next valid command delay Time may affect VREF(DQ) setting. Settling time of VREF(DQ) level is same as VREF(CA) level. Confidential - 59 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 LPDDR4-1600 LPDDR4-2400 LPDDR4-3200 Table 42 - Temperature Derating AC Timing Parameter Temperature Derating1 DQS output access time from CK_t/CK_c (derated) RAS-to-CAS delay (derated) ACTIVATE-to- ACTIVATE command period (derated) Row active time (derated) Row precharge time (derated) Active bank A to active bank B (derated) Symbol Data Rate Min/ Max 1600 2400 3200 Unit tDQSCK MAX 3600 ps tRCD MIN tRCD+ 1.875 ns tRC MIN tRC + 3.75 ns tRAS MIN tRAS + 1.875 ns tRP MIN tRP+ 1.875 ns tRRD MIN tRRD + 1.875 ns Note Notes: 1. Timing derating applies for operation at 85 °C to 105 °C. Confidential - 60 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 3.3 IDD Specification VDD2, VDDQ = 1.06 ~ 1.17V, VDD1 = 1.70 ~ 1.95V Table 43 - IDD Specification (3200Mbps) Parameter Supply IDD01 VDD1 IDD02 4Gb x16 8Gb x32 2Gb x32 2Gb x16 Unit 18 18 36 18 9 mA VDD2 79 79 158 79 39.5 mA IDD0Q VDDQ 0.5 0.5 1 0.5 0.25 mA IDD2P1 VDD1 1.2 1.2 2.4 1.2 0.6 mA IDD2P2 VDD2 2.5 2.5 5 2.5 1.25 mA IDD2PQ VDDQ 0.3 0.3 0.6 0.3 0.15 mA IDD2PS1 VDD1 1.2 1.2 2.4 1.2 0.6 mA IDD2PS2 VDD2 2.5 2.5 5 2.5 1.25 mA IDD2PSQ VDDQ 0.3 0.3 0.6 0.3 0.15 mA IDD2N1 VDD1 1.5 1.5 3 1.5 0.75 mA IDD2N2 VDD2 35 35 70 35 17.5 mA IDD2NQ VDDQ 0.3 0.3 0.6 0.3 0.15 mA IDD2NS1 VDD1 1.5 1.5 3 1.5 0.75 mA IDD2NS2 VDD2 25 25 50 25 12.5 mA IDD2NSQ VDDQ 0.3 0.3 0.6 0.3 0.15 mA IDD3P1 VDD1 1.5 1.5 3 1.5 0.75 mA IDD3P2 VDD2 15 15 30 15 7.5 mA IDD3PQ VDDQ 0.3 0.3 0.6 0.3 0.15 mA IDD3PS1 VDD1 1.5 1.5 3 1.5 0.75 mA IDD3PS2 VDD2 15 15 30 15 7.5 mA IDD3PSQ VDDQ 0.3 0.3 0.6 0.3 0.15 mA IDD3N1 VDD1 2 2 4 2 1 mA IDD3N2 VDD2 45 45 90 45 22.5 mA IDD3NQ VDDQ 0.5 0.5 1 0.5 0.25 mA IDD3NS1 VDD1 2 2 4 2 1 mA IDD3NS2 VDD2 45 45 90 45 15 mA IDD3NSQ VDDQ 0.5 0.5 1 0.5 0.25 mA IDD4R1 VDD1 3 3 4 3 1.5 mA IDD4R2 VDD2 500 500 600 500 250 mA IDD4RQ VDDQ 300 300 360 300 150 mA IDD4W1 VDD1 3 3 4 3 1.5 mA IDD4W2 VDD1 400 400 480 400 200 mA IDD4WQ VDD1 3 3 4 3 1.5 mA IDD51 VDD1 50 50 100 50 25 mA IDD52 VDD2 120 120 240 120 60 mA IDD5Q VDDQ 0.5 0.5 1 0.5 0.25 mA IDD5AB1 VDD1 10 10 20 10 5 mA Confidential 4Gb x32 - 61 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 Parameter Supply 4Gb x32 4Gb x16 8Gb x32 2Gb x32 2Gb x16 Unit IDD5AB2 VDD2 53 53 106 53 26.5 mA IDD5ABQ VDDQ 0.5 0.5 1 0.5 0.25 mA IDD5PB1 VDD1 10 10 20 10 5 mA IDD5PB2 VDD2 53 53 106 53 26.5 mA IDD5PBQ VDDQ 0.5 0.5 1 0.5 0.25 mA VDD2, VDDQ = 1.06 ~ 1.17V, VDD1 = 1.70 ~ 1.95V Table 44 - IDD6 specification (3200Mbps) Temperature 45°C 85°C Confidential Parameter IDD61 IDD62 IDD6Q IDD61 IDD62 IDD6Q Supply VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ 4Gb x32 2.5 4 0.5 7.5 13 0.5 4Gb x16 2.5 4 0.5 7.5 13 0.5 - 62 of 64 - 8Gb x32 5 8 1 14 25 1 2Gb x32 2.5 4 0.5 7.5 13 0.5 2Gb x16 1.25 2 0.25 4 7 0.25 Unit mA mA mA mA mA mA Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 4 Package Outlines Figure 6 reflects the current status of the outline dimensions of the LPDDR4 SDRAM packages for components with x16/x32 configuration. Figure 6 - Package Outline AS4C64M32MD4, AS4C128M32MD4, AS4C128M16MD4, AS4C256M16MD4 AS4C256M32MD4 Confidential - 63 of 64 - Rev. 1.0 Aug. 2020 2Gb/4Gb/8Gb LPDDR4 PART NUMBERING SYSTEM AS4C DRAM 64M32MD4/ 128M32MD4 / 128M16MD4 / 256M16MD4 / 256M32MD4 64M32=64Mx32 128M32=128Mx32 128M16=128Mx16 256M16=256Mx16 256M32=256Mx32 MD4=LPDDR4 -062 062=1600MHz B B=FBGA A A=Automotive -40°C~ 105°C Grade 2 N XX Indicates Pb and Halogen Free Packing Type None:Tray TR:Reel Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034 Tel: 425-898-4456 Fax: 425-896-8628 www.alliancememory.com Copyright © Alliance Memory All Rights Reserved © Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use. Confidential - 64 of 64 - Rev. 1.0 Aug. 2020
AS4C128M16MD4-062BAN 价格&库存

很抱歉,暂时无法提供与“AS4C128M16MD4-062BAN”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AS4C128M16MD4-062BAN
    •  国内价格 香港价格
    • 136+70.49515136+8.52480
    • 272+70.21978272+8.49150
    • 408+70.03620408+8.46930
    • 544+69.85262544+8.44710
    • 680+69.48546680+8.40270

    库存:129