AS4C256M8D3L-12BANTR 数据手册
AS4C256M8D3L-12BAN
Revision History
2Gb Auto-AS4C256M8D3L-12BAN - 78 ball FBGA PACKAGE
Revision
Rev 1.0
Details
Preliminary datasheet
Date
Mar. 2016
Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211
Alliance Memory Inc. reserves the right to change products or specification without notice
Confidential
-1-
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Features
Overview
• JEDEC Standard Compliant
• Power supplies: VDD & VDDQ = +1.35V
• Backward compatible to VDD & VDDQ = 1.5V ±0.075V
• Automotive temperature: -40~105°C (TC)
• AEC-Q100 Compliant
• Supports JEDEC clock jitter specification
• Fully synchronous operation
• Fast clock rate: 800MHz
• Differential Clock, CK & CK#
• Bidirectional differential data strobe
- DQS & DQS#
8
• internal banks for concurrent operation
• 8n-bit prefetch architecture
• Pipelined internal architecture
• Precharge & active power down
• Programmable Mode & Extended Mode registers
• Additive Latency (AL): 0, CL-1, CL-2
• Programmable Burst lengths: 4, 8
• Burst type: Sequential / Interleave
• Output Driver Impedance Control
• 8192 refresh cycles / 64ms
- Average refresh period
7.8μs @ -40°C ≦TC≦ +85°C
3.9μs @ +85°C <TC≦ +105°C
• Write Leveling
• ZQ Calibration
• Dynamic ODT (Rtt_Nom & Rtt_WR)
• RoHS compliant
• Auto Refresh and Self Refresh
• 78-ball 8 x 10.5 x 1.0mm FBGA package
- Pb and Halogen Free
The 2Gb Double-Data-Rate-3 (DDR3L) DRAMs is
double data rate architecture to achieve high-speed
operation. It is internally configured as an eight bank
DRAM.
The 2Gb chip is organized as 32Mbit x 8 I/Os x 8
bank devices. These synchronous devices achieve
high speed double-data-rate transfer rates of up to
1600 Mb/sec/pin for general applications.
The chip is designed to comply with all key DDR3L
DRAM key features and all of the control and address
inputs are synchronized with a pair of externally
supplied differential clocks. Inputs are latched at the
cross point of differential clocks (CK rising and CK#
falling). All I/Os are synchronized with differential
DQS pair in a source synchronous fashion.
These devices operate with a single 1.35V
-0.067V/ +0.1V power supply and are available in
BGA packages.
Table 1. Ordering Information
Part Number
Org
Temperature
MaxClock (MHz)
Package
AS4C256M8D3L-12BAN
256Mx8
Automotive-40°C to 105°C
800
78-ball FBGA
Table 2. Speed Grade Information
Speed Grade
Clock Frequency
CAS Latency
DDR3L-1600
800MHz
11
Confidential
-2-
tRCD (ns)
tRP (ns)
13.75
13.75
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Figure 1. Ball Assignment (FBGA Top View)
…
1
2
3
7
8
9
A
VSS
VDD
NC
TDQS#
VSS
VDD
B
VSS
VSSQ
DQ0
DM/
TDQS .
VSSQ
VDDQ
C
VDDQ
DQ2
DQS
DQ1
DQ3
VSSQ
D
VSSQ
DQ6
DQS#
VDD
VSS
VSSQ
E
VREFDQ
VDDQ
DQ4
DQ7
DQ5
VDDQ
F
NC
VSS
RAS#
CK
VSS
NC
G
ODT
VDD
CAS#
CK#
VDD
CKE
H
NC
CS#
WE#
A10/AP
ZQ
NC
J
VSS
BA0
BA2
NC
VREFCA
VSS
K
VDD
A3
A0
A12/BC#
BA1
VDD
L
VSS
A5
A2
A1
A4
VSS
M
VDD
A7
A9
A11
A6
VDD
N
VSS
RESET#
A13
A14
A8
VSS
Confidential
-3-
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Figure 2. Block Diagram
Row
Decoder
DLL
CLOCK
BUFFER
CK
CK#
CKE
32M x 8
CELL ARRAY
(BANK #0)
Column Decoder
CS#
RAS#
CAS#
WE#
32M x 8
CELL ARRAY
(BANK #1)
Column Decoder
Row
Decoder
COMMAND
DECODER
CONTROL
SIGNAL
GENERATOR
Row
Decoder
RESET#
32M x 8
CELL ARRAY
(BANK #2)
Column Decoder
COLUMN
COUNTER
MODE
REGISTER
Row
Decoder
A10/AP
A12/BC#
32M x 8
CELL ARRAY
(BANK #3)
Column Decoder
A0-A9
A11
A13-A14
BA0-BA2
Row
Decoder
ADDRESS
BUFFER
32M x 8
CELL ARRAY
(BANK #4)
REFRESH
COUNTER
ZQCL
ZQCS
ZQ
CAL
Row
Decoder
Column Decoder
32M x 8
CELL ARRAY
(BANK #5)
Column Decoder
DQS
DQS#
TDQS
TDQS#
RZQ
DATA
STROBE
BUFFER
DQ
Buffer
Row
Decoder
VSSQ
32M x 8
CELL ARRAY
(BANK #6)
Column Decoder
DQ0
Row
Decoder
~
DQ7
ODT
Confidential
-4-
DM
32M x 8
CELL ARRAY
(BANK #7)
Column Decoder
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Figure 3. State Diagram
This simplified State Diagram is intended to provide an overview of the possible state transitions and the
commands to control them. In particular, situations involving more than one bank, the enabling or disabling of on-die
termination, and some other events are not captured in full detail.
MRS,MPR,
Write
Leveling
Self
Refresh
E
Initialization
from any
RESET
state
ZQCL
ZQ
Calibration
MRS
X
Reset
Procedure
SR
Power
On
SR
Power
applied
ZQCL,ZQCS
Idle
Refreshing
REF
X
PD
E
PD
ACT
ACT = Active
PRE = Precharge
Active
Power
Down
Precharge
Power
Down
Activating
PREA = Precharge All
PD
X
MRS = Mode Register Set
PD
E
REF = Refresh
RESET = Start RESET Procedure
Bank
Activating
Read = RD, RDS4, RDS8
Read A = RDA, RDAS4, RDAS8
A
TE
ZQCL = ZQ Calibration Long
ZQCS = ZQ Calibration Short
Reading
READ
Writing
WRITE
AD
PDE = Enter Power-down
PDX = Exit Power-down
SRE = Self-Refresh entry
SRX = Self-Refresh exit
READ
WR
WRITE
AD
ITE
RI
Write A = WRA, WRAS4, WRAS8
W
Write = WR, WRS4, WRS8
RE
RE
A
WRITE A
READ A
MPR = Multi-Purpose Register
ITE
A
RE
WR
,P
PR
E
A
Reading
A
RE
EA
PR
Automatic Sequence
Command Sequence
PRE, PREA
E,
PR
Writing
AD
Precharging
Confidential
-5-
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Ball Descriptions
Table 3. Ball Descriptions
Symbol
Type
Description
CK, CK#
Input
Differential Clock: CK and CK# are driven by the system clock. All SDRAM input signals
are sampled on the crossing of positive edge of CK and negative edge of CK#. Output
(Read) data is referenced to the crossings of CK and CK# (both directions of crossing).
CKE
Input
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE goes
LOW synchronously with clock, the internal clock is suspended from the next clock cycle
and the state of output and burst address is frozen as long as the CKE remains LOW.
When all banks are in the idle state, deactivating the clock controls the entry to the Power
Down and Self Refresh modes.
BA0-BA2
Input
Bank Address: BA0-BA2 define to which bank the BankActivate, Read, Write, or Bank
Precharge command is being applied.
A0-A14
Input
Address Inputs: A0-A14 are sampled during the BankActivate command (row address A0A14) and Read/Write command (column address A0-A9 with A10 defining Auto Precharge).
A10/AP
Input
Auto-Precharge: A10 is sampled during Read/Write commands to determine whether
Autoprecharge should be performed to the accessed bank after the Read/Write operation.
(HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge
command to determine whether the Precharge applies to one bank (A10 LOW) or all banks
(A10 HIGH).
A12/BC#
Input
Burst Chop: A12/BC# is sampled during Read and Write commands to determine if burst
chop (on the fly) will be performed. (HIGH - no burst chop; LOW - burst chopped).
CS#
Input
Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the command
decoder. All commands are masked when CS# is sampled HIGH. It is considered part of
the command code.
RAS#
Input
Row Address Strobe: The RAS# signal defines the operation commands in conjunction
with the CAS# and WE# signals and is latched at the crossing of positive edges of CK and
negative edge of CK#. When RAS# and CS# are asserted "LOW" and CAS# is asserted
"HIGH" either the BankActivate command or the Precharge command is selected by the
WE# signal. When the WE# is asserted "HIGH" the BankActivate command is selected and
the bank designated by BA is turned on to the active state. When the WE# is asserted
"LOW" the Precharge command is selected and the bank designated by BA is switched to
the idle state after the precharge operation.
CAS#
Input
Column Address Strobe: The CAS# signal defines the operation commands in
conjunction with the RAS# and WE# signals and is latched at the crossing of positive edges
of CK and negative edge of CK#. When RAS# is held "HIGH" and CS# is asserted "LOW"
the column access is started by asserting CAS# "LOW". Then, the Read or Write command
is selected by asserting WE# “HIGH" or “LOW".
WE#
Input
Write Enable: The WE# signal defines the operation commands in conjunction with the
RAS# and CAS# signals and is latched at the crossing of positive edges of CK and
negative edge of CK#. The WE# input is used to select the BankActivate or Precharge
command and Read or Write command.
DQS,
DQS#
TDQS
TDQS#
DM
Confidential
Input / Bidirectional Data Strobe: Specifies timing for Input and Output data. Read Data Strobe is
edge triggered. Write Data Strobe provides a setup and hold time for data and DM. The
Output
data strobes DOS is paired with DQS# to provide differential pair signaling to the system
during both reads and writes.
Output Termination Data Strobe: When TDQS is enabled, DM is disabled, and the TDQS and
TDQS# balls provide termination resistance.
Input
Data Input Mask: Input data is masked when DM is sampled HIGH during a write cycle.
DM has an optional use as TDQS on the x8.
-6-
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
DQ0 – DQ7
Input / Data I/O: The data bus input and output data are synchronized with positive and negative
Output edges of DQS/DQS#. The I/Os are byte-maskable during Writes.
ODT
Input
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the
DDR3L SDRAM. When enabled, ODT is applied to each DQ, DQS, DQS#, DM/TDQS and
TDQS# signal. (When TDQS is enabled via Mode Register A11=1 in MR1) The ODT pin
will be ignored if Mode-registers, MR1and MR2, are programmed to disable RTT.
RESET#
Input
Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive
when RESET# is HIGH. RESET# must be HIGH during normal operation. RESET# is a
CMOS rail to rail signal with DC high and low at 80% and 20% of VDD
VDD
Supply Power Supply: +1.35V -0.067V/ +0.1V
VSS
Supply Ground
VDDQ
Supply DQ Power: +1.35V -0.067V/ +0.1V
VSSQ
Supply DQ Ground
VREFCA
Supply Reference voltage for CA
VREFDQ
Supply Reference voltage for DQ
ZQ
NC
Confidential
Supply Reference pin for ZQ calibration.
-
No Connect: These pins should be left unconnected.
-7-
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Operation Mode Truth Table
Table 4. Truth Table (Note (1), (2))
Command
BankActivate
Single Bank Precharge
All Banks Precharge
(3)
State CKEn-1 CKEn DM BA0-2 A10/AP A0-9, 11, 13- A12/BC# CS#
RAS# CAS#
WE#
14
Idle(4)
H
H
X
V
Any
H
H
X
V
L
V
Row address
L
L
H
H
V
L
L
H
L
Any
H
H
X
V
H
V
V
L
L
H
L
Write (Fixed BL8 or BC4)
Active(4)
H
H
X
V
L
V
V
L
H
L
L
Write (BC4, on the fly)
Active(4)
H
H
X
V
L
V
L
L
H
L
L
Write (BL8, on the fly)
Active(4)
H
H
X
V
L
V
H
L
H
L
L
Active(4)
H
H
X
V
H
V
V
L
H
L
L
Active(4)
H
H
X
V
H
V
L
L
H
L
L
Active(4)
H
H
X
V
H
V
H
L
H
L
L
Read (Fixed BL8 or BC4)
Active(4)
H
H
X
V
L
V
V
L
H
L
H
Read (BC4, on the fly)
Active(4)
H
H
X
V
L
V
L
L
H
L
H
Read (BL8, on the fly)
Active(4)
H
H
X
V
L
V
H
L
H
L
H
Active(4)
H
H
X
V
H
V
V
L
H
L
H
Active(4)
H
H
X
V
H
V
L
L
H
L
H
Active(4)
H
H
X
V
H
V
H
L
H
L
H
(Extended) Mode Register Set
Idle
H
H
X
V
L
L
L
L
No-Operation
Any
H
H
X
V
V
V
V
L
H
H
H
Device Deselect
Any
H
H
X
X
X
X
X
H
X
X
X
Refresh
Idle
H
H
X
V
V
V
V
L
L
L
H
SelfRefresh Entry
Idle
H
L
X
V
V
V
V
L
L
L
H
SelfRefresh Exit
Idle
L
H
X
X
X
X
X
H
X
X
X
V
V
V
V
L
H
H
H
Power Down Mode Entry
Idle
H
L
X
X
X
X
X
H
X
X
X
V
V
V
V
L
H
H
H
X
X
X
X
H
X
X
X
V
V
V
V
L
H
H
H
Write with Autoprecharge
(Fixed BL8 or BC4)
Write with Autoprecharge
(BC4, on the fly)
Write with Autoprecharge
(BL8, on the fly)
Read with Autoprecharge
(Fixed BL8 or BC4)
Read with Autoprecharge
(BC4, on the fly)
Read with Autoprecharge
(BL8, on the fly)
OP code
Power Down Mode Exit
Any
L
H
X
Data Input Mask Disable
Active
H
X
L
X
X
X
X
X
X
X
X
Data Input Mask
Enable(5)
Active
H
X
H
X
X
X
X
X
X
X
X
ZQ Calibration Long
Idle
H
H
X
X
H
X
X
L
H
H
L
ZQ Calibration Short
Idle
X
L
H
H
L
H
H
X
X
L
X
NOTE 1: V=Valid data, X=Don't Care, L=Low level, H=High level
NOTE 2: CKEn signal is input level when commands are provided.
NOTE 3: CKEn-1 signal is input level one clock cycle before the commands are provided.
NOTE 4: These are states of bank designated by BA signal.
NOTE 5: DM can be enabled respectively.
Confidential
-8-
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
Functional Description
The DDR3L SDRAM is a high-speed dynamic random access memory internally configured as an eight-bank
DRAM. The DDR3L SDRAM uses an 8n prefetch architecture to achieve high speed operation. The 8n Prefetch
architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A
single read or write operation for the DDR3L SDRAM consists of a single 8n-bit wide, four clock data transfer at the
internal DRAM core and two corresponding n-bit wide, one-half clock cycle data transfers at the I/O pins.
Read and write operation to the DDR3L SDRAM are burst oriented, start at a selected location, and continue for a
burst length of eight or a ‘chopped’ burst of four in a programmed sequence. Operation begins with the registration
of an Active command, which is then followed by a Read or Write command. The address bits registered coincident
with the Active command are used to select the bank and row to be activated (BA0-BA2 select the bank; A0-A14
select the row). The address bit registered coincident with the Read or Write command are used to select the
starting column location for the burst operation, determine if the auto precharge command is to be issued (via A10),
and select BC4 or BL8 mode ‘on the fly’ (via A12) if enabled in the mode register.
Prior to normal operation, the DDR3L SDRAM must be powered up and initialized in a predefined manner. The
following sections provide detailed information covering device reset and initialization, register definition, command
descriptions and device operation.
Figure 4. Reset and Initialization Sequence at Power-on Ramping
CK#
Ta
Tb
Tc
Td
Te
Tf
Tg
Th
Ti
Tj
Tk
CK
VDD
VDDQ
tCKSRX
T=200μs
T=500μs
RESET#
Tmin=10ns
tIS
CKE
tDLLK
tIS
COMMAND
Note 1
BA
tXPR
tMRD
tMRD
tMRD
tMOD
MRS
MRS
MRS
MRS
MR2
MR3
MR1
MR0
tZQinit
ZQCL
Note 1
VALID
tIS
ODT
VALID
tIS
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
VALID
RTT
NOTE 1. From time point “ Td” until “ Tk” NOP or DES commands must be applied between MRS and ZQCL commands.
Confidential
-9-
TIME BREAK
Don't Care
Rev.1.0
March 2016
AS4C256M8D3L-12BAN
l Power-up and Initialization
The Following sequence is required for POWER UP and Initialization.
1. Apply power (RESET# is recommended to be maintained below 0.2 x VDD, all other inputs may be undefined).
RESET# needs to be maintained for minimum 200us with stable power. CKE is pulled “Low” anytime before
RESET# being de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDDmin must be
no greater than 200ms; and during the ramp, VDD>VDDQ and (VDD-VDDQ) d!
E=E!
E=JFU!
II!
II!
E=E>