AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
512Mbit Single-Data-Rate (SDR) SDRAM
AS4C32M16SA-7TCN & AS4C32M16SA-7TIN
AS4C32M16SA-7CN & AS4C32M16SA-7IN
32Mx16 (8M x 16 x 4 Banks)
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
REVISION HISTORY
Rev. 1.0 March 2012
initial version
Rev. 1.1 April 2012
Revised Operating-; Standby- and Refresh Currents
Rev. 2.0 February 2014
Die Shrink – A revision
ZĞǀ͘ϯ͘ϬƉƌŝůϮϬϭϱ
ĚĚ'ŽƉƚŝŽŶ
Rev. 4.0 March 2016
Correcting errors:
Page 3 transfer rates up to 166 MHz ===> transfer rates up to 143MHz
Page 4 data transfer rates up to 166 MHz =====> data transfer rates up to 143 MHz
data rate of up to 166 MHz=========>data rate of upto 143 MHz
Page 5 - pin labelling errors
I/O1 ==> DQ0
I/O16 ==> DQ15
Page 6 = pin labelling errors
VDD===> VCC
VDDQ===> VCCQ
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Overview
This section gives an overview of the 512M SDRAM product and describes its main characteristics.
Features
4 banks x 8Mbit x 16 organization
High speed data transfer rates up to 143 MHz
Full Synchronous Dynamic RAM, with all signals referenced to clock rising edge
Single Pulsed RAS Interface
Data Mask for Read/Write Control
Four Banks controlled by BA0 & BA1
Programmable CAS Latency: 2, 3
Programmable Wrap Sequence: Sequential or Interleave
Programmable Burst Length:
1, 2, 4, 8 and full page for Sequential Type 1, 2, 4, 8 for Interleave Type
Multiple Burst Read with Single Write Operation
Automatic and Controlled Pre-charge Command
Random Column Address every CLK (1-N Rule)
Power Down Mode
Auto Refresh and Self Refresh
Refresh Interval: 8192 cycles/64 ms
Available in 54 Pin TSOP II
Available in 54 Ăůů&' II
LVTTL Interface
Single +3.3 V ±0.3 V Power Supply
ROHS Compliant*
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Table 1 - Performance Table
-7
6\VWHP)UHTXHQF\I&.
0+]
&ORFN&\FOH7LPHW&.
QV
&ORFN$FFHVV7LPHW$&&$6/DWHQF\
QV
&ORFN$FFHVV7LPHW$&&$6/DWHQF\
QV
Description
The AS4C32M16SA is a four bank Synchronous DRAM organized as 4 banks x 8Mbit x 16. The
AS4C32M16SA achieves high speed data transfer rates up to 143 MHz by employing a chip
architecture that prefetches multiple bits and then synchronizes the output data to a system clock.
All of the control, address, data input and output circuits are synchronized with the positive edge of
an externally supplied clock.
Operating the four memory banks in an inter-leaved fashion allows random access operation to
occur at higher rate than is possible with standard DRAMs. A sequential and gapless data rate of up
to 143 MHz is possible depending on burst length, CAS latency and speed grade of the device.
Table 2 – Ordering Information for ROHS Compliant Products
Product part No
Org
Temperature
Max Clock (MHz)
Package
AS4C32M16SA-7TCN
32M x 16
Commercial
0¡C to 70¡C
143
54pin TSOP II
AS4C32M16SA-7TIN
32M x 16
Industrial
-40¡C to 85¡C
143
54pin TSOP II
AS4C32M16SA-7BCN
32M x 16
Commercial
0¡C to 70¡C
143
54 Ball FBGA
AS4C32M16SA-7BIN
32M x 16
Industrial
-40¡C to 85¡C
143
54 Ball FBGA
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
3LQ3ODVWLF7623,,
[3,1&21),*85$7,21
7RS9LHZ
VCC
DQ0
VCCQ
DQ1
DQ2
VSSQ
DQ3
DQ4
VCCQ
DQ5
DQ6
VSSQ
DQ7
VCC
LDQM
WE
CAS
RAS
CS
BA0
BA1
A10
A0
A1
A2
A3
VCC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
3LQ1DPHV
VSS
DQ15
VSSQ
DQ14
DQ13
VCCQ
DQ12
DQ11
VSSQ
DQ10
DQ9
VCCQ
DQ8
VSS
NC
UDQM
CLK
CKE
A12
A11
A9
A8
A7
A6
A5
A4
VSS
CLK
Clock Input
CKE
Clock Enable
CS
Chip Select
RAS
Row Address Strobe
CAS
Column Address Strobe
WE
Write Enable
A0–A12
Address Inputs
BA0, BA1
Bank Select
DQ0–DQ15
Data Input/Output
LDQM, UDQM
Data Mask
VCC
Power (+3.0V~3.3V)
VSS
Ground
VCCQ
Power for I/O’s (+3.0V~3.3V)
VSSQ
Ground for I/O’s
NC
Not connected
356164V-01
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
%$//)%*$
[3,1&21),*85$7,21
7RS9LHZ
3LQ1DPHV
configuration for x 16 devices:
1
VSS
2
3
7
8
9
CLK
Clock Input
CKE
Clock Enable
CS
Chip Select
RAS
Row Address Strobe
CAS
Column Address Strobe
WE
Write Enable
DQ15 VSSQ
A
VCCQ
DQ14 DQ13 VCCQ
B
VSSQ DQ2 DQ1
A0–A12
Address Inputs
DQ12 DQ11 VSSQ
C
VCCQ DQ4
BA0, BA1
Bank Select
DQ10
D
VSSQ DQ6 DQ5
DQ0–DQ15
Data Input/Output
VSS
E
VCC LDQM DQ7
LDQM, UDQM
Data Mask
CKE
F
CAS
RAS
WE
VCC
Power (+3.0V~3.3V)
VSS
Ground
VCCQ
Power for I/O’s (+3.0V~3.3V)
VSSQ
Ground for I/O’s
NC
Not connected
DQ8
DQ9 VCCQ
NC
UDQM CLK
DQ0 VCC
DQ3
A12
A11
A9
G
BA0
BA1
C S
A8
A7
A6
H
A0
A1
A10
VSS
A5
A4
J
A3
A2
VCC
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
&DSDFLWDQFH
$EVROXWH0D[LPXP5DWLQJV
(at Ta=0 to 25 °C, VCC = VCCQ = 3.3 V ± 0.3 V)
Operating temperature range..........0 to 70 °C for normal
-40 to 85 °C for Industrial
Storage temperature range .........................-55 to 150 °C
Input/output voltage ........................... -0.3 to (VCC+0.3) V
Power supply voltage ................................... -0.3 to 4.6 V
Power dissipation ...................................................... 1 W
Data out current (short circuit) ............................... 50 mA
3DUDPHWHU
6\PERO 0LQ 0D[ 8QLW
Input Capacitance: CLK
CCLK
Input Capacitance: All other input CIN
pins and balls
Input/output Capacitance: DQ
CIO
4.5
6
pF
2.5
6
pF
4
6
pF
1RWH
*1RWHCapacitance is sampled and not 100% tested.
Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage of the device.
Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
%ORFN'LDJUDP
[&RQILJXUDWLRQ
Row Addresses
Column Addresses
A0 - A9, AP, BA0, BA1
Row address
buffer
Column address
buffer
Refresh Counter
Row decoder
Row decoder
Memory array
Memory array
Memory array
Memory array
Bank 0
8192 x 1024
x 16 bit
Bank 1
8192 x 1024
x16 bit
Input buffer
Column decoder
Sense amplifier & I(O) bus
Row decoder
Column decoder
Sense amplifier & I(O) bus
Row decoder
Column decoder
Sense amplifier & I(O) bus
Column decoder
Sense amplifier & I(O) bus
Column address
counter
A0 - A12, BA0, BA1
Bank 2
8192 x 1024
x 16 bit
Output buffer
Bank 3
8192 x 1024
x 16 bit
Control logic & timing generator
UDQM
LDQM
WE
CAS
RAS
CS
CKE
CLK
DQ0 - DQ15
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
6LJQDO3LQ'HVFULSWLRQ
3LQ
7\SH
6LJQDO
3RODULW\
)XQFWLRQ
CLK
Input
Pulse
Positive
Edge
The system clock input. All of the SDRAM inputs are sampled on the rising edge of the
clock.
CKE
Input
Level
Active High Activates the CLK signal when high and deactivates the CLK signal when low, thereby
initiates either the Power Down mode or the Self Refresh mode.
CS
Input
Pulse
Active Low CS enables the command decoder when low and disables the command decoder when
high. When the command decoder is disabled, new commands are ignored but previous
operations continue.
RAS, CAS
WE
Input
Pulse
Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the
command to be executed by the SDRAM.
A0 - A12
Input
Level
—
During a Bank Activate command cycle, A0-A12 defines the row address (RA0-RA12)
when sampled at the rising clock edge.
During a Read or Write command cycle, A0-An defines the column address (CA0-CAn)
when sampled at the rising clock edge.CAn depends from the SDRAM organization:
• 64M x 8 SDRAM CA0–CA9, CA11.
• 32M x 16 SDRAM CA0–CA9.
In addition to the column address, A10(=AP) is used to invoke autoprecharge operation
at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and
BA0, BA1 defines the bank to be precharged. If A10 is low, autoprecharge is disabled.
During a Precharge command cycle, A10(=AP) is used in conjunction with BA0 and BA1
to control which bank(s) to precharge. If A10 is high, all four banks will BA0 and BA1 are
used to define which bank to precharge.
BA0,
BA1
Input
Level
—
Selects which bank is to be active.
DQx
Input
Output
Level
—
Data Input/Output pins operate in the same manner as on conventional DRAMs.
LDQM
UDQM
Input
Pulse
VCC, VSS
Supply
VCCQ
VSSQ
Supply
Active High The Data Input/Output mask places the DQ buffers in a high impedance state when sampled high. In Read mode, DQM has a latency of two clock cycles and controls the output
buffers like an output enable. In Write mode, DQM has a latency of zero and operates as
a word mask by allowing input data to be written if it is low but blocks the write operation
if DQM is high.
Power and ground for the input buffers and the core logic.
—
—
Isolated power supply and ground for the output buffers to provide improved noise
immunity.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
2SHUDWLRQ'HILQLWLRQ
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at the
positive edge of the clock. The following list shows the thruth table for the operation commands.
2SHUDWLRQ
Row Activate
'HYLFH
6WDWH
&.(
Q
&.(
Q
&6
5$6
&$6
:(
Idle3
$
$
'40 $ $
%6
%6
H
X
L
L
H
H
X
V
V
V
3
H
X
L
H
L
H
X
V
L
V
Read w/Autoprecharge
Active
3
H
X
L
H
L
H
X
V
H
V
Write
Active3
H
X
L
H
L
L
X
V
L
V
Write with Autoprecharge
Active3
H
X
L
H
L
L
X
V
H
V
Row Precharge
Any
H
X
L
L
H
L
X
X
L
V
Precharge All
Any
H
X
L
L
H
L
X
X
H
X
Mode Register Set
Idle
H
X
L
L
L
L
X
V
V
V
No Operation
Any
H
X
L
H
H
H
X
X
X
X
Device Deselect
Any
H
X
H
X
X
X
X
X
X
X
Auto Refresh
Idle
H
H
L
L
L
H
X
X
X
X
Self Refresh Entry
Idle
H
L
L
L
L
H
X
X
X
X
Idle
(Self Refr.)
H
X
X
X
L
H
L
H
H
X
X
X
X
X
Idle
Active4
H
X
X
X
H
L
L
H
H
X
X
X
X
X
Any
(Power
Down)
H
X
X
X
L
H
L
H
H
L
X
X
X
X
Data Write/Output Enable
Active
H
X
X
X
X
X
L
X
X
X
Data Write/Output Disable
Active
H
X
X
X
X
X
H
X
X
X
Read
Self Refresh Exit
Power Down Entry
Power Down Exit
Active
1RWHV
1. V = Valid , x = Don’t Care, L = Low Level, H = High Level
2. CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock before the commands
are provided.
3. These are state of bank designated by BS0, BS1 signals.
4. Power Down Mode can not entry in the burst cycle.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Power On and Initialization
7KHGHIDXOWSRZHURQVWDWHRIWKHPRGHUHJLVWHULVVXSSOLHUVSHFLILFDQGPD\EHXQGHILQHG7KHIROORZLQJSRZHURQDQG
LQLWLDOL]DWLRQVHTXHQFHJXDUDQWHHVWKHGHYLFHLVSUHFRQGLWLRQHGWRHDFKXVHU¶VVSHFLILFQHHGV/LNHDFRQYHQWLRQDO'5$0
WKH 6\QFKURQRXV '5$0 PXVW EH SRZHUHG XS DQG LQLWLDOL]HG LQ D SUHGHILQHG PDQQHU 'XULQJ SRZHU RQ DOO 9&& DQG
9&&4SLQVPXVWEHEXLOWXSVLPXOWDQHRXVO\WRWKHVSHFLILHGYROWDJHZKHQWKHLQSXWVLJQDOVDUHKHOGLQWKH³123´VWDWH
7KH SRZHURQ YROWDJH PXVW QRW H[FHHG 9&&9 RQ DQ\ RI WKH LQSXW SLQV RU9&&VXSSOLHV 7KH &/. VLJQDOPXVW EH
VWDUWHGDWWKHVDPHWLPH$IWHUSRZHURQDQLQLWLDOSDXVHRIPVLVUHTXLUHGIROORZHGE\DSUHFKDUJHRIERWKEDQNV
XVLQJWKHSUHFKDUJHFRPPDQG7RSUHYHQWGDWDFRQWHQWLRQRQWKH'4EXVGXULQJSRZHURQLWLVUHTXLUHGWKDWWKH'40
DQG&.(SLQVEHKHOGKLJKGXULQJWKHLQLWLDOSDXVHSHULRG2QFHDOOEDQNVKDYHEHHQSUHFKDUJHGWKH0RGH5HJLVWHU6HW
&RPPDQG PXVW EH LVVXHG WR LQLWLDOL]H WKH 0RGH 5HJLVWHU $ PLQLPXP RI WZR $XWR 5HIUHVK F\FOHV &%5 DUH DOVR
UHTXLUHG7KHVHPD\EHGRQHEHIRUHRUDIWHUSURJUDPPLQJWKH0RGH5HJLVWHU)DLOXUHWRIROORZWKHVHVWHSVPD\OHDGWR
XQSUHGLFWDEOHVWDUWXSPRGHV
Programming the Mode Register
7KH 0RGH UHJLVWHU GHVLJQDWHV WKH RSHUDWLRQ PRGH DW WKH UHDG RU ZULWH F\FOH 7KLV UHJLVWHU LV GLYLGHG LQWR ILHOGV $
%XUVW/HQJWK)LHOGWRVHWWKHOHQJWKRIWKHEXUVWDQ$GGUHVVLQJ6HOHFWLRQELWWRSURJUDPWKHFROXPQDFFHVVVHTXHQFHLQD
EXUVWF\FOHLQWHUOHDYHGRUVHTXHQWLDOD&$6/DWHQF\)LHOGWRVHWWKHDFFHVVWLPHDWFORFNF\FOHDQGD2SHUDWLRQPRGH
ILHOG WR GLIIHUHQWLDWH EHWZHHQ QRUPDO RSHUDWLRQ %XUVW UHDG DQG EXUVW:ULWHDQG D VSHFLDO %XUVW 5HDG DQG6LQJOH:ULWH
PRGH7KHPRGHVHWRSHUDWLRQPXVWEHGRQHEHIRUHDQ\DFWLYDWHFRPPDQGDIWHUWKHLQLWLDOSRZHUXS$Q\FRQWHQWRIWKH
PRGHUHJLVWHUFDQEHDOWHUHGE\UHH[HFXWLQJWKH PRGHVHWFRPPDQG$OOEDQNVPXVWEHLQSUHFKDUJHGVWDWHDQG&.(
PXVW EH KLJK DW OHDVW RQH FORFN EHIRUH WKH PRGH VHW RSHUDWLRQ $IWHU WKH PRGH UHJLVWHU LV VHW D 6WDQGE\ RU 123
FRPPDQG LV UHTXLUHG /RZ VLJQDOV RI 5$6 &$6 DQG :( DW WKH SRVLWLYH HGJH RI WKH FORFN DFWLYDWH WKH PRGH VHW
RSHUDWLRQ$GGUHVVLQSXWGDWDDWWKLVWLPLQJGHILQHVSDUDPHWHUVWREHVHWDVVKRZQLQWKHSUHYLRXVWDEOH
Read and Write Operation
:KHQ5$6LVORZDQGERWK&$6DQG:(DUHKLJKDWWKHSRVLWLYHHGJHRIWKHFORFND5$6F\FOHVWDUWV $FFRUGLQJWR
DGGUHVVGDWDDZRUGOLQHRIWKHVHOHFWHGEDQNLVDFWLYDWHGDQGDOORIVHQVHDPSOLILHUVDVVRFLDWHGWRWKHZRUGOLQHDUHVHW
$&$6F\FOHLVWULJJHUHGE\VHWWLQJ5$6KLJKDQG&$6ORZDWDFORFNWLPLQJDIWHUDQHFHVVDU\GHOD\W5&'IURPWKH5$6
WLPLQJ:(LVXVHGWRGHILQHHLWKHUDUHDG:( +RUDZULWH:( /DWWKLVVWDJH
6'5$0SURYLGHVDZLGHYDULHW\RIIDVWDFFHVVPRGHV,QDVLQJOH&$6F\FOHVHULDOGDWDUHDGRUZULWHRSHUDWLRQVDUH
DOORZHGDWXSWRD0+]GDWDUDWH7KHQXPEHUVRIVHULDOGDWDELWVDUHWKHEXUVWOHQJWKSURJUDPPHGDWWKHPRGHVHW
RSHUDWLRQ LH RQH RI DQG IXOO SDJH &ROXPQ DGGUHVVHV DUH VHJPHQWHG E\ WKH EXUVW OHQJWK DQG VHULDO GDWD
DFFHVVHVDUHGRQHZLWKLQWKLVERXQGDU\7KHILUVWFROXPQDGGUHVVWREHDFFHVVHGLVVXSSOLHGDWWKH&$6WLPLQJDQGWKH
VXEVHTXHQWDGGUHVVHVDUHJHQHUDWHGDXWRPDWLFDOO\E\WKHSURJUDPPHGEXUVWOHQJWKDQGLWVVHTXHQFH)RUH[DPSOHLQD
EXUVWOHQJWKRIZLWKLQWHUOHDYHVHTXHQFHLIWKHILUVWDGGUHVVLVµ¶WKHQWKHUHVWRIWKHEXUVWVHTXHQFHLV
DQG
)XOO SDJH EXUVW RSHUDWLRQ LV RQO\ SRVVLEOH XVLQJ VHTXHQWLDO EXUVW W\SH )XOO 3DJH EXUVW RSHUDWLRQ GRHV QRW WHUPLQDWH
RQFHWKHEXUVWOHQJWKKDVEHHQUHDFKHG$WWKHHQGRIWKHSDJHLWZLOOZUDSWRWKHVWDUWDGGUHVVDQGFRQWLQXH,QRWKHU
ZRUGV XQOLNH EXUVW OHQJWK RI DQG IXOO SDJH EXUVW FRQWLQXHV XQWLO LW LV WHUPLQDWHG XVLQJ DQRWKHU FRPPDQG
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$GGUHVV,QSXWIRU0RGH6HW0RGH5HJLVWHU2SHUDWLRQ
BA1 BA0 A11-12 A10 A9
A8
Operation Mode
A7
A6
A5
A4
A3
A2
CAS Latency
BT
Burst Length
0
0
0
0
Address Bus (Ax)
Mode Register
Mode
A3
Type
0
Burst Read/Burst
Write
0
Sequential
1
Interleave
0
Burst Read/Single
Write
BA1 BA0 A11-12 A10 A9 A8 A7
0
A0
%XUVW7\SH
2SHUDWLRQ0RGH
0
A1
0
0
0
1
0
0
&$6/DWHQF\
A6
A5
A4
Latency
0
0
0
Reserve
0
0
1
Reserve
0
1
0
0
1
1
%XUVW/HQJWK
Length
A2
A1
A0
Sequential
Interleave
0
0
0
1
1
2
0
0
1
2
2
3
0
1
0
4
4
1
1
8
8
1
0
0
Reserve
0
1
0
1
Reserve
1
0
0
Reserve
Reserve
1
1
0
Reserve
1
0
1
Reserve
Reserve
1
1
1
Reserve
1
1
0
Reserve
Reserve
1
1
1
Full Page
Reserve
6LPLODUWRWKHSDJHPRGHRIFRQYHQWLRQDO'5$0¶VEXUVWUHDGRUZULWHDFFHVVHVRQDQ\FROXPQDGGUHVV
DUHSRVVLEOHRQFHWKH5$6F\FOHODWFKHVWKHVHQVHDPSOLILHUV7KHPD[LPXPW 5$6RUWKHUHIUHVKLQWHUYDO
WLPH OLPLWV WKH QXPEHU RI UDQGRP FROXPQ DFFHVVHV $ QHZ EXUVW DFFHVV FDQ EH GRQH HYHQ EHIRUH WKH
SUHYLRXVEXUVWHQGV7KHLQWHUUXSWRSHUDWLRQDWHYHU\FORFNF\FOHVLVVXSSRUWHG:KHQWKHSUHYLRXVEXUVWLV
LQWHUUXSWHG WKH UHPDLQLQJ DGGUHVVHV DUH RYHUULGGHQ E\ WKH QHZ DGGUHVV ZLWK WKH IXOO EXUVW OHQJWK $Q
LQWHUUXSW ZKLFK DFFRPSDQLHV ZLWK DQ RSHUDWLRQ FKDQJH IURP D UHDG WR D ZULWH LV SRVVLEOH E\ H[SORLWLQJ
'40WRDYRLGEXVFRQWHQWLRQ
:KHQWZRRUPRUHEDQNVDUHDFWLYDWHGVHTXHQWLDOO\LQWHUOHDYHGEDQNUHDGRUZULWHRSHUDWLRQVDUHSRVVLEOH
:LWKWKHSURJUDPPHGEXUVWOHQJWKDOWHUQDWHDFFHVVDQGSUHFKDUJHRSHUDWLRQVRQWZRRUPRUHEDQNVFDQ
UHDOL]HIDVWVHULDOGDWDDFFHVVPRGHVDPRQJPDQ\GLIIHUHQWSDJHV2QFHWZRRUPRUHEDQNVDUHDFWLYDWHG
FROXPQWRFROXPQLQWHUOHDYHRSHUDWLRQFDQEHGRQHEHWZHHQGLIIHUHQWSDJHV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
%XUVW/HQJWKDQG6HTXHQFH
%XUVW
/HQJWK
6WDUWLQJ
$GGUHVV
$$$
6HTXHQWLDO%XUVW
$GGUHVVLQJ
GHFLPDO
,QWHUOHDYH%XUVW
$GGUHVVLQJ
GHFLPDO
2
xx0
xx1
0, 1
1, 0
0, 1
1, 0
4
x00
x01
x10
x11
0, 1, 2, 3
1, 2, 3, 0
2, 3, 0, 1
3, 0, 1, 2
0, 1, 2, 3
1, 0, 3, 2
2, 3, 0, 1
3, 2, 1, 0
8
000
001
010
011
100
101
110
111
Full Page
nnn
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
Cn, Cn+1, Cn+2....
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
not supported
5HIUHVK0RGH
SDRAM has two refresh modes, Auto Refresh and Self Refresh. Auto Refresh is similar to the CAS -beforeRAS refresh of conventional DRAMs. All of banks must be precharged before applying any refresh mode. An
on-chip address counter increments the word and the bank addresses and no bank information is required
for both refresh modes.
The chip enters the Auto Refresh mode, when RAS and CAS are held low and CKE and WE are held high
at a clock timing. The mode restores word line after the refresh and no external precharge command is necessary. A minimum tRC time is required between two automatic refreshes in a burst refresh mode. The same
rule applies to any access command after the automatic refresh operation.
The chip has an on-chip timer and the Self Refresh mode is available. It enters the mode when RAS, CAS,
and CKE are low and WE is high at a clock timing. All of external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one tRC delay is required prior to any access command.
'40)XQFWLRQ
DQM has two functions for data I/O read and write operations. During reads, when it turns to “high” at a
clock timing, data outputs are disabled and become high impedance after two clock delay (DQM Data Disable
Latency tDQZ ). It also provides a data mask function for writes. When DQM is activated, the write operation
at the next clock is prohibited (DQM Write Mask Latency tDQW = zero clocks).
3RZHU'RZQ
In order to reduce standby power consumption, a power down mode is available. All banks must be precharged and the necessary Precharge delay (trp) must occur before the SDRAM can enter the Power Down
mode. Once the Power Down mode is initiated by holding CKE low, all of the receiver circuits except CLK
and CKE are gated off. The Power Down mode does not perform any refresh operations, therefore the device
can’t remain in Power Down mode longer than the Refresh period (tref) of the device. Exit from this mode is
performed by taking CKE “high”. One clock delay is required for mode entry and exit.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$XWR3UHFKDUJH
Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS timing accepts one extra address, CA10, to determine whether the chip restores or not after the operation. If CA10 is
high when a Read Command is issued, the 5HDGZLWK$XWR3UHFKDUJH function is initiated. The SDRAM
automatically enters the precharge operation one clock before the last data out for CAS latencies 2, two
clocks for CAS latencies 3 and three clocks for CAS latencies 4. If CA10 is high when a Write Command is
issued, the :ULWHZLWK$XWR3UHFKDUJH function is initiated. The SDRAM automatically enters the precharge
operation a time delay equal to tWR (Write recovery time) after the last data in. $XWR3UHFKDUJH does not
apply to full-page burst mode.
3UHFKDUJH&RPPDQG
There is also a separate precharge command available. When RAS and WE are low and CAS is high at a
clock timing, it triggers the precharge operation. Three address bits, BA0, BA1 and A10 are used to define
banks as shown in the following list. The precharge command can be imposed one clock before the last data
out for CAS latency = 2, two clocks before the last data out for CAS latency = 3. Writes require a time delay
twr from the last data out to apply the precharge command. A full-page burst may be truncated with a Precharge command to the same bank.
Bank Selection by Address Bits:
A10
BA0 BA1
0
0
0
Bank 0
0
0
1
Bank 1
0
1
0
Bank 2
0
1
1
Bank 3
1
X
X
all Banks
%XUVW7HUPLQDWLRQ
Once a burst read or write operation has been initiated, there are several methods in which to terminate
the burst operation prematurely. These methods include using another Read or Write Command to interrupt
an existing burst operation, use a Precharge Command to interrupt a burst cycle and close the active bank,
or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future
Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read
or Write Command care must be taken to avoid I/O contention. The Burst Stop Command, however, has the
fewest restrictions making it the easiest method to use when terminating a burst operation before it has been
completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the
burst write cycle will be ignored. Data that is presented on the I/O pins before the Burst Stop Command is
registered will be written to the memory. The full-page burst is used in conjunction with Burst Terminate Command to generate arbitrary burst lengths.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Recommended Operation and Characteristics for LV-TTL
966 99&&9&&4 99
Limit Values
Parameter
min.
max.
Unit
Notes
,+
9FF
9
,/
±
9
2+
±
9
2/
±
9
Symbol
9
,QSXWKLJKYROWDJH
9
,QSXWORZYROWDJH
9
2XWSXWKLJKYROWDJH,287 ±P$
9
2XWSXWORZYROWDJH,287 P$
,QSXWOHDNDJHFXUUHQWDQ\LQSXW
99,19DOORWKHULQSXWV 9
,
±
X$
2XWSXWOHDNDJHFXUUHQW
'4LVGLVDEOHG992879&&
,
±
X$
,/
2/
Note:
$OOYROWDJHVDUHUHIHUHQFHGWR966
9,+PD\RYHUVKRRWWR9&&9IRUSXOVHZLGWKRIQVZLWK99,/PD\XQGHUVKRRWWR9IRUSXOVHZLGWK
QVZLWK93XOVHZLGWKPHDVXUHGDWSRLQWVZLWKDPSOLWXGHPHDVXUHGSHDNWR'&UHIHUHQFH
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Operating Currents
9&& 995HFRPPHQGHG2SHUDWLQJ&RQGLWLRQVXQOHVVRWKHUZLVHQRWHG
Max.
Symbol
,&&
Parameter & Test Condition
2SHUDWLQJ&XUUHQW
W
5&
W
5&0,1
W
5&
W
&.0,1
-7
,&&36
,&&1
,&&16
,&&1
,&&3
3UHFKDUJH6WDQGE\&XUUHQW
LQ3RZHU'RZQ0RGH
&6 9,+&.(9,/PD[
3UHFKDUJH6WDQGE\&XUUHQW
LQ1RQ3RZHU'RZQ0RGH
&6 9,+&.(9,/PD[
1R2SHUDWLQJ&XUUHQW
W&. PLQ&6 9,+PLQ
EDQNDFWLYHVWDWHEDQNV
Note
P$
P$
P$
EDQNRSHUDWLRQ
$FWLYHSUHFKDUJHFRPPDQGF\FOLQJZLWKRXW
%XUVW2SHUDWLRQ
,&&3
Unit
W&. PLQ
W&. ,QILQLW\
W&. PLQ
W&. ,QILQLW\
&.( 9,+0,1
P$
&.( 9,/0$;
P$
3RZHUGRZQPRGH
,&&
%XUVW2SHUDWLQJ&XUUHQW
W&. PLQ
5HDG:ULWHFRPPDQGF\FOLQJ
,&&
$XWR5HIUHVK&XUUHQW
W&. PLQ
$XWR5HIUHVKFRPPDQGF\FOLQJ
,&&
6HOI5HIUHVK&XUUHQW
6HOI5HIUHVK0RGH&.(9
P$
P$
P$
P$
P$
Notes:
7KHVHSDUDPHWHUVGHSHQGRQWKHF\FOHUDWHDQGWKHVHYDOXHVDUHPHDVXUHGE\WKHF\FOHUDWHXQGHUWKHPLQLPXP
YDOXHRIW&. DQGW5&,QSXWVLJQDOV DUH FKDQJHG RQH WLPHGXULQJW &.
7KHVHSDUDPHWHUGHSHQGRQRXWSXWORDGLQJ6SHFLILHGYDOXHVDUHREWDLQHGZLWKRXWSXWRSHQ
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
AC Characteristics
966 99&& 99W7 QV
Limit Values
-7
#
Symbol
Unit
Min.
Max.
&$6/DWHQF\
±
QV
&$6/DWHQF\
±
QV
&$6/DWHQF\
±
0+]
&$6/DWHQF\
±
0+=
Parameter
Note
Clock and Clock Enable
W
&.
W
&.
W
$&
W
$FFHVV7LPHIURP&ORFN
&$6/DWHQF\
±
QV
&$6/DWHQF\
±
QV
&ORFN+LJK3XOVH:LGWK
±
QV
&/
&ORFN/RZ3XOVH:LGWK
±
QV
7
7UDQVLWLRQ7LPH
QV
W
&ORFN)UHTXHQF\
&+
W
&ORFN&\FOH7LPH
Setup and Hold Times
W
,6
,QSXW6HWXS7LPH
±
QV
,+
,QSXW+ROG7LPH
±
QV
&.6
&.(6HWXS7LPH
±
QV
&.+
&.(+ROG7LPH
±
QV
05'
0RGH5HJLVWHU6HW&RPPDQG&\FOH7LPH
±
&/.
6%
3RZHU'RZQ0RGH(QWU\7LPH
QV
'6
'DWDLQ6HWXS7LPH
±
QV
'+
'DWDLQ+ROG7LPH
±
QV
W
W
W
W
W
W
W
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Common Parameters
W
5RZWR&ROXPQ'HOD\7LPH
±
QV
5RZ3UHFKDUJH7LPH
±
QV
5$6
5RZ$FWLYH7LPH
.
QV
5&
5RZ&\FOH7LPH
±
QV
55'
$FWLYDWHDWR$FWLYDWHE&RPPDQG3HULRG
±
QV
&&'
&$6DWR&$6E&RPPDQG3HULRG
±
&/.
'3/
'DWDLQWR3UHFKDUJH&RPPDQGIRU0DQXDOSUHFKDUJH
±
&/.
5HIUHVK3HULRGF\FOHV
²
PV
6HOI5HIUHVK([LW7LPH
²
&/.
5&'
W
W
53
W
W
W
W
Refresh Cycle
W
W
5()
65(;
Read Cycle
Limit Values
-7
#
Symbol
W
2+
'DWD2XW+ROG7LPH
/=
+=
W
W
W
Parameter
'4=
Min. Max.
Unit
Note
±
QV
'DWD2XWWR/RZ,PSHGDQFH7LPH
±
QV
'DWD2XWWR+LJK,PSHGDQFH7LPH
QV
'40'DWD2XW'LVDEOH/DWHQF\
±
&/.
:ULWH5HFRYHU\7LPHIRU$XWRSUHFKDUJH
±
&/.
'40:ULWH0DVN/DWHQF\
±
&/.
Write Cycle
W
W
:5
'4:
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Notes for AC Parameters:
)RUSURSHUSRZHUXSVHHWKHRSHUDWLRQVHFWLRQRIWKLVGDWDVKHHW
$&WLPLQJWHVWVKDYH9,/ 9DQG9,+ 9ZLWKWKHWLPLQJUHIHUHQFHGWRWKH9FURVVRYHUSRLQW7KH
WUDQVLWLRQWLPHLVPHDVXUHGEHWZHHQ9,+DQG9,/$OO$&PHDVXUHPHQWVDVVXPHW7 QVZLWKWKH$&RXWSXW
ORDGFLUFXLWVKRZQLQ)LJXUH
W&.
9,+
&/.
9
9,/
W,6
W7
W,+
2KP
9
&200$1'
= 2KP
W$&
W/=
,2
W$&
S)
W2+
9
287387
W+=
Figure 1.
,IFORFNULVLQJWLPHLVORQJHUWKDQQVDWLPHW7±QVKDVWREHDGGHGWRWKLVSDUDPHWHU
,IW7LVORQJHUWKDQQVDWLPHW7±QVKDVWREHDGGHGWRWKLVSDUDPHWHU
7KHVH SDUDPHWHU DFFRXQW IRU WKH QXPEHU RI FORFN F\FOH DQG GHSHQG RQ WKH RSHUDWLQJ IUHTXHQF\ RI WKH
FORFNDVIROORZV
the number of clock cycle = specified value of timing period (counted in fractions as a whole number)
6HOI5HIUHVK([LWLVDV\QFKURQRXVRSHUDWLRQDQGEHJLQVRQWKHQGSRVLWLYHFORFNHGJHDIWHU&.(UHWXUQV
KLJK 6HOI 5HIUHVK ([LW LV QRW FRPSOHWH XQWLO D WLPH SHULRG HTXDO WR W5& LV VDWLVILHG RQFH WKH 6HOI 5HIUHVK ([LW
FRPPDQGLVUHJLVWHUHG
5HIHUHQFHG WR WKH WLPH ZKLFK WKH RXWSXW DFKLHYHV WKH RSHQ FLUFXLW FRQGLWLRQ QRW WR RXWSXW YROWDJH OHYHOV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
7LPLQJ'LDJUDPV
1. Bank Activate Command Cycle
2. Burst Read Operation
3. Read Interrupted by a Read
4. Read to Write Interval
4.1 Read to Write Interval
4.2 Minimum Read to Write Interval
4.3 Non-Minimum Read to Write Interval
5. Burst Write Operation
6. Write and Read Interrupt
6.1 Write Interrupted by a Write
6.2 Write Interrupted by Read
7. Burst Write & Read with Auto-Precharge
7.1 Burst Write with Auto-Precharge
7.2 Burst Read with Auto-Precharge
8. Burst Termination
8.1 Termination of a Burst Write Operation
8.2 Termination of a Burst Write Operation
9. AC- Parameters
9.1 AC Parameters for a Write Timing
9.2 AC Parameters for a Read Timing
10. Mode Register Set
11. Power on Sequence and Auto Refresh (CBR)
12. Power Down Mode
13. Self Refresh (Entry and Exit)
14. Auto Refresh (CBR)
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
7LPLQJ'LDJUDPV(Cont’d)
15. Random Column Read ( Page within same Bank)
15.1 CAS Latency = 2
15.2 CAS Latency = 3
16. Random Column Write ( Page within same Bank)
16.1 CAS Latency = 2
16.2 CAS Latency = 3
17. Random Row Read ( Interleaving Banks) with Precharge
17.1 CAS Latency = 2
17.2 CAS Latency = 3
18. Random Row Write ( Interleaving Banks) with Precharge
18.1 CAS Latency = 2
18.2 CAS Latency = 3
19. Precharge Termination of a Burst
19.1 CAS Latency = 2
19.2 CAS Latency = 3
20. Full Page Burst Operation
20.1 Full Page Burst Read, CAS Latency = 2
20.2 Full Page Burst Read, CAS Latency = 3
21. Full Page Burst Operation
21.1 Full Page Burst Write, CAS Latency = 2
21.2 Full Page Burst Write, CAS Latency = 3
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
%DQN$FWLYDWH&RPPDQG&\FOH
&$6ODWHQF\
T0
T1
T
T
T
CLK
T
T
..........
ADDRESS
Bank A
Col. Addr.
Bank A
Row Addr.
Bank A
Row Addr.
Bank B
Row Addr.
..........
tRCD
COMMAND
Bank A
Activate
tRRD
NOP
Write A
with Auto
Precharge
NOP
: “H” or “L”
Bank B
Activate
..........
Bank A
Activate
NOP
tRC
%XUVW5HDG2SHUDWLRQ
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
COMMAND
CAS latency = 2
tCK2, I/O’s
CAS latency = 3
tCK3, I/O’s
READ A
NOP
NOP
DOUT A0
NOP
NOP
DOUT A1
DOUT A0
DOUT A2
DOUT A1
NOP
NOP
NOP
NOP
DOUT A3
DOUT A2
DOUT A3
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
5HDG,QWHUUXSWHGE\D5HDG
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
tCCD
COMMAND
READ A
READ B
CAS latency = 2
NOP
DOUT A0
tCK2, I/O’s
CAS latency = 3
tCK3, I/O’s
NOP
NOP
NOP
NOP
DOUT B0
DOUT B1
DOUT B2
DOUT B3
DOUT A0
DOUT B0
DOUT B1
DOUT B2
T3
T4
T5
NOP
NOP
DOUT B3
5HDGWR:ULWH,QWHUYDO
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T6
T7
T8
CLK
Minimum delay between the Read and Write Commands = 4+1 = 5 cycles
tDQW
DQM
COMMAND
I/O’s
tDQZ
NOP
READ A
NOP
NOP
NOP
NOP
WRITE B
DIN B0
DOUT A0
NOP
NOP
DIN B1
DIN B2
Must be Hi-Z before
the Write Command
: “H” or “L”
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
0LQLPXP5HDGWR:ULWH,QWHUYDO
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
tDQW
DQM
tDQZ
1 Clk Interval
COMMAND
NOP
NOP
BANK A
ACTIVATE
NOP
READ A
WRITE A
NOP
NOP
NOP
DIN A1
DIN A2
DIN A3
Must be Hi-Z before
the Write Command
CAS latency = 2
DIN A0
tCK2, I/O’s
: “H” or “L”
1RQ0LQLPXP5HDGWR:ULWH,QWHUYDO
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
NOP
NOP
DIN B0
DIN B1
DIN B2
DIN B0
DIN B1
DIN B2
CLK
tDQW
DQM
tDQZ
COMMAND
CAS latency = 2
tCK1, I/O’s
CAS latency = 3
tCK2, I/O’s
NOP
READ A
NOP
NOP
DOUT A0
READ A
NOP
WRITE B
DOUT A1
Must be Hi-Z before
the Write Command
DOUT A0
: “H” or “L”
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
%XUVW:ULWH2SHUDWLRQ
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
COMMAND
NOP
I/O’s
WRITE A
DIN A0
NOP
NOP
NOP
DIN A1
DIN A2
DIN A3
The first data element and the Write
are registered on the same clock edge.
NOP
NOP
NOP
NOP
don’t care
Extra data is ignored after
termination of a Burst.
:ULWH,QWHUUXSWHGE\D:ULWH
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
tCCD
COMMAND
NOP
WRITE A
WRITE B
NOP
NOP
NOP
DIN B1
DIN B2
DIN B3
NOP
NOP
NOP
1 Clk Interval
I/O’s
DIN A0
DIN B0
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
:ULWH,QWHUUXSWHGE\D5HDG
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
WRITE A
READ B
T4
T5
T6
T7
T8
CLK
COMMAND
NOP
CAS latency = 2
tCK2, I/O’s
CAS latency = 3
tCK3, I/O’s
DIN A0
don’t care
DIN A0
don’t care
NOP
NOP
DOUT B0
don’t care
NOP
NOP
NOP
NOP
DOUT B1
DOUT B2
DOUT B3
DOUT B0
DOUT B1
DOUT B2
DOUT B3
Input data must be removed from the I/O’s at least one clock
cycle before the Read dataAPpears on the outputs to avoid
data contention.
%XUVW:ULWHZLWK$XWR3UHFKDUJH
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
COMMAND
BANK A
ACTIVE
NOP
NOP
WRITE A
Auto-Precharge
NOP
NOP
t WR
I/O’s
DIN A0
DIN A1
*
NOP
NOP
*
NOP
tRP
Begin Autoprecharge
Bank can be reactivated after trp
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
%XUVW5HDGZLWK$XWR3UHFKDUJH
%XUVW/HQJWK &$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
COMMAND
CAS latency = 2
tCK2, I/O’s
CAS latency = 3
tCK3, I/O’s
READ A
NOP
NOP
DOUT A0
NOP
DOUT A1
DOUT A0
NOP
*
NOP
NOP
NOP
tRP
DOUT A2
*
NOP
DOUT A1
DOUT A3
tRP
DOUT A2
DOUT A3
*
Begin Autoprecharge
Bank can be reactivated after tRP
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
7HUPLQDWLRQRID%XUVW5HDG2SHUDWLRQ
&$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
COMMAND
READ A
NOP
CAS latency = 2
tCK2, I/O’s
NOP
NOP
Burst
Stop
DOUT A0
DOUT A1
DOUT A2
DOUT A3
DOUT A0
DOUT A1
DOUT A2
CAS latency = 3
tCK3, I/O’s
NOP
NOP
NOP
NOP
DOUT A3
7HUPLQDWLRQRID%XUVW:ULWH2SHUDWLRQ
&$6ODWHQF\
T0
T1
T2
T3
T4
T5
T6
T7
T8
CLK
COMMAND
CAS latency = 2,3
I/O’s
NOP
WRITE A
DIN A0
NOP
NOP
DIN A1
DIN A2
Burst
Stop
NOP
NOP
NOP
NOP
don’t care
Input data for the Write is masked.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
DQM
Addr
AP
BS
WE
CAS
RAS
CS
CKE
CLK
Hi-Z
tCH
tIS
tCKS
7
7
tCK2
tRCD
tIH
tIH
tIS
tIH
tIS
7
Ax0
CAx
7
Ax1
7
Ax2
tRC
RBx
RBx
7
Ax3
7
Bx0
CBx
7
7
Bx1
Bx2
RAy
RAy
Bx3
tDS
Begin Auto Precharge
Bank A
7
Activate
Write with
Activate
Write with
Activate
Command Auto Precharge Command Auto Precharge Command
Bank A
Command
Bank B
Command
Bank A
Bank A
Bank B
RAx
RAx
tCL
7
$&3DUDPHWHUVIRU:ULWH7LPLQJ
7
7
Ay1
tDH
Ay2
Ay3
Begin Auto Precharge
Bank B
7
Write
Command
Bank A
Ay0
RAy
7
7
tDPL
tRP
7
Precharge
Command
Bank A
7
RAz
RAz
7
RBy
RBy
7
Activate
Command
Bank B
tCKH
tRRD
7
Activate
Command
Bank A
7
7
Burst Length = 4, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
DQM
Addr
AP
BS
WE
CAS
RAS
CS
CKE
CLK
Hi-Z
tCL
tCKS
tCH
T0
tIS
RAx
RAx
tIS
tRCD
tIH
tIH
tCK2
7
Activate
Command
Bank A
7
$&3DUDPHWHUVIRU5HDG7LPLQJ
tRRD
CAx
7
Read
Command
Bank A
7
tLZ
tAC2
tAC2
Ax0
tOH
tRAS
RBx
RBx
7
Activate
Command
Bank B
7
RBx
7
Read with
Auto Precharge
Command
Bank B
tHZ
Ax1
tRC
7
7
Precharge
Command
Bank A
Bx0
Begin Auto
Precharge
Bank B
7
tHZ
Bx1
tRP
tCKH
RAy
RAy
7
Activate
Command
Bank A
7
7
Burst Length = 2, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Mode Register
Set Command
Address Key
Precharge
Command
All Banks
7
7
Addr
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
0RGH5HJLVWHU6HW
7
7
t RSC
7
2 Clock min.
Any
Command
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
\
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
DQM
Addr
AP
BS
WE
CAS
RAS
CS
CKE
CLK
tRP
Precharge 1st Auto Refresh
Command
Command
All Banks
Inputs must be
stable for 200us
Hi-Z
High level
is required
2nd Auto Refresh
Command
Minimum of 2 Refresh Cycles are required
3RZHURQ6HTXHQFHDQG$XWR5HIUHVK&%5
tRC
Mode Register
Set Command
Address Key
Any
Command
2 Clock min.
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Power Down
Mode Exit
tSB
Power Down
Mode Entry
tCKS
Any
Command
7
7
7
7
7
7
RAx
Addr
Activate
Command
Bank A
RAx
AP
7
I/O
DQM
BS
WE
CAS
RAS
CS
CKE
CLK
Hi-Z
7
3RZHU'RZQ0RGH
7
7
7
7
7
7
7
7
7
7
7
7
Precharge
Command
Bank A
7
7
7
Burst Length = 4, CAS Latency = 2
\
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
3ELF2EFRESH%XIT
#OMMANDISSUED
3ELF2EFRESH
%NTRY
!LL"ANKS
MUSTBEIDLE
(I
:
)/
$1-
!DDR
!0
"3
7%
#!3
2!3
#3
#+%
#,+
6HOI5HIUHVK(QWU\DQG([LW
T#+3
T832
"EGIN3ELF2EFRESH
%XIT#OMMAND
T2#
3ELF2EFRESH
%XIT
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
Hi-Z
Precharge
Command
All Banks
7
tRC
7
0LQLPXP,QWHUYDO
7
7
7
Auto Refresh
Command
7
7
tRC
7
7
7
7
I/O
DQM
Auto Refresh
Command
7
Activate
Command
Bank A
RAx
7
Addr
7
RAx
tRP
tCK2
7
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
$XWR5HIUHVK&%5
7
Read
Command
Bank A
CAx
7
7
Ax0
7
Ax1
7
Ax3
7
Ax2
7
Burst Length = 4, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
RAw
Addr
Hi-Z
RAw
DQM
7
tCK2
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
7
Read
Command
Bank A
CAw
7
7
Aw0
7
Aw2
CAx
7
Read
Command
Bank A
Aw1
7
Ax0
CAy
7
Read
Command
Bank A
Aw3
7
Ax1
Ay0
7
Ay2
7
Activate
Command
Bank A
RAz
RAz
7
Ay3
7
Precharge
Command
Bank A
7
Ay1
7
5DQGRP&ROXPQ5HDG3DJHZLWKLQVDPH%DQNRI
7
Read
Command
Bank A
CAz
7
7
Az0
7
Az1
7
Az2
7
Az3
7
Burst Length = 4, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\)
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
RAw
Addr
Hi-Z
RAw
DQM
7
tCK3
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
7
CAw
7
Read
Command
Bank A
7
7
7
Aw1
CAx
7
Read
Command
Bank A
Aw0
7
Aw3
CAy
7
Ax1
7
Ax0
7
Read
Command
Bank A
Aw2
7
5DQGRP&ROXPQ5HDG3DJHZLWKLQVDPH%DQNRI
Ay0
7
Ay1
Ay2
7
Ay3
7
Precharge
Command
Bank A
7
7
Activate
Command
Bank A
RAz
RAz
7
7
7
Read
Command
Bank A
CAz
7
7
Burst Length = 4, CAS Latency = 3
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\)
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank B
RBz
Addr
Hi-Z
RBz
DQM
7
tCK2
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
CBz
7
7
7
7
CBx
7
7
CBy
7
7
7
Write
Command
Bank B
Write
Command
Bank B
Write
Command
Bank B
7
Precharge
Command
Bank B
7
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3
7
5DQGRP&ROXPQ:ULWH3DJHZLWKLQVDPH%DQNRI
7
Activate
Command
Bank B
RBz
RAw
RBz
RAw
7
CBz
CAx
7
7
7
7
Write
Command
Bank B
DBz0 DBz1 DBz2 DBz3
7
7
7
Burst Length = 4, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\)
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank B
RBz
Addr
Hi-Z
RBz
DQM
7
tCK3
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
7
CBz
7
7
7
7
CBx
7
7
CBy
7
7
7
7
Write
Command
Bank B
Write
Command
Bank B
Write
Command
Bank B
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3
7
5DQGRP&ROXPQ:ULWH3DJHZLWKLQVDPH%DQNRI
7
Precharge
Command
Bank B
7
7
7
Activate
Command
Bank B
RBz
RBz
7
7
7
7
Write
Command
Bank B
DBz0 DBz1
CBz
7
Burst Length = 4, CAS Latency = 3
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\)
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
tRCD
Activate
Command
Bank B
Hi-Z
RBx
Addr
DQM
RBx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
tAC2
7
Read
Command
Bank B
CBx
tCK2
7
7
Bx0
7
Bx1
7
Bx2
7
Bx4
RAx
RAx
7
Activate
Command
Bank A
Bx3
7
7
Bx6
CAx
Ax1
RBy
RBy
7
Activate
Command
Bank B
7
Ax0
tRP
7
Bx7
7
Precharge
Command
Bank B
Read
Command
Bank A
Bx5
5DQGRP5RZ5HDG,QWHUOHDYLQJ%DQNVRI
Ax2
7
Ax3
Ax5
7
Ax4
7
Ax6
7
7
Read
Command
Bank B
Ax7
CBy
7
By0
7
By1
7
7
Burst Length = 8, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank B
Hi-Z
RBx
Addr
DQM
RBx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
tRCD
tCK3
7
CBx
7
Read
Command
Bank B
7
tAC3
7
7
Bx0
7
Bx2
RAx
RAx
7
Activate
Command
Bank A
Bx1
7
7
Bx3
5DQGRP5RZ5HDG,QWHUOHDYLQJ%DQNVRI
Bx4
Bx7
tRP
RBy
RBy
Activate
Command
Bank B
Ax3
7
Ax2
7
Ax1
7
Ax0
7
Precharge
Command
Bank B
7
Bx6
7
Read
Command
Bank A
Bx5
CAx
7
Ax4
7
Ax6
7
Read
Command
Bank B
Ax5
CBy
7
By0
7
Precharge
Command
Bank A
Ax7
7
7
Burst Length = 8, CAS Latency = 3
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
7
7
7
7
7
RBx
RBx
7
CBx
tDPL
7
7
7
tRP
7
RAy
RAy
7
7
7
7
tDPL
CAy
7
7
7
7
7
7
Burst Length = 8, CAS Latency = 2
Activate
Command
Bank B
Precharge
Command
Bank A
Write
Command
Bank B
Activate
Command
Bank A
Precharge
Command
Bank B
Write
Command
Bank A
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 DAy4
7
Write
Command
Bank A
tRCD
CAX
CAy
tCK2
7
5DQGRP5RZ:ULWH,QWHUOHDYLQJ%DQNVRI
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
tRCD
tCK3
7
CAX
7
7
7
7
7
RBx
RBx
7
7
7
tDPL
CBx
7
7
7
tRP
7
7
RAy
RAy
7
7
7
tDPL
CAy
7
7
7
7
Burst Length = 8, CAS Latency = 3
Write
Command
Bank A
Activate
Command
Bank B
Write
Command
Bank B
Precharge
Command
Bank A
Activate
Command
Bank A
Write
Command
Bank A
Precharge
Command
Bank B
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3
7
5DQGRP5RZ:ULWH,QWHUOHDYLQJ%DQNVRI
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
7
7
7
7
7
Write
Precharge
Command
Command
Bank A
Bank A
Precharge Termination
of a Write Burst. Write
data is masked.
DAx0 DAx1 DAx2 DAx3
CAx
tCK2
7
tRP
RAy
RAy
7
Activate
Command
Bank A
7
3UHFKDUJH7HUPLQDWLRQRID%XUVWRI
CAy
7
Read
Command
Bank A
7
7
Ay1
7
Precharge
Command
Bank A
Ay0
7
RAz
RAz
7
Activate
Command
Bank A
Ay2
tRP
7
7
7
Az1
7
Az2
tRP
7
Precharge
Command
Bank A
Az0
7
Precharge Termination
of a Read Burst.
Read
Command
Bank A
CAz
7
Burst Length = 8, CAS Latency = 2
7
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
7
CAx
7
Write
Command
Bank A
DAx0
7
Write Data
is masked
tCK3
7
7
tRP
7
RAy
RAy
7
Activate
Command
Bank A
7
Precharge Termination
of a Write Burst.
Precharge
Command
Bank A
7
3UHFKDUJH7HUPLQDWLRQRID%XUVWRI
7
7
Read
Command
Bank A
CAy
7
7
7
Ay1
7
Precharge
Command
Bank A
Ay0
7
Ay2
tRP
7
7
7
7
7
Precharge Termination
of a Read Burst.
Activate
Command
Bank A
RAz
RAz
7
7
Burst Length = 4, 8, CAS Latency = 3
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
Read
Command
Bank A
CAx
tCK2
Ax+1
Activate
Command
Bank B
Ax
RBx
RBx
)XOO3DJH5HDG&\FOHRI
Ax-2
Ax-1
Ax
Bx
Bx+1
Bx+2
Bx+3
Bx+4
Bx+6
Burst Stop
Command
Precharge
Command
Bank B
Bx+5
Full Page burst operation does not
terminate when the burst length is satisfied;
the burst counter increments and continues
bursting beginning with the starting address.
Ax+1
Read
Command
Bank B
The burst counter wraps
from the highest order
page address back to zero
during this time interval.
Ax+2
CBx
tRP
Activate
Command
Bank B
RBy
RBy
Burst Length = Full Page, CAS Latency = 2
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
tCK3
Read
Command
Bank A
CAx
Activate
Command
Bank B
RBx
RBx
)XOO3DJH5HDG&\FOHRI
Ax Ax+1 Bx Bx+1 Bx+2 Bx+3 Bx+4 Bx
+5
Full Page burst operation does
notterminate when the length is
Read
satisfied; the burst counter
Comman
Precharge
increments and continuesbursting
B
Command
d Bank
The burst counter
wraps beginning with
Bank B
from the highest order
the starting address.
page address back to zero
during this time interval.
Burst
Stop Command
Ax Ax+1 Ax+2 Ax-2
Ax-1
CBx
tRRD
Activate
Command
Bank B
RBy
RBy
Burst Length = Full Page, CAS Latency =
3
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
\
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
DQM
Addr
AP
BS
WE
CAS
RAS
CS
CKE
CLK
Activate
Command
Bank A
Hi-Z
DAx-1
DAx
DAx+1
DBx
CBx
DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6
Activate
Command
Bank B
RBy
RBy
Burst Length = Full Page, CAS Latency = 2
Activate
Write
Command
Precharge
Command
Data is ignored.
Bank B
Command
Bank B
Bank B
The burst counter wraps
Full Page burst operation does not
from the highest order
terminate when the burst length is satisfied;
page address back to zero
the burst counter increments and continues
Burst Stop
during this time interval.
bursting beginning with the starting address.
Command
DAx+1 DAx+2 DAx+3
Write
Command
Bank A
DAx
RBx
RAx
CAx
RBx
RAx
High
tCK2
)XOO3DJH:ULWH&\FOHRI
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
I/O
Activate
Command
Bank A
Hi-Z
RAx
Addr
DQM
RAx
High
AP
BS
WE
CAS
RAS
CS
CKE
CLK
tCK3
RBx
DAx-1
DAx
DAx+1
DBx
CBx
DBx+1 DBx+2 DBx+3 DBx+4 DBx+5
Data is ignored.
Activate
Command
Bank B
RBy
RBy
Burst Length = Full Page, CAS Latency = 3
Activate
Write
Command
Precharge
Command Full Page burst operation does not
Bank B
Command
Bank B terminate when the length is
Bank B
satisfied; the burst counter
The burst counter wraps
increments
and
continues
from the highest order
bursting
beginning
with
page address back to zero
Burst Stop
the starting address.
during this time interval.
Command
DAx+1 DAx+2 DAx+3
Write
Command
Bank A
DAx
CAx
RBx
)XOO3DJH:ULWH&\FOHRI
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
&RPSOHWH/LVWRI2SHUDWLRQ&RPPDQGV
6'5$0)XQFWLRQ7UXWK7DEOH
&855(17
67$7(
&6
5$6
&$6
:(
%6
$GGU
$&7,21
Idle
H
L
L
L
L
L
L
L
X
H
H
H
L
L
L
L
X
H
H
L
H
H
L
L
X
H
L
X
H
L
H
L
X
X
BS
BS
BS
BS
X
Op-
X
X
X
X
RA
AP
X
Code
NOP or Power Down
NOP
ILLEGAL2
ILLEGAL2
Row (&Bank) Active; Latch Row Address
NOP4
Auto-Refresh or Self-Refresh5
Mode reg. Access5
Row Active
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
L
L
H
H
L
X
X
H
L
H
L
X
X
X
BS
BS
BS
BS
X
X
X
CA,AP
CA,AP
X
AP
X
NOP
NOP
Begin Read; Latch CA; DetermineAP
Begin Write; Latch CA; DetermineAP
ILLEGAL2
Precharge
ILLEGAL
Read
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
BS
BS
BS
X
X
X
X
CA,AP
CA,AP
X
AP
X
NOP (Continue Burst to End;>Row Active)
NOP (Continue Burst to End;>Row Active)
Burst Stop Command > Row Active
Term Burst, New Read, DetermineAP3
Term Burst, Start Write, DetermineAP3
ILLEGAL2
Term Burst, Precharge
ILLEGAL
Write
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
BS
BS
BS
X
X
X
X
CA,AP
CA,AP
X
AP
X
NOP (Continue Burst to End;>Row Active)
NOP (Continue Burst to End;>Row Active)
Burst Stop Command > Row Active
Term Burst, Start Read, DetermineAP3
Term Burst, New Write, DetermineAP3
ILLEGAL2
Term Burst, Precharge3
ILLEGAL
Read
with
Auto
Precharge
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
X
BS
BS
X
X
X
X
X
X
X
AP
X
NOP (Continue Burst to End;> Precharge)
NOP (Continue Burst to End;> Precharge)
ILLEGAL2
ILLEGAL2
ILLEGAL
ILLEGAL2
ILLEGAL2
ILLEGAL
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
6'5$0)XQFWLRQ7UXWK7DEOHFRQWLQXHG
&855(17
67$7(
&6
5$6
&$6
:(
%6
$GGU
$&7,21
Write
with
Auto
Precharge
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
X
BS
BS
X
X
X
X
X
X
X
AP
X
NOP (Continue Burst to End;> Precharge)
NOP (Continue Burst to End;> Precharge)
ILLEGAL2
ILLEGAL2
ILLEGAL
ILLEGAL2
ILLEGAL2
ILLEGAL
Precharging
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
H
L
H
H
L
X
H
L
X
H
L
X
X
X
BS
BS
BS
BS
X
X
X
X
X
X
AP
X
NOP;> Idle after tRP
NOP;> Idle after tRP
ILLEGAL2
ILLEGAL2
ILLEGAL2
NOP4
ILLEGAL
Row
Activating
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
H
L
H
H
L
X
H
L
X
H
L
X
X
X
BS
BS
BS
BS
X
X
X
X
X
X
AP
X
NOP;> Row Active after tRCD
NOP;> Row Active after tRCD
ILLEGAL2
ILLEGAL2
ILLEGAL2
ILLEGAL2
ILLEGAL
Write
Recovering
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
H
L
H
H
L
X
H
L
X
H
L
X
X
X
BS
BS
BS
BS
X
X
X
X
X
X
AP
X
NOP
NOP
ILLEGAL2
ILLEGAL2
ILLEGAL2
ILLEGAL2
ILLEGAL
Refreshing
H
L
L
L
L
L
X
H
H
H
L
L
X
H
H
L
H
L
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP;> Idle after tRC
NOP;> Idle after tRC
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
Mode
Register
H
L
L
L
L
X
H
H
H
L
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
NOP
NOP
ILLEGAL
ILLEGAL
ILLEGAL
Accessing
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
&ORFN(QDEOH&.(7UXWK7DEOH
&.(
Q
&.(
Q
&6
5$6
&$6
:(
$GGU
Self-Refresh6
H
L
L
L
L
L
L
X
H
H
H
H
H
L
X
H
L
L
L
L
X
X
X
H
H
H
L
X
X
X
H
H
L
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
INVALID
EXIT Self-Refresh, Idle after tRC
EXIT Self-Refresh, Idle after tRC
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Maintain Self-Refresh)
Power-Down
H
L
L
L
L
L
L
X
H
H
H
H
H
L
X
H
L
L
L
L
X
X
X
H
H
H
L
X
X
X
H
H
L
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
INVALID
EXIT Power-Down, > Idle.
EXIT Power-Down, > Idle.
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Maintain Low-Power Mode)
All. Banks
Idle7
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
X
H
L
L
L
L
L
L
X
X
X
H
H
H
L
L
L
X
X
X
H
H
L
H
L
L
X
X
X
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
Refer to the function truth table
Enter Power- Down
Enter Power- Down
ILLEGAL
ILLEGAL
ILLEGAL
Enter Self-Refresh
ILLEGAL
NOP
67$7(Q
$&7,21
Abbreviations:
RA = Row Address of Bank A
CA = Column Address of Bank A
BS = Bank Address
RB = Row Address of Bank B
CB = Column Address of Bank B
AP = Auto Precharge
RC = Row Address of Bank C
CC = Column Address of Bank C
RD = Row Address of Bank D
CD = Column Address of Bank D
1RWHVIRU6'5$0IXQFWLRQWUXWKWDEOH
1. Current State is state of the bank determined by BS. All entries assume that CKE was active (HIGH) during the preceding clock cycle.
2. Illegal to bank in specified state; Function may be legal in the bank indicated by BS, depending on the state of that bank.
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
4. NOP to bank precharging or in Idle state. May precharge bank(s) indicated by BS (andAP).
5. Illegal if any bank is not Idle.
6. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any
command other than EXIT.
7. Power-Down and Self-Refresh can be entered only from the All Banks Idle State.
8. Must be legal command as defined in the SDRAM function truth table.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
Package Diagram
54-Pin Plastic TSOP-II (400 mil)
0.047 [1.20] MAX
0.400 ±0.005
[10.16 ±0.13]
0.04 ±0.002
[1 ±0.05]
0°–5°
.004 [0.1]
0.031
[0.80]
+0.002
0.016 -0.004
+0.05
0.40 -0.10
+0.004
0.006 -0.002
+0.01
0.15 -0.05
0.006 [0.15] MAX
0.463 ± 0.008
[11.76 ± 0.20]
0.024 ± 0.008
[0.60 ± .020]
.008 [0.2] M 54x
54
28
Index Marking
27
1
0.881 -0.01
[22.38 -0.25]
1
1 Does not include plastic or metal protrusion of 0.15 max. per side
Unit in inches [mm]
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
3DFNDJH'LDJUDP
%DOO)%*$[
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6
AS4C32M16SA
0ELW6LQJOH'DWD5DWH6'56'5$0
0[0[[%DQNV
PART NUMBERING SYSTEM
AS4C
M6$
DRAM
M=Mx
6$=6'5$0
$YHUVLRQ
=MHz
7B
7 = 7623,,
B = FBGA
C/I
C=Commercial
(0¡ C¡ C)
I=Industrial
(-40¡ C5¡ C)
N
Indicates Pb and
Halogen Free
Alliance Memory, Inc.
511 Taylor Way,
San Carlos, CA 94070
Tel: 650-610-6800
Fax: 650-620-9211
www.alliancememory.com
Copyright © Alliance Memory
All Rights Reserved
© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are
trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of
their respective companies. Alliance reserves the right to make changes to this document and its products at any
time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data
contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the
right to change or correct this data at any time, without notice. If the product described herein is under
development, significant changes to these specifications are possible. The information in this product data sheet
is intended to be general descriptive information for potential customers and users, and is not intended to operate
as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility
or liability arising out of the application or use of any product described herein, and disclaims any express or
implied warranties related to the sale and/or use of Alliance products including liability or warranties related to
fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as
express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of
Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of
products from Alliance does not convey a license under any patent rights, copyrights; mask works rights,
trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its
products for use as critical components in life-supporting systems where a malfunction or failure may reasonably
be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting
systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all
claims arising from such use.
$OOLDQFH0HPRU\,QF7D\ORU:D\6DQ&DUORV&$7(/)$;
$OOLDQFH0HPRU\,QFUHVHUYHVWKHULJKWWRFKDQJHSURGXFWVRUVSHFLILFDWLRQZLWKRXWQRWLFH
5HY4Mar6