0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AM29LV065MU90RWHI

AM29LV065MU90RWHI

  • 厂商:

    AMD(超威)

  • 封装:

  • 描述:

    AM29LV065MU90RWHI - 64 Megabit (8 M x 8-Bit) MirrorBit™ 3.0 Volt-only Uniform Sector Flash Memory wi...

  • 数据手册
  • 价格&库存
AM29LV065MU90RWHI 数据手册
Am29LV065MU Data Sheet RETIRED PRODUCT This product has been retired and is not available for designs. For new and current designs, S29GL064A supersedes Am29LV065MU and is the factory-recommended migration path. Please refer to the S29GL064A datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only. The following document contains information on Spansion memory products. Continuity of Specifications There is no change to this data sheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal data sheet improvement and are noted in the document revision summary. For More Information Please contact your local sales office for additional information about Spansion memory solutions. Publication Number 25262 Revision C Amendment 4 Issue Date September 12, 2006 THIS PAGE LEFT INTENTIONALLY BLANK. DATA SHEET Am29LV065MU 64 Megabit (8 M x 8-Bit) MirrorBit™ 3.0 Volt-only Uniform Sector Flash Memory with VersatileI/O™ Control This product has been retired and is not available for designs. For new and current designs, S29GL064A supersedes Am29LV065MU and is the factory-recommended migration path. Please refer to the S29GL064A datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only. DISTINCTIVE CHARACTERISTICS ARCHITECTURAL ADVANTAGES Single power supply operation — 3 volt read, erase, and program operations VersatileI/O™ control — Device generates and tolerates data voltages on CE# and DQ inputs/outputs as determined by the voltage on the VIO pin; operates from 1.65 to 3.6 V Manufactured on 0.23 µm MirrorBit process technology SecSi™ (Secured Silicon) Sector region — 256-byte sector for permanent, secure identification through an 16-byte random Electronic Serial Number, accessible through a command sequence — May be programmed and locked at the factory or by the customer Flexible sector architecture — One hundred twenty-eight 64 Kbyte sectors Compatibility with JEDEC standards — Provides pinout and software compatibility for single-power supply flash, and superior inadvertent write protection Minimum 100,000 erase cycle guarantee per sector 20-year data retention at 125°C PERFORMANCE CHARACTERISTICS High performance — 90 ns access time — 25 ns page read times — 0.5 s typical sector erase time — 11 µs typical effective write buffer byte programming time: 32-byte write buffer reduces overall programming time for multiple-byte updates — 8-byte read page buffer — 32-byte write buffer Low power consumption (typical values at 3.0 V, 5 MHz) — 30 mA typical active read current — 50 mA typical erase/program current — 1 µA typical standby mode current Package options — 48-pin TSOP — 63-ball FBGA SOFTWARE & HARDWARE FEATURES Software features — Program Suspend & Resume: read other sectors before programming operation is completed — Erase Suspend & Resume: read/program other sectors before an erase operation is completed — Data# polling & toggle bits provide status — Unlock Bypass Program command reduces overall multiple-byte programming time — CFI (Common Flash Interface) compliant: allows host system to identify and accommodate multiple flash devices Hardware features — Sector Group Protection: hardware method of preventing write operations within a sector group — Temporary Sector Unprotect: VID-level method of changing code in locked sectors — ACC (high voltage) pin accelerates programming time for higher throughput during system production — Hardware reset pin (RESET#) resets device — Ready/Busy# pin (RY/BY#) detects program or erase cycle completion This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. Publication# 25262 Rev: C Amendment/4 Issue Date: September 12, 2006 Refer to AMD’s Website (www.amd.com) for the latest information. DATA SHEET GENERAL DESCRIPTION The Am29LV065MU is a 64 Mbit, 3.0 volt single power supply flash memory devices organized as 8,388,608 bytes. The device has an 8-bit wide data bus, and can be programmed either in the host system or in standard EPROM programmers. An access time of 90, 100, 110, or 120 ns is available. Note that each device has a specific operating voltage range (VCC) and an I/O voltage range (VIO), as specified in “Product Selector Guide” on page 5 and “Ordering Information” on page 9. The device is offered in a 48-pin TSOP or 63-ball FBGA package. Each device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls. Each device requires only a s ingle 3.0 volt power supply for both read and write functions. In addition to a V CC i nput, a high-voltage a ccelerated program (ACC) i nput provides shorter programming times through increased current. This feature is intended to facilitate factory throughput during system production, but may also be used in the field if desired. The device is entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the device using standard microprocessor write timing. Write cycles also internally latch addresses and data needed for the programming and erase operations. The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory. Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy# (RY/BY#) output to determine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces command sequence overhead by requiring only two write cycles to program data instead of four. The VersatileI/O™ (VIO) control allows the host system to set the voltage levels that the device generates and tolerates on the CE# control input and DQ I/Os to the same voltage level that is asserted on the VIO pin. See “Ordering Information” on page 9. for valid VIO options. Hardware data protection measures include a low VCC detector that automatically inhibits write operations during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of memory. This can be achieved in-system or via programming equipment. The Erase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or program any other sector and then complete the erase operation. The P rogram Suspend/Program Resume feature enables the host system to pause a program operation in a given sector to read any other sector and then complete the program operation. The hardware RESET# pin terminates any operation in progress and resets the device, after which it is then ready for a new operation. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device. The device reduces power consumption in the standby mode when it detects specific voltage levels on CE# and RESET#, or when addresses have been stable for a specified period of time. The SecSi™ (Secured Silicon) Sector provides a 256 byte area for code or data that can be permanently protected. Once this sector is protected, no further changes within the sector can occur. AMD MirrorBit flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via hot-hole assisted erase. The data is programmed using hot electron injection. 2 Am29LV065MU September 12, 2006 DATA SHEET MIRRORBIT 64 MBIT DEVICE FAMILY Device LV065MU LV640MT/B LV640MH/L LV641MH/L LV640MU Bus x8 x8/x16 x8/x16 x16 x16 Sector Architecture Uniform (64 Kbyte) Boot (8 x 8 Kbyte at top & bottom) Uniform (64 Kbyte) Uniform (32 Kword) Uniform (32 Kword) Packages 48-pin TSOP (std. & rev. pinout), 63-ball FBGA 48-pin TSOP, 63-ball Fine-pitch BGA, 64-ball Fortified BGA 56-pin TSOP (std. & rev. pinout), 64 Fortified BGA 48-pin TSOP (std. & rev. pinout) 63-ball Fine-pitch BGA, 64-ball Fortified BGA VIO Yes No Yes Yes Yes RY/BY# Yes Yes Yes No Yes WP#, ACC ACC only WP#/ACC pin WP#/ACC pin Separate WP# and ACC pins ACC only WP# Protection No WP# 2 x 8 Kbyte top or bottom 1 x 64 Kbyte high or low 1 x 32 Kword top or bottom No WP# RELATED DOCUMENTS To download related documents, click on the following links or go to www.amd.com→Flash Memory→Product Information→MirrorBit→Flash Information→Technical Documentation. MirrorBit™ Flash Memory Write Buffer Programming and Page Buffer Read Implementing a Common Layout for AMD MirrorBit and Intel StrataFlash Memory Devices Migrating from Single-byte to Three-byte Device IDs AMD MirrorBit™ White Paper September 12, 2006 Am29LV065MU 3 DATA SHEET TABLE OF CONTENTS Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 6 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 9 Device Bus Operations . . . . . . . . . . . . . . . . . . . . 10 VersatileIO™ (VIO) Control ..................................................... 10 Requirements for Reading Array Data ................................... 10 Page Mode Read .................................................................... 11 Writing Commands/Command Sequences ............................ 11 Write Buffer ............................................................................. 11 Accelerated Program Operation ............................................. 11 Autoselect Functions .............................................................. 11 Standby Mode ........................................................................ 11 Automatic Sleep Mode ........................................................... 11 RESET#: Hardware Reset Pin ............................................... 12 Output Disable Mode .............................................................. 12 Table 2. Sector Address Table ........................................................13 Table 1. Device Bus Operations .....................................................10 Write Operation Status . . . . . . . . . . . . . . . . . . . . . 35 DQ7: Data# Polling ................................................................. 35 Figure 8. Data# Polling Algorithm .................................................. 35 RY/BY#: Ready/Busy#............................................................ 36 DQ6: Toggle Bit I .................................................................... 36 Figure 9. Toggle Bit Algorithm........................................................ 36 DQ2: Toggle Bit II ................................................................... 37 Reading Toggle Bits DQ6/DQ2 ............................................... 37 DQ5: Exceeded Timing Limits ................................................ 37 DQ3: Sector Erase Timer ....................................................... 37 DQ1: Write-to-Buffer Abort ..................................................... 38 Table 11. Write Operation Status ................................................... 38 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 39 Figure 10. Maximum Negative Overshoot Waveform ................... 39 Figure 11. Maximum Positive Overshoot Waveform..................... 39 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 1. Maximum Negative Overshoot Waveform ..................... 39 Figure 2. Maximum Positive Overshoot Waveform....................... 39 Autoselect Mode..................................................................... 17 Table 3. Autoselect Codes, (High Voltage Method) .......................17 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 39 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 40 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 12. Test Setup.................................................................... 41 Table 12. Test Specifications ......................................................... 41 Sector Group Protection and Unprotection ............................. 18 Table 4. Sector Group Protection/Unprotection Address Table .....18 Temporary Sector Group Unprotect ....................................... 19 Figure 1. Temporary Sector Group Unprotect Operation................ 19 Figure 2. In-System Sector Group Protect/Unprotect Algorithms ... 20 Key to Switching Waveforms. . . . . . . . . . . . . . . . 41 Figure 13. Input Waveforms and Measurement Levels...................................................................... 41 SecSi (Secured Silicon) Sector Flash Memory Region .......... 21 Table 5. SecSi Sector Contents ......................................................21 Figure 3. SecSi Sector Protect Verify.............................................. 22 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42 Read-Only Operations ........................................................... 42 Figure 14. Read Operation Timings ............................................... 42 Figure 15. Page Read Timings ...................................................... 43 Hardware Data Protection ...................................................... 22 Low VCC Write Inhibit ............................................................ 22 Write Pulse “Glitch” Protection ............................................... 22 Logical Inhibit .......................................................................... 22 Power-Up Write Inhibit ............................................................ 22 Common Flash Memory Interface (CFI) . . . . . . . 22 Table 6. CFI Query Identification String .............................. 23 Table 7. System Interface String......................................................23 Hardware Reset (RESET#) .................................................... 44 Figure 16. Reset Timings ............................................................... 44 Erase and Program Operations .............................................. 45 Figure 17. Program Operation Timings.......................................... Figure 18. Accelerated Program Timing Diagram.......................... Figure 19. Chip/Sector Erase Operation Timings .......................... Figure 20. Data# Polling Timings (During Embedded Algorithms)...................................................... Figure 21. Toggle Bit Timings (During Embedded Algorithms)...................................................... Figure 22. DQ2 vs. DQ6................................................................. 46 46 47 48 49 49 Table 8. Device Geometry Definition................................... 24 Table 9. Primary Vendor-Specific Extended Query............. 25 Command Definitions . . . . . . . . . . . . . . . . . . . . . 25 Reading Array Data ................................................................ 25 Reset Command ..................................................................... 26 Autoselect Command Sequence ............................................ 26 Enter SecSi Sector/Exit SecSi Sector Command Sequence .. 26 Byte Program Command Sequence ....................................... 26 Unlock Bypass Command Sequence ..................................... 27 Write Buffer Programming ...................................................... 27 Accelerated Program .............................................................. 28 Figure 4. Write Buffer Programming Operation............................... 29 Figure 5. Program Operation .......................................................... 30 Temporary Sector Unprotect .................................................. 50 Figure 23. Temporary Sector Group Unprotect Timing Diagram ... 50 Figure 24. Sector Group Protect and Unprotect Timing Diagram .. 51 Alternate CE# Controlled Erase and Program Operations ..... 52 Figure 25. Alternate CE# Controlled Write (Erase/Program) Operation Timings.......................................................................... 53 Program Suspend/Program Resume Command Sequence ... 30 Figure 6. Program Suspend/Program Resume............................... 31 Chip Erase Command Sequence ........................................... 31 Sector Erase Command Sequence ........................................ 31 Erase Suspend/Erase Resume Commands ........................... 32 Figure 7. Erase Operation............................................................... 33 Command Definitions ............................................................. 34 Table 10. Command Definitions.......................................................34 Erase And Programming Performance. . . . . . . . 54 Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 54 TSOP Pin and BGA Package Capacitance . . . . . 55 Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 56 TS 048—48-Pin Standard Thin Small Outline Package ......... 56 TSR048—48-Pin Reverse Thin Small Outline Package ......... 57 FBE063—63-Ball Fine-Pitch Ball Grid Array, 12 x 11 mm Package .................................................................................. 58 Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Am29LV065MU September 12, 2006 DATA SHEET PRODUCT SELECTOR GUIDE Part Number 90R (Note 3) (VIO = 3.0–3.6 V) Am29LV065MU VCC = 3.0–3.6 V Speed Option VCC = 2.7–3.6 V Max. Access Time (ns) Max. CE# Access Time (ns) Max. Page access time (tPACC) Max. OE# Access Time (ns) 101R (VIO = 2.7–3.6 V) 101 (VIO = 2.7–3.6 V) 112R (VIO = 1.65–3.6V) 112 (VIO = 1.65–3.6 V) 110 110 30 30 40 40 30 30 120R (VIO = 1.65–3.6 V) 120 (VIO = 1.65–3.6 V) 120 120 40 40 90 90 25 25 100 100 30 30 Note: 1. See “AC Characteristics” for full specifications. 2. For the Am29LV065MU device, the last numeric digit in the speed option (e.g. 101, 112, 120) is used for internal purposes only. Please use OPNs as listed when placing orders. 3. Contact factory for availability and ordering information. BLOCK DIAGRAM RY/BY# VCC VSS VIO RESET# Erase Voltage Generator Input/Output Buffers Sector Switches DQ0–DQ7 WE# ACC State Control Command Register PGM Voltage Generator Chip Enable Output Enable Logic STB Data Latch CE# OE# STB VCC Detector Timer Address Latch Y-Decoder Y-Gating X-Decoder Cell Matrix A22–A0 September 12, 2006 Am29LV065MU 5 DATA SHEET CONNECTION DIAGRAMS NC A22 A16 A15 A14 A13 A12 A11 A9 A8 WE# RESET# ACC RY/BY# A18 A7 A6 A5 A4 A3 A2 A1 NC NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 48-Pin Standard TSOP 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 NC NC A17 VSS A20 A19 A10 DQ7 DQ6 DQ5 DQ4 VCC VIO A21 DQ3 DQ2 DQ1 DQ0 OE# VSS CE# A0 NC NC NC NC A17 VSS A20 A19 A10 DQ7 DQ6 DQ5 DQ4 VCC VIO A21 DQ3 DQ2 DQ1 DQ0 OE# VSS CE# A0 NC NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 48-Pin Reverse TSOP 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 NC A22 A16 A15 A14 A13 A12 A11 A9 A8 WE# RESET# ACC RY/BY# A18 A7 A6 A5 A4 A3 A2 A1 NC NC 6 Am29LV065MU September 12, 2006 DATA SHEET CONNECTION DIAGRAMS 63-Ball FBGA Top View, Balls Facing Down A8 NC* A7 NC* B8 NC* B7 NC* C7 A14 C6 A9 C5 WE# C4 RY/BY# C3 A7 D7 A13 D6 A8 D5 RESET# D4 ACC D3 A18 D2 A4 E7 A15 E6 A11 E5 A22 E4 NC E3 A6 E2 A2 F7 A16 F6 A12 F5 NC F4 NC F3 A5 F2 A1 G7 A17 G6 A19 G5 DQ5 G4 DQ2 G3 DQ0 G2 A0 H7 NC H6 A10 H5 NC H4 DQ3 H3 NC H2 CE# J7 A20 J6 DQ6 J5 VCC J4 VIO J3 NC J2 OE# K7 VSS K6 DQ7 K5 DQ4 K4 A21 K3 DQ1 K2 VSS L8 NC* L7 NC* M8 NC* M7 NC* A2 NC* A1 NC* B1 NC* C2 A3 L2 NC* L1 M2 NC* M1 NC* * Balls are shorted together via the substrate but not connected to the die. NC* Special Package Handling Instructions Special handling is required for Flash Memory products in molded packages (TSOP, BGA, SSOP, PLCC, PDIP). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time. September 12, 2006 Am29LV065MU 7 DATA SHEET PIN DESCRIPTION A22–A0 DQ7–DQ0 CE# OE# WE# ACC RESET# RY/BY# VCC = 23 Address inputs = 8 Data inputs/outputs = Chip Enable input = Output Enable input = Write Enable input LOGIC SYMBOL 23 A22–A0 CE# OE# WE# DQ7–DQ0 8 = Acceleration input = Hardware Reset Pin input = Ready/Busy output = 3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances) = Output Buffer power = Device Ground = Pin Not Connected Internally ACC RESET# RY/BY# VIO VIO VSS NC 8 Am29LV065MU September 12, 2006 DATA SHEET ORDERING INFORMATION Standard Products AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the following: Am29LV065M U 120R WH I TEMPERATURE RANGE F = Industrial (-40°C to +85°C) with Pb-free Package I = Industrial (–40°C to +85°C) PACKAGE TYPE E = 48-Pin Standard Pinout Thin Small Outline Package (TS 048) F = 48-Pin Reverse Pinout Thin Small Outline Package (TSR048) WH = 63-Ball Fine-Pitch Ball Grid Array (FBGA) 0.80 mm pitch, 11 x 12 mm package (FBE063) SPEED OPTION See Product Selector Guide and Valid Combinations SECTOR ARCHITECTURE U = Uniform sector device DEVICE NUMBER/DESCRIPTION Am29LV065MU 64 Megabit (8 M x 8-Bit) MirrorBit™ Uniform Sector Flash Memory with VersatileIO™ Control 3.0 Volt-only Read, Program, and Erase Valid Combinations for TSOP Package Am29LV065MU101 Am29LV065MU112 Am29LV065MU120 Am29LV065MU101R Am29LV065MU112R Am29LV065MU120R EI, FI, EF Speed (ns) 100 110 120 100 110 120 VIO Range 2.7–3.6 V 1.65–3.6 V 1.65–3.6 V 2.7–3.6 V 1.65–3.6 V 1.65–3.6 V VCC Range 2.7–3.6 V Valid Combinations for Fine-Pitch BGA Package Order Number Am29LV065MU101 Package Marking L065MU01V L065MU11V L065MU12V L065MU01R L065MU11R L065MU12R Speed (ns) VIO Range 2.7– 3.6 V 1.65– 3.6 V 1.65– 3.6 V 2.7– 3.6 V 1.65– 3.6 V 1.65– 3.6 V VCC Range 100 110 120 100 110 120 3.0–3.6 V Am29LV065MU112 Am29LV065MU120 Am29LV065MU101R Am29LV065MU112R Am29LV065MU120R 2.7– 3.6 V WHI WHF I, F 3.0– 3.6 V Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations. Note: 1. For the Am29LV065MU device, the last numeric digit in the speed option (e.g. 101, 112, 120) is used for internal purposes only. Please use OPNs as listed when placing orders. 2. For 90R speed option shown in product selector guide, contact AMD for availability and ordering information. September 12, 2006 Am29LV065MU 9 DATA SHEET DEVICE BUS OPERATIONS This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the Table 1. Operation Read Write (Program/Erase) Accelerated Program Standby Output Disable Reset Sector Group Protect (Note 2) Sector Group Unprotect (Note 2) Temporary Sector Group Unprotect CE# L L L VCC ± 0.3 V L X L L X OE# L H H X H X H H X register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail. Device Bus Operations RESET# H H H VCC ± 0.3 V H L VID VID VID ACC Addresses (Note 2) AIN AIN AIN X X X SA, A6=L, A3=L, A2=L, A1=H, A0=L SA, A6=H, A3=L, A2=L, A1=H, A0=L AIN DQ7– DQ0 DOUT (Note 3) (Note 3) High-Z High-Z High-Z (Note 3) (Note 3) (Note 3) WE# H L L X H X L L X L/H L/H VHH L/H L/H L/H L/H L/H L/H Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 11.5–12.5 V, X = Don’t Care, SA = Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out Notes: 1. Addresses are A22:A0. Sector addresses are A22:A16. 2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See “Sector Group Protection and Unprotection” on page 18.. 3. DIN or DOUT as required by command sequence, data polling, or sector protect algorithm (see Figure 2). VersatileIO™ (VIO) Control The VersatileIO™ (VIO) control allows the host system to set the voltage levels that the device generates and tolerates on CE# and DQ I/Os to the same voltage level that is asserted on VIO. See “Ordering Information” on page 9. for VIO options on this device. For example, a VI/O of 1.65–3.6 volts allows for I/O at the 1.8 or 3 volt levels, driving and receiving signals to and from other 1.8 or 3 V devices on the same data bus. trol and gates array data to the output pins. WE# should remain at VIH. The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered. See “Reading Array Data” on page 25. for more information. “Read-Only Operations” on page 42 for timing specifications and to Figure 13 for the timing diagram. Requirements for Reading Array Data To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output con- 10 Am29LV065MU September 12, 2006 DATA See the table, “DC Characteristics” on page 40 for the active current specification for reading array data. Page Mode Read The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides faster read access speed for random locations within a page. The page size of the device is 8 bytes. The appropriate page is selected by the higher address bits A(max)–A3. Address bits A2–A0 determine the specific byte within a page. This is an asynchronous operation; the microprocessor supplies the specific byte location. The random or initial page access is equal to tACC or tCE and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to tPACC. When CE# is deasserted and reasserted for a subsequent access, the access time is t ACC o r t CE . Fast page mode accesses are obtained by keeping the “read-page addresses” constant and changing the “intra-read page” addresses. SHEET If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the ACC pin returns the device to normal operation. Note that the ACC pin must not be at VHH for operations other than accelerated programming, or device damage may result. In addition, the ACC pin must not be left floating or unconnected; inconsistent behavior of the device may result. Autoselect Functions If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. See “Autoselect Mode” on page 17. and “Autoselect Command Sequence” on page 26 for more information. Writing Commands/Command Sequences To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH. The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a byte, instead of four. The “Byte Program Command Sequence” on page 26 has details on programming data to the device using both standard and Unlock Bypass command sequences. An erase operation can erase one sector, multiple sectors, or the entire device. Table 2 indicates the address space that each sector occupies. See the table, “DC Characteristics” on page 40 for the active current specification for the write mode. “AC Characteristics” on page 42 contains timing specification tables and timing diagrams for write operations. Write Buffer Write Buffer Programming allows the system to write a maximum of 32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. See “Write Buffer” for more information. Accelerated Program Operation The device offers accelerated program operations through the ACC function. This function is primarily intended to allow faster manufacturing throughput during system production. Standby Mode When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input. The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VIO ± 0.3 V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time (t CE ) for read access when the device is in either of these standby modes, before it is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is completed. See the table, “DC Characteristics” on page 40 for the standby current specification. Automatic Sleep Mode The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for tACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. September 12, 2006 Am29LV065MU 11 DATA See the table, “DC Characteristics” on page 40 for the automatic sleep mode current specification. SHEET memory, enabling the system to read the boot-up firmware from the Flash memory. If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the internal reset operation is complete, which requires a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is completed within a time of t READY (not during Embedded Algorithms). The system can read data tRH after the RESET# pin returns to VIH. See the tables in “AC Characteristics” on page 42 for RESET# parameters and to Figure 15 for the timing diagram. RESET#: Hardware Reset Pin The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity. Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V, the device draws CMOS standby current. If RESET# is held at VIL but not within VSS±0.3 V, the standby current will be greater. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash Output Disable Mode When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state. 12 Am29LV065MU September 12, 2006 DATA Table 2. Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 A22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 A20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 SHEET Sector Address Table (Sheet 1 of 4) A19 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 A18 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 A17 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 A16 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 8-bit Address Range (in hexadecimal) 000000–00FFFF 010000–01FFFF 020000–02FFFF 030000–03FFFF 040000–04FFFF 050000–05FFFF 060000–06FFFF 070000–07FFFF 080000–08FFFF 090000–09FFFF 0A0000–0AFFFF 0B0000–0BFFFF 0C0000–0CFFFF 0D0000–0DFFFF 0E0000–0EFFFF 0F0000–0FFFFF 100000–10FFFF 110000–11FFFF 120000–12FFFF 130000–13FFFF 140000–14FFFF 150000–15FFFF 160000–16FFFF 170000–17FFFF 180000–18FFFF 190000–19FFFF 1A0000–1AFFFF 1B0000–1BFFFF 1C0000–1CFFFF 1D0000–1DFFFF 1E0000–1EFFFF 1F0000–1FFFFF 200000–20FFFF 210000–21FFFF September 12, 2006 Am29LV065MU 13 DATA Table 2. Sector SA34 SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 A22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 A21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 A20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 SHEET Sector Address Table (Sheet 2 of 4) A19 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 A18 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 A17 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 A16 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 8-bit Address Range (in hexadecimal) 220000–22FFFF 230000–23FFFF 240000–24FFFF 250000–25FFFF 260000–26FFFF 270000–27FFFF 280000–28FFFF 290000–29FFFF 2A0000–2AFFFF 2B0000–2BFFFF 2C0000–2CFFFF 2D0000–2DFFFF 2E0000–2EFFFF 2F0000–2FFFFF 300000–30FFFF 310000–31FFFF 320000–32FFFF 330000–33FFFF 340000–34FFFF 350000–35FFFF 360000–36FFFF 370000–37FFFF 380000–38FFFF 390000–39FFFF 3A0000–3AFFFF 3B0000–3BFFFF 3C0000–3CFFFF 3D0000–3DFFFF 3E0000–3EFFFF 3F0000–3FFFFF 400000–40FFFF 410000–41FFFF 420000–42FFFF 430000–43FFFF 440000–44FFFF 14 Am29LV065MU September 12, 2006 DATA Table 2. Sector SA69 SA70 SA71 SA72 SA73 SA74 SA75 SA76 SA77 SA78 SA79 SA80 SA81 SA82 SA83 SA84 SA85 SA86 SA87 SA88 SA89 SA90 SA91 SA92 SA93 SA94 SA95 SA96 SA97 SA98 SA99 SA100 SA101 SA102 SA103 A22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A20 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 SHEET Sector Address Table (Sheet 3 of 4) A19 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 A18 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A17 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A16 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 8-bit Address Range (in hexadecimal) 450000–45FFFF 460000–46FFFF 470000–47FFFF 480000–48FFFF 490000–49FFFF 4A0000–4AFFFF 4B0000–4BFFFF 4C0000–4CFFFF 4D0000–4DFFFF 4E0000–4EFFFF 4F0000–4FFFFF 500000–50FFFF 510000–51FFFF 520000–52FFFF 530000–53FFFF 540000–54FFFF 550000–55FFFF 560000–56FFFF 570000–57FFFF 580000–58FFFF 590000–59FFFF 5A0000–5AFFFF 5B0000–5BFFFF 5C0000–5CFFFF 5D0000–5DFFFF 5E0000–5EFFFF 5F0000–5FFFFF 600000–60FFFF 610000–61FFFF 620000–62FFFF 630000–63FFFF 640000–64FFFF 650000–65FFFF 660000–66FFFF 670000–67FFFF September 12, 2006 Am29LV065MU 15 DATA Table 2. Sector SA104 SA105 SA106 SA107 SA108 SA109 SA110 SA111 SA112 SA113 SA114 SA115 SA116 SA117 SA118 SA119 SA120 SA121 SA122 SA123 SA124 SA125 SA126 SA127 A22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SHEET Sector Address Table (Sheet 4 of 4) A19 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A18 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A17 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A16 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 8-bit Address Range (in hexadecimal) 680000–68FFFF 690000–69FFFF 6A0000–6AFFFF 6B0000–6BFFFF 6C0000–6CFFFF 6D0000–6DFFFF 6E0000–6EFFFF 6F0000–6FFFFF 700000–70FFFF 710000–71FFFF 720000–72FFFF 730000–73FFFF 740000–74FFFF 750000–75FFFF 760000–76FFFF 770000–77FFFF 780000–78FFFF 790000–79FFFF 7A0000–7AFFFF 7B0000–7BFFFF 7C0000–7CFFFF 7D0000–7DFFFF 7E0000–7EFFFF 7F0000–7FFFFF Note: All sectors are 64 Kbytes in size. 16 Am29LV065MU September 12, 2006 DATA SHEET In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits (see Table 2). Table 3 shows the remaining address bits that are don’t care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ7–DQ0. To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Table 10. This method does not require VID. See “Autoselect Command Sequence” on page 26. for more information. Autoselect Mode The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register. When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins A6, A3, A2, A1, and A0 must be as shown in Table 3. Table 3. Description Manufacturer ID: AMD Device ID Cycle 1 Cycle 2 Cycle 3 L L L L H H L L H CE# L OE# L WE# H Autoselect Codes, (High Voltage Method) A21 to A15 X A14 to A10 X A9 VID A8 to A7 X A6 L A5 to A4 X A3 to A2 L L X X VID X L X H H SA X X X VID VID X X L L X X L L A1 L L H H H H A0 L H L H L H DQ7 to DQ0 01h 7Eh 13h 00h 01h (protected), 00h (unprotected) 90h (factory locked), 10h (not factory locked) Sector Protection Verification SecSi Sector Indicator Bit (DQ7) Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care. September 12, 2006 Am29LV065MU 17 DATA SHEET Table 4. Sector Group Protection/Unprotection Address Table A22–A18 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 Sector Group Protection and Unprotection The hardware sector group protection feature disables both program and erase operations in any sector group. In this device, a sector group consists of four adjacent sectors that are protected or unprotected at the same time (see Table 4). The hardware sector group unprotection feature re-enables both program and erase operations in previously protected sector groups. Sector group protection/unprotection can be implemented via two methods. Sector protection/unprotection requires VID on the RESET# pin only, and can be implemented either in-system or via programming equipment. Figure 2 shows the algorithms and Figure 23 shows the timing diagram. This method uses standard microprocessor bus cycle timing. For sector group unprotect, all unprotected sector groups must first be protected prior to the first sector group unprotect write cycle. The device is shipped with all sector groups unprotected. AMD offers the option of programming and protecting sector groups at its factory prior to shipping the device through AMD’s ExpressFlash™ Service. Contact an AMD representative for details. It is possible to determine whether a sector group is protected or unprotected. See “Autoselect Mode” on page 17. for details. Sector Group SA0–SA3 SA4–SA7 SA8–SA11 SA12–SA15 SA16–SA19 SA20–SA23 SA24–SA27 SA28–SA31 SA32–SA35 SA36–SA39 SA40–SA43 SA44–SA47 SA48–SA51 SA52–SA55 SA56–SA59 SA60–SA63 SA64–SA67 SA68–SA71 SA72–SA75 SA76–SA79 SA80–SA83 SA84–SA87 SA88–SA91 SA92–SA95 SA96–SA99 SA100–SA103 SA104–SA107 SA108–SA111 SA112–SA115 SA116–SA119 SA120–SA123 SA124–SA127 Note: All sector groups are 256 Kbytes in size. 18 Am29LV065MU September 12, 2006 DATA SHEET Temporary Sector Group Unprotect (Note: In this device, a sector group consists of four adjacent sectors that are protected or unprotected at the same time (see Table 4). START This feature allows temporary unprotection of previously protected sector groups to change data in-system. The Sector Group Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected sector groups can be programmed or erased by selecting the sector group addresses. Once VID is removed from the RESET# pin, all the previously protected sector groups are protected again. Figure 1 shows the algorithm, and Figure 22 shows the timing diagrams, for this feature. RESET# = VID (Note 1) Perform Erase or Program Operations RESET# = VIH Temporary Sector Group Unprotect Completed (Note 2) Notes: 1. All protected sector groups unprotected. 2. All previously protected sector groups are protected once again. Figure 1. Temporary Sector Group Unprotect Operation September 12, 2006 Am29LV065MU 19 DATA SHEET START PLSCNT = 1 RESET# = VID Wait 1 μs Protect all sector groups: The indicated portion of the sector group protect algorithm must be performed for all unprotected sector groups prior to issuing the first sector group unprotect address START PLSCNT = 1 RESET# = VID Wait 1 μs Temporary Sector Group Unprotect Mode No First Write Cycle = 60h? First Write Cycle = 60h? No Temporary Sector Group Unprotect Mode Yes Set up sector group address No Yes All sector groups protected? Yes Set up first sector group address Sector Group Unprotect: Write 60h to sector group address with A6–A0 = 1xx0010 Reset PLSCNT = 1 Sector Group Protect: Write 60h to sector group address with A6–A0 = 0xx0010 Wait 150 µs Increment PLSCNT Verify Sector Group Protect: Write 40h to sector group address with A6–A0 = 0xx0010 Wait 15 ms Read from sector group address with A6–A0 = 0xx0010 No No PLSCNT = 25? Data = 01h? Increment PLSCNT Verify Sector Group Unprotect: Write 40h to sector group address with A6–A0 = 1xx0010 Yes Yes Protect another sector group? No Remove VID from RESET# Yes Read from sector group address with A6–A0 = 1xx0010 No Set up next sector group address Data = 00h? No PLSCNT = 1000? Yes Device failed Yes Device failed Write reset command Last sector group verified? Yes Remove VID from RESET# No Sector Group Protect Algorithm Sector Group Protect complete Sector Group Unprotect Algorithm Write reset command Sector Group Unprotect complete Figure 2. In-System Sector Group Protect/Unprotect Algorithms 20 Am29LV065MU September 12, 2006 DATA SHEET Factory Locked: SecSi Sector Programmed and Protected At the Factory In devices with an ESN, the SecSi Sector is protected when the device is shipped from the factory. The SecSi Sector cannot be modified in any way. A factory locked device has an 16-byte random ESN at addresses 000000h–00000Fh. Customers may opt to have their code programmed by AMD through the AMD ExpressFlash service. The devices are then shipped from AMD’s factory with the SecSi Sector permanently locked. Contact an AMD representative for details on using AMD’s ExpressFlash service. Customer Lockable: SecSi Sector NOT Programmed or Protected At the Factory As an alternative to the factory-locked version, the device may be ordered such that the customer may program and protect the 256-byte SecSi sector. The system may program the SecSi Sector using the write-buffer, accelerated and/or unlock bypass methods, in addition to the standard programming command sequence. See “Command Definitions” on page 25.. Programming and protecting the SecSi Sector must be used with caution since, once protected, there is no procedure available for unprotecting the SecSi Sector area and none of the bits in the SecSi Sector memory space can be modified in any way. The SecSi Sector area can be protected using one of the following procedures: ■ Write the three-cycle Enter SecSi Sector Region command sequence, and then follow the in-system sector protect algorithm as shown in Figure 2, except that RESET# may be at either VIH or VID. This allows in-system protection of the SecSi Sector without raising any device pin to a high voltage. Note that this method is only applicable to the SecSi Sector. ■ To verify the protect/unprotect status of the SecSi Sector, follow the algorithm shown in Figure 3. Once the SecSi Sector is programmed, locked and verified, the system must write the Exit SecSi Sector Region command sequence to return to reading and writing within the remainder of the array. SecSi (Secured Silicon) Sector Flash Memory Region The SecSi (Secured Silicon) Sector feature provides a Flash memory region that enables permanent part identification through an Electronic Serial Number (ESN). The SecSi Sector is 256 bytes in length, and uses a SecSi Sector Indicator Bit (DQ7) to indicate whether or not the SecSi Sector is locked when shipped from the factory. This bit is permanently set at the factory and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is shipped to the field. AMD offers the device with the SecSi Sector either facto r y locked or c ustomer lock able. The factory-locked version is always protected when shipped from the factory, and has the SecSi (Secured Silicon) Sector Indicator Bit permanently set to a “1.” The customer-lockable version is shipped with the SecSi Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the SecSi Sector Indicator Bit permanently set to a “0.” Thus, the SecSi Sector Indicator Bit prevents customer-lockable devices from being used to replace devices that are factory locked. The SecSi sector address space in this device is allocated as follows: Table 5. SecSi Sector Address Range 000000h–00000Fh 000010h–0000FFh SecSi Sector Contents Customer Lockable Standard ExpressFlash Factory Locked Factory Locked ESN Unavailable ESN or determined by customer Determined by customer Determined by customer The system accesses the SecSi Sector through a command sequence (see “Enter SecSi Sector/Exit SecSi Sector Command Sequence”). After the system has written the Enter SecSi Sector command sequence, it may read the SecSi Sector by using the addresses normally occupied by the first sector (SA0). This mode of operation continues until the system issues the Exit SecSi Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to sector SA0. Note that the ACC function and unlock bypass modes are not available when the SecSi Sector is enabled. September 12, 2006 Am29LV065MU 21 DATA . START RESET# = VIH or VID Wait 1 μs Write 60h to any address If data = 00h, SecSi Sector is unprotected. If data = 01h, SecSi Sector is protected. SHEET spurious system level signals during V CC power-up and power-down transitions, or from system noise. Low VCC Write Inhibit When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent unintentional writes when V CC i s greater than VLKO. Write Pulse “Glitch” Protection Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle. Logical Inhibit Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one. Power-Up Write Inhibit If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on power-up. Remove VIH or VID from RESET# Write 40h to SecSi Sector address with A6 = 0, A1 = 1, A0 = 0 Read from SecSi Sector address with A6 = 0, A1 = 1, A0 = 0 Write reset command SecSi Sector Protect Verify complete Figure 3. SecSi Sector Protect Verify Hardware Data Protection The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes (see Table 10 for command definitions). In addition, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by COMMON FLASH MEMORY INTERFACE (CFI) The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility. This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device is ready to read array data. The system can read CFI information at the addresses given in Tables 6–9. To terminate reading CFI data, the system must write the reset command. The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses given in Tables 6–9. The system must write the reset command to return the device to reading array data. For further information, please refer to the CFI Specification and CFI Publication 100, available via the World Wide Web at http://www.amd.com/flash/cfi. Alternatively, contact an AMD representative for copies of these documents. 22 Am29LV065MU September 12, 2006 DATA Table 6. Addresses 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah Data 51h 52h 59h 02h 00h 40h 00h 00h 00h 00h 00h SHEET CFI Query Identification String Description Query Unique ASCII string “QRY” Primary OEM Command Set Address for Primary Extended Table Alternate OEM Command Set (00h = none exists) Address for Alternate OEM Extended Table (00h = none exists) Table 7. Addresses 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h Data 27h 36h 00h 00h 07h 07h 0Ah 00h 01h 05h 04h 00h System Interface String Description VCC Min. (write/erase) D7–D4: volt, D3–D0: 100 millivolt VCC Max. (write/erase) D7–D4: volt, D3–D0: 100 millivolt VPP Min. voltage (00h = no VPP pin present) VPP Max. voltage (00h = no VPP pin present) Typical timeout per single byte write 2N µs Typical timeout for Min. size buffer write 2N µs (00h = not supported) Typical timeout per individual block erase 2N ms Typical timeout for full chip erase 2N ms (00h = not supported) Max. timeout for byte write 2N times typical Max. timeout for buffer write 2N times typical Max. timeout per individual block erase 2N times typical Max. timeout for full chip erase 2N times typical (00h = not supported) September 12, 2006 Am29LV065MU 23 DATA Table 8. Addresses 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch Data 17h 00h 00h 05h 00h 01h 7Fh 00h 00h 01h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h SHEET Device Geometry Definition Description Device Size = 2N byte Flash Device Interface description (refer to CFI publication 100) (00h not supported) Max. number of byte in multi-byte write = 2N (00h = not supported) Number of Erase Block Regions within device (01h = uniform device, 02h = boot device) Erase Block Region 1 Information (refer to the CFI specification or CFI publication 100) Erase Block Region 2 Information (refer to CFI publication 100) Erase Block Region 3 Information (refer to CFI publication 100) Erase Block Region 4 Information (refer to CFI publication 100) 24 Am29LV065MU September 12, 2006 DATA Table 9. Addresses 40h 41h 42h 43h 44h 45h Data 50h 52h 49h 31h 33h 09h SHEET Primary Vendor-Specific Extended Query Description Query-unique ASCII string “PRI” Major version number, ASCII Minor version number, ASCII Address Sensitive Unlock (Bits 1-0) 0 = Required, 1 = Not Required Process Technology (Bits 7-2) 0010b = 0.23 µm MirrorBit 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 02h 04h 01h 04h 00h 00h 01h B5h Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write Sector Protect 0 = Not Supported, X = Number of sectors per group Sector Temporary Unprotect 00 = Not Supported, 01 = Supported Sector Protect/Unprotect scheme 04 = 29LV800 mode Simultaneous Operation 00 = Not Supported, X = Number of Sectors in Bank Burst Mode Type 00 = Not Supported, 01 = Supported Page Mode Type 00 = Not Supported, 01 = 8 Byte Page ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV ACC (Acceleration) Supply Maximum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV Top/Bottom Boot Sector Flag 4Eh C5h 4Fh 00h 00h = Uniform Device without WP# protect, 02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Uniform sectors bottom WP# protect, 05h = Uniform sectors top WP# protect Program Suspend 00h = Not Supported, 01h = Supported 50h 01h COMMAND DEFINITIONS Writing specific address and data commands or sequences into the command register initiates device operations. Table 10 defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. A reset command is then required to return the device to reading array data. All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. Refer to the AC Characteristics section for timing diagrams. Reading Array Data The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is ready to read array data after completing an Embedded Program or Embedded Erase algorithm. After the device accepts an Erase Suspend command, the device enters the erase-suspend-read mode, after which the system can read data from any 25 September 12, 2006 Am29LV065MU DATA non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See “Erase Suspend/Erase Resume Commands” on page 32. for more information. The system must issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more information. See “Requirements for Reading Array Data” on page 10. for more infor mation. See the table, “Read-Only Operations” on page 42 provides the read parameters, and Figure 13 shows the timing diagram. SHEET Table 10 shows the address and data requirements. This method is an alternative to that shown in Table 3, which is intended for PROM programmers and requires V ID o n address pin A9. The autoselect command sequence may be written to an address that is either in the read or erase-suspend-read mode. The autoselect command may not be written while the device is actively programming or erasing. The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the autoselect command. The device then enters the autoselect mode. The system may read at any address any number of times without initiating another autoselect command sequence: ■ A read cycle at address XX00h returns the manufacturer code. ■ Three read cycles at addresses 01h, 0Eh, and 0Fh return the device code. ■ A read cycle to an address containing a sector group address (SA), and the address 02h on A7–A0 returns 01h if the sector group is protected, or 00h if it is unprotected. (See Table 4 for valid sector addresses). The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in Erase Suspend). Reset Command Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don’t cares for this command. The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or erase-suspend-read mode if the device was in Erase Suspend). Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the Write-to-Buffer-Abort Reset command sequence to reset the device for the next operation. Enter SecSi Sector/Exit SecSi Sector Command Sequence The SecSi Sector region provides a secured data area containing an 16-byte random Electronic Serial Number (ESN). The system can access the SecSi Sector region by issuing the three-cycle Enter SecSi Sector command sequence. The device continues to access the SecSi Sector region until the system issues the four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector command sequence returns the device to normal operation. Table 10 shows the address and data requirements for both command sequences. See also “SecSi (Secured Silicon) Sector Flash Memory Region” for further information. Note that the ACC function and unlock bypass modes are not available when the SecSi Sector is enabled. Byte Program Command Sequence Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated program pulses and verifies the programmed cell margin. Table 10 shows the address Autoselect Command Sequence The autoselect command sequence allows the host system to access the manufacturer and device codes, and determine whether or not a sector is protected. 26 Am29LV065MU September 12, 2006 DATA and data requirements for the byte program command sequence. When the Embedded Program algorithm is complete, the device then returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7, DQ6, or RY/BY#. See “Write Operation Status” on page 35. for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardware reset immediately terminates the program operation. The program command sequence should be reinitiated once the device has returned to the read mode, to ensure data integrity. N ote that the SecSi Sector, autoselect, and CFI functions are unavailable when a program operation is in progress. Programming is allowed in any sequence and across sector boundaries. A b it cannot be programmed from “0” back to a “1.” A ttempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read will show that the data is still “0.” Only erase operations can convert a “0” to a “1.” Unlock Bypass Command Sequence The unlock bypass feature allows the system to program bytes to the device faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time. Table 10 shows the requirements for the command sequence. During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. The first cycle must contain the data 90h. The second cycle must contain the data 00h. The device then returns to the read mode. Write Buffer Programming Write buffer programming allows the system to write a maximum of 32 bytes in one programming operation. The effective programming time is faster than the stan- SHEET dard programming algorithms. The write buffer programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming will occur. The fourth cycle writes the sector address and the number of byte locations, minus one, to be programmed. For example, if the system will program 6 unique address locations, then 05h should be written to the device. This tells the device how many write buffer addresses will be loaded with data and therefore when to expect the Program Buffer to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation will abort. The fifth cycle writes the first address location and data to be programmed. A write-buffer-page is selected by address bits AMAX–A5. All subsequent add r e s s / d a t a p a i r s m u s t fa l l w i t h i n t h e selected-write-buffer-page. The system then writes the remaining address/data pairs into the write buffer. Write buffer locations may be loaded in any order. The write-buffer-page address must be the same for all address/data pairs loaded into the write buffer. That is, write buffer programming cannot occur across multiple write-buffer pages or sectors. If the system attempts to load programming data outside of the selected write-buffer page, the operation will abort. Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter will be decremented for every data load operation. The host s y s t e m m u s t t h e r e fo r e a c c o u n t fo r l o a d i n g a write-buffer location more than once. The counter decrements for each data load operation, not for each unique write-buffer-address location. Additionally, the last data loaded prior to the Program Buffer to Flash command will be programmed into the device. Note also that if an address location is loaded more than once into the buffer, the final data loaded for that address will be programmed. Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming. The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device is ready to execute the next command. September 12, 2006 Am29LV065MU 27 DATA T he Write Buffer Programming Sequence can be aborted in the following ways: ■ Load a value that is greater than the page buffer size during the Number of Locations to Program step. ■ Write to an address in a sector different than the one specified during the Write-Buffer-Load command. ■ Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer data loading stage of the operation. ■ Write data other than the Confirm Command after the specified number of data load cycles. The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation. Note that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is re- SHEET quired when using Write-Buffer-Programming features in Unlock Bypass mode. Accelerated Program The device offers accelerated program operations through the ACC pin. When the system asserts VHH on the ACC pin, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the ACC pin to accelerate the operation. N ote that the ACC pin must not be at VHH for operations other than accelerated programming, or device damage may result. In addition, the ACC pin must not be left floating or unconnected; inconsistent behavior of the device may result. Figure 4 illustrates the algorithm for the program operation. See the table, “Erase and Program Operations” on page 45 for parameters, and Figure 16 for timing diagrams. 28 Am29LV065MU September 12, 2006 DATA SHEET Write “Write to Buffer” command and Sector Address Write number of addresses to program minus 1(WC) and Sector Address Part of “Write to Buffer” Command Sequence Write first address/data Yes WC = 0 ? No Abort Write to Buffer Operation? No Yes Write to buffer ABORTED. Must write “Write-to-buffer Abort Reset” command sequence to return to read mode. Write to a different sector address ((Note 1)) Write next address/data pair WC = WC - 1 Write program buffer to flash sector address Notes: 1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses must fall within the selected Write-Buffer Page. Read DQ7 - DQ0 at Last Loaded Address 2. 3. DQ7 may change simultaneously with DQ5. Therefore, DQ7 should be verified. If this flowchart location was reached because DQ5= “1”, then the device FAILED. If this flowchart location was reached because DQ1= “1”, then the Write to Buffer operation was ABORTED. In either case, the proper reset command must be written before the device can begin another operation. If DQ1=1, write the Write-Buffer-Programming-Abort-Reset command. if DQ5=1, write the Reset command. See Table 10 for command sequences required for write buffer programming. DQ7 = Data? No No DQ1 = 1? Yes DQ5 = 1? Yes Read DQ7 - DQ0 with address = Last Loaded Address No Yes 4. ((Note 2)) DQ7 = Data? No Yes ((Note 3)) FAIL or ABORT PASS Figure 4. Write Buffer Programming Operation September 12, 2006 Am29LV065MU 29 DATA SHEET Program Suspend/Program Resume Command Sequence START Write Program Command Sequence Embedded Program algorithm in progress Data Poll from System The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the program operation within 15 μs maximum (5 μs typical) and updates the status bits. Addresses are not required when writing the Program Suspend command. After the programming operation has been suspended, the system can read array data from any non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the SecSi Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation. See “Autoselect Command Sequence” on page 26. for more information. After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See “Write Operation Status” on page 35. for more information. The system must write the Program Resume command (address bits are don’t care) to exit the Program Suspend mode and continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device has resume programming. Verify Data? No Yes No Increment Address Last Address? Yes Programming Completed Note: See Table 10 for program command sequence. Figure 5. Program Operation 30 Am29LV065MU September 12, 2006 DATA SHEET When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. See “Write Operation Status” on page 35. for information on these status bits. Note that the SecSi Sector, autoselect, and CFI functions are unavailable when an erase operation is in progress. Any commands written during the chip erase operation are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. Figure 6 illustrates the algorithm for the erase operation. See the table, “Erase and Program Operations” on page 45 for parameters, and Figure 18 section for timing diagrams. Program Operation or Write-to-Buffer Sequence in Progress Write address/data XXXh/B0h Write Program Suspend Command Sequence Command is also valid for Erase-suspended-program operations Wait 15 μs Read data as required Autoselect and SecSi Sector read operations are also allowed Data cannot be read from erase- or program-suspended sectors No Done reading? Yes Write address/data XXXh/30h Write Program Resume Command Sequence Sector Erase Command Sequence Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and the sector erase command. Table 10 shows the address and data requirements for the sector erase command sequence. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs, otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. Any command other than Sector Erase or Erase Suspend during the time-out period resets the device to the read mode. The system must rewrite the command sequence and any additional addresses and commands. Note that the SecSi Sector, autoselect, and CFI functions are unavailable when an erase operation is in progress. Device reverts to operation prior to Program Suspend Figure 6. Program Suspend/Program Resume Chip Erase Command Sequence Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Table 10 shows the address and data requirements for the chip erase command sequence. September 12, 2006 Am29LV065MU 31 DATA The system can monitor DQ3 to determine if the sector erase timer has timed out (See “DQ3: Sector Erase Timer” on page 37..). The time-out begins from the rising edge of the final WE# pulse in the command sequence. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by reading DQ7, DQ6, DQ2, or RY/BY# in the erasing sector. See “Write Operation Status” on page 35. for information on these status bits. Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. Figure 6 illustrates the algorithm for the erase operation. See the tables, “Erase and Program Operations” on page 45 for parameters, and Figure 18 for timing diagrams. SHEET After the erase operation has been suspended, the device enters the erase-suspend-read mode. The system can read data from or program data to any sector not selected for erasure. (The device “erase suspends” all sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See “Write Operation Status” on page 35. for information on these status bits. After an erase-suspended program operation is complete, the device returns to the erase-suspend-read mode. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard byte program operation. See “Write Operation Status” on page 35. for more information. In the erase-suspend-read mode, the system can also issue the autoselect command sequence. See “Autoselect Mode” on page 17. and “Autoselect Command Sequence” on page 26 for details. To resume the sector erase operation, the system must write the Erase Resume command. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing. Note: During an erase operation, this flash device performs multiple internal operations which are invisible to the system. When an erase operation is suspended, any of the internal operations that were not fully completed must be restarted. As such, if this flash device is continually issued suspend/resume commands in rapid succession, erase progress will be impeded as a function of the number of suspends. The result will be a longer cumulative erase time than without suspends. Note that the additional suspends do not affect device reliability or future performance. In most systems rapid erase/suspend activity occurs only briefly. In such cases, erase performance will not be significantly impacted. Erase Suspend/Erase Resume Commands The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50 µs time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. When the Erase Suspend command is written during the sector erase operation, the device requires a typical of 5 µs (maximum 20 μs) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. 32 Am29LV065MU September 12, 2006 DATA SHEET START Write Erase Command Sequence (Notes 1, 2) Data Poll to Erasing Bank from System Embedded Erase algorithm in progress No Data = FFh? Yes Erasure Completed Notes: 1. See Table 10 for erase command sequence. 2. See “DQ3: Sector Erase Timer” on page 37 for information on the sector erase timer. Figure 7. Erase Operation September 12, 2006 Am29LV065MU 33 DATA SHEET Command Definitions Table 10. Cycles First Addr RA XXX XXX XXX XXX XXX XXX XXX XXX XXX SA XXX XXX XXX XXX XXX XXX XXX XXX 55 Data RD F0 AA AA AA AA AA AA AA AA 29 AA AA A0 90 AA AA B0 30 98 SA = Sector Address of sector to be verified (in autoselect mode) or erased. Address bits A22–A16 uniquely select any sector. WBL = Write Buffer Location. Address must be within the same write buffer page as PA. BC = Byte Count. Number of write buffer locations to load minus 1. XXX XXX PA XXX XXX XXX 55 55 PD 00 55 55 XXX XXX 80 80 XXX XXX AA AA XXX XXX 55 55 XXX SA 10 30 XXX XXX F0 20 XXX XXX XXX XXX XXX XXX XXX XXX 55 55 55 55 55 55 55 55 XXX XXX XXX XXX XXX XXX XXX SA 90 90 90 90 88 90 A0 25 XXX PA SA 00 PD WC PA PD WBL PD X00 X01 X03 (SA)X02 01 7E (9) 00/01 X0E 13 X0F 00 Command Definitions Bus Cycles (Notes 1, 2, 3, and 4) Second Third Addr Data Fourth Addr Data Fifth Addr Data Sixth Addr Data Command Sequence (Notes) Read ((Note 5)) Reset ((Note 6)) Autoselect ((Note 7)) Manufacturer ID Device ID ((Note 8)) SecSi™ Sector Factory Protect ((Note 9)) Sector Group Protect Verify ((Note 10)) Addr Data 1 1 4 6 4 4 3 4 4 6 1 3 3 2 2 6 6 1 1 1 Enter SecSi Sector Region Exit SecSi Sector Region Program Write to Buffer Program Buffer to Flash Write to Buffer Abort Reset ((Note 11)) Unlock Bypass Unlock Bypass Program ((Note 12)) Unlock Bypass Reset ((Note 13)) Chip Erase Sector Erase Program/Erase Suspend ((Note 14)) Program/Erase Resume ((Note 15)) CFI Query ((Note 15)) Legend: X = Don’t care RA = Read Address of the memory location to be read. RD = Read Data read from location RA during read operation. PA = Program Address. Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later. PD = Program Data for location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first. Notes: 1. See Table 1 for description of bus operations. 2. All values are in hexadecimal. 3. 4. 5. 6. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles. During unlock and command cycles, when lower address bits are don’t cares, address bits A22–A12 are also don’t cares. No unlock or command cycles required when device is in read mode. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase Suspend) when the device is in the autoselect mode, or if DQ5 goes high (while the device is providing status information). The fourth cycle of the autoselect command sequence is a read cycle. See “Autoselect Command Sequence” on page 26. for more information. The device ID must be read in three cycles. 9. The data is 88h for factory locked and 08h for not factory locked. 10. The data is 00h for an unprotected sector group and 01h for a protected sector group. 11. Command sequence resets device for next command after aborted write-to-buffer operation. 12. The Unlock Bypass command is required prior to the Unlock Bypass Program command. 13. The Unlock Bypass Reset command is required to return to the read mode when the device is in the unlock bypass mode. 14. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation. 15. The Erase Resume command is valid only during the Erase Suspend mode. 16. Command is valid when device is ready to read array data or when device is in autoselect mode. 7. 8. 34 Am29LV065MU September 12, 2006 DATA SHEET WRITE OPERATION STATUS The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 11 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or has been completed. valid data, the data outputs on DQ0–DQ6 may be still invalid. Valid data on DQ0–DQ7 will appear on successive read cycles. Table 11 shows the outputs for Data# Polling on DQ7. Figure 7 shows the Data# Polling algorithm. Figure 19 in “AC Characteristics” shows the Data# Polling timing diagram. DQ7: Data# Polling The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command sequence. During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then the device returns to the read mode. During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide an address within any of the sectors selected for erasure to read valid status information on DQ7. After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the status may not be valid. Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is asserted low. That is, the device may change from providing status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the program or erase operation and DQ7 has START Read DQ7–DQ0 Addr = VA DQ7 = Data? Yes No No DQ5 = 1? Yes Read DQ7–DQ0 Addr = VA DQ7 = Data? Yes No FAIL PASS Notes: 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address. 2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5. Figure 8. Data# Polling Algorithm September 12, 2006 Am29LV065MU 35 DATA SHEET Table 11 shows the outputs for Toggle Bit I on DQ6. Figure 8 shows the toggle bit algorithm. Figure 20 in the AC Characteristics shows the toggle bit timing diagrams. Figure 21 shows the differences between DQ2 and DQ6 in graphical form. See “DQ2: Toggle Bit II” on page 37.. RY/BY#: Ready/Busy# The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC. If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or the device is in the erase-suspend-read mode. Table 11 shows the outputs for RY/BY#. START Read DQ7–DQ0 DQ6: Toggle Bit I Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out. During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling. After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 µs, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7 (See “DQ7: Data# Polling” on page 35.). If a program address falls within a protected sector, DQ6 toggles for approximately 1 μs after the program command sequence is written, then returns to reading array data. DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete. No Read DQ7–DQ0 Toggle Bit = Toggle? Yes No DQ5 = 1? Yes Read DQ7–DQ0 Twice Toggle Bit = Toggle? No Yes Program/Erase Operation Not Complete, Write Reset Command Program/Erase Operation Complete Note: T he system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5 changes to “1.” See the subsections on DQ6 and DQ2 for more information. Figure 9. Toggle Bit Algorithm 36 Am29LV065MU September 12, 2006 DATA SHEET the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Figure 8). DQ2: Toggle Bit II The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence. DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 11 to compare outputs for DQ2 and DQ6. Figure 8 shows the toggle bit algorithm in flowchart form, and “DQ2: Toggle Bit II” explains the algorithm. Also, see “DQ6: Toggle Bit I” on page 36. Figure 20 shows the toggle bit timing diagram. Figure 21 shows the differences between DQ2 and DQ6 in graphical form. DQ5: Exceeded Timing Limits DQ5 indicates whether the program, erase, or write-to-buffer time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a “1,” indicating that the program or erase cycle was not successfully completed. The device may output a “1” on DQ5 if the system tries to program a “1” to a location that was previously programmed to “0.” O nly an erase operation can change a “0” back to a “1.” Under this condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 produces a “1.” In all these cases, the system must write the reset command to return the device to the reading the array (or to erase-suspend-read if the device was previously in the erase-suspend-program mode). DQ3: Sector Erase Timer After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies after each additional sector erase command. When the time-out period is complete, DQ3 switches from a “0” to a “1.” If the time between additional sector erase commands from the system can be assumed to be less than 50 µs, the system need not monitor DQ3. Also, see “Sector Erase Command Sequence” on page 31. After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is “1,” the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is “0,” the device will accept additional sector erase commands. To ensure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted. Table 11 shows the status of DQ3 relative to the other status bits. Reading Toggle Bits DQ6/DQ2 Refer to Figure 8 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (See “DQ5: Exceeded Timing Limits” on page 37.). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system must write the reset command to return to reading array data. The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor September 12, 2006 Am29LV065MU 37 DATA SHEET turn the device to reading array data. See “Write Buffer Programming” on page 27. for more details. DQ1: Write-to-Buffer Abort DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1 produces a “1”. The system must issue the Write-to-Buffer-Abort-Reset command sequence to reTable 11. Write Operation Status DQ6 Toggle Toggle DQ5 ((Note 1)) 0 0 DQ3 N/A 1 DQ2 ((Note 2)) No toggle Toggle DQ1 0 N/A RY/BY# 0 0 1 1 N/A Data Toggle Toggle Toggle 0 0 0 N/A N/A N/A N/A N/A N/A N/A 0 1 Toggle N/A 1 1 0 0 0 Standard Mode Program Suspend Mode Erase Suspend Mode Write-toBuffer DQ7 Status ((Note 2)) Embedded Program Algorithm DQ7# Embedded Erase Algorithm 0 Program-Suspended Program- Sector Suspend Non-Program Read Suspended Sector Erase-Suspended 1 EraseSector Suspend Non-Erase Suspended Read Sector Erase-Suspend-Program DQ7# (Embedded Program) Busy ((Note 3)) DQ7# Abort ((Note 4)) DQ7# Invalid (not allowed) Data No toggle 0 Notes: 1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. See “DQ5: Exceeded Timing Limits” on page 37. for more information. 2. DQ7 and DQ2 require a valid address when reading status information. See “DQ7: Data# Polling” on page 35. and “DQ2: Toggle Bit II” on page 37 for further details. 3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location. 4. DQ1 switches to ‘1’ when the device has aborted the write-to-buffer operation. 38 Am29LV065MU September 12, 2006 DATA SHEET ABSOLUTE MAXIMUM RATINGS Storage Temperature Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C Ambient Temperature with Power Applied. . . . . . . . . . . . . . –55°C to +125°C Voltage with Respect to Ground VCC ((Note 1)) . . . . . . . . . . . . . . . . –0.5 V to +4.0 V VIO . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.0 V A9, OE#, ACC, and RESET# ((Note 2)) . . . . . . . . . . . . . . . . . . –0.5 V to +12.5 V All other pins ((Note 1)). . . . . –0.5 V to VCC +0.5 V Output Short Circuit Current ((Note 3)) . . . . . 200 mA Notes: 1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot V SS t o –2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is VCC +0.5 V. See Figure 9. During voltage transitions, input or I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 10. 2. Minimum DC input voltage on pins A9, OE#, ACC, and RESET# is –0.5 V. During voltage transitions, A9, OE#, ACC, and RESET# may overshoot V SS t o –2.0 V for periods of up to 20 ns. See Figure 9. Maximum DC input voltage on pin A9, OE#, ACC, and RESET# is +12.5 V which may overshoot to +14.0 V for periods up to 20 ns. 3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability. 20 ns VCC +2.0 V VCC +0.5 V 2.0 V 20 ns 20 ns +0.8 V –0.5 V –2.0 V 20 ns 20 ns 20 ns Figure 10. Maximum Negative Overshoot Waveform Figure 11. Maximum Positive Overshoot Waveform OPERATING RANGES Industrial (I) Devices Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C Supply Voltages VCC for standard voltage range . . . . . . . . . . 2.7–3.6 V VCC for regulated voltage range . . . . . . . . . . 3.0–3.6 V VIO (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . 1.65–3.0 V Notes: 1. Operating ranges define those limits between which the functionality of the device is guaranteed. 2. See Ordering Information section for valid VCC/VIO range combinations. The I/Os cannot go to 3 V when VIO = 1.8V. September 12, 2006 Am29LV065MU 39 DATA SHEET DC CHARACTERISTICS CMOS Compatible Parameter Symbol ILI ILIT ILR ILO ICC1 ICC2 ICC3 ICC4 ICC5 ICC6 ICC7 VIL1 VIH1 VIL2 VIH2 VHH VID VOL VOH1 VOH2 VLKO Parameter Description Input Load Current (Note 1) A9, ACC Input Load Current Reset Leakage Current Output Leakage Current VCC Active Read Current (Notes 1, 2) VCC Initial Page Read Current (1, 2) VCC Intra-Page Read Current (1, 2) Test Conditions VIN = VSS to VCC, VCC = VCC max VCC = VCC max; A9 = 12.5 V VCC = VCC max= 12.5 V VOUT = VSS to VCC, VCC = VCC max CE# = VIL, OE# = VIH CE# = VIL, OE# = VIH CE# = VIL, OE# = VIH CE#, RESET# = VCC ± 0.3 V, WP# = VIH RESET# = VSS ± 0.3 V, WP# = VIH VIH = VCC ± 0.3 V; VIL = VSS ± 0.3 V, WP# = VIH –0.5 0.7 x VCC –0.5 0.7 x VIO VCC = 2.7 –3.6 V 11.5 11.5 5 MHz 1 MHz 15 15 30 10 50 1 1 1 Min Typ Max ±1.0 35 35 ±1.0 20 20 50 20 60 5 5 5 0.8 VCC + 0.5 0.3 x VIO VIO + 0.5 12.5 12.5 0.15 x VIO 0.85 VIO VIO–0.4 2.3 2.5 Unit µA µA µA µA mA mA mA mA µA µA µA V V V V V V V V V V VCC Active Write Current (Notes 2, 3) CE# = VIL, OE# = VIH VCC Standby Current (Note 2) VCC Reset Current (Note 2) Automatic Sleep Mode (Notes 2, 4) Input Low Voltage 1(Notes 5, 6) Input High Voltage 1 (Notes 5, 6) Input Low Voltage 2 (Notes 5, 7) Input High Voltage 2 (Notes 5, 7) Voltage for ACC Program Acceleration Voltage for Autoselect and Temporary VCC = 2.7 –3.6 V Sector Unprotect Output Low Voltage (Note 9) Output High Voltage Low VCC Lock-Out Voltage (Note 8) IOL = 4.0 mA, VCC = VCC min = VIO IOH = –2.0 mA, VCC = VCC min = VIO IOH = –100 µA, VCC = VCC min = VIO Notes: 1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. 2. 3. 4. 5. 6. 7. 8. 9. Maximum ICC specifications are tested with VCC = VCCmax. ICC active while Embedded Erase or Embedded Program is in progress. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. If VIO < VCC, maximum VIL for CE# and DQ I/Os is 0.3 VIO. If VIO < VCC, minimum VIH for CE# and DQ I/Os is 0.7 VIO. Maximum VIH for these connections is VIO + 0.3 V VCC voltage requirements. VIO voltage requirements. VCC = 3 V and VIO = 3 V or 1.8 V. When VIO is at 1.8 V, I/Os cannot operate at 3 V. Not 100% tested. Includes RY/BY# pin. 40 Am29LV065MU September 12, 2006 DATA SHEET TEST CONDITIONS Table 12. 3.3 V 2.7 kΩ Test Condition Output Load Output Load Capacitance, CL (including jig capacitance) CL 6.2 kΩ Input Rise and Fall Times Input Pulse Levels Input timing measurement reference levels (See Note) Note: Diodes are IN3064 or equivalent Output timing measurement reference levels Test Specifications All Speeds 1 TTL gate 30 5 0.0–3.0 1.5 0.5 VIO pF ns V V V Unit Device Under Test Figure 12. Test Setup Note: If VIO < VCC, the reference level is 0.5 VIO. KEY TO SWITCHING WAVEFORMS WAVEFORM INPUTS Steady Changing from H to L Changing from L to H Don’t Care, Any Change Permitted Does Not Apply Changing, State Unknown Center Line is High Impedance State (High Z) OUTPUTS 3.0 V 0.0 V Input 1.5 V Measurement Level 0.5 VIO V Output Note: If VIO < VCC, the input measurement reference level is 0.5 VIO. Figure 13. Input Waveforms and Measurement Levels September 12, 2006 Am29LV065MU 41 DATA SHEET AC CHARACTERISTICS Read-Only Operations Parameter JEDE C Std. Description tAVAV tAVQV tELQV tRC Read Cycle Time (Note 1) tACC Address to Output Delay tCE Chip Enable to Output Delay CE#, OE# = VIL OE# = VIL Test Setup Min Max Max Max Max Max Max Min Min Min 90R 90 90 90 25 25 101, 101R 100 100 100 30 30 30 30 25 25 0 0 10 Speed Options 112R 110 110 110 40 40 30 30 112 120R 120 120 120 40 40 120 Unit ns ns ns ns ns ns ns ns ns ns tPACC Page Access Time tGLQV tEHQZ tGHQZ tAXQX tOE Output Enable to Output Delay tDF tDF tOH Chip Enable to Output High Z (Note 1) Output Enable to Output High Z (Note 1) Output Hold Time From Addresses, CE# or OE#, Whichever Occurs First Read Toggle and Data# Polling Output Enable tOEH Hold Time (Note 1) Notes: 1. Not 100% tested. 2. See Figure 11 and Table 12 for test specifications. 3. AC specifications listed are tested with VIO = VCC. Contact AMD for more information on AC Operation with VIO ≠VCC. tRC Addresses CE# tRH tRH OE# tOEH WE# HIGH Z Outputs RESET# RY/BY# Output Valid tCE tOH HIGH Z tOE tDF Addresses Stable tACC 0V Figure 14. Read Operation Timings 42 Am29LV065MU September 12, 2006 DATA SHEET AC CHARACTERISTICS A22-A3 Same Page A2-A0 Aa tACC Ab tPACC Ac tPACC tPACC Ad Data Bus CE# OE# Figure 15. Qa Qb Qc Qd Page Read Timings September 12, 2006 Am29LV065MU 43 DATA SHEET AC CHARACTERISTICS Hardware Reset (RESET#) Parameter JEDEC Std tReady tReady tRP tRH tRPD tRB Description RESET# Pin Low (During Embedded Algorithms) to Read Mode (See Note) RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note) RESET# Pulse Width Reset High Time Before Read (See Note) RESET# Low to Standby Mode RY/BY# Recovery Time Max Max Min Min Min Min All Speed Options 20 500 500 50 20 0 Unit μs ns ns ns μs ns Note: Not 100% tested. RY/BY# CE#, OE# tRH RESET# tRP tReady Reset Timings NOT during Embedded Algorithms Reset Timings during Embedded Algorithms tReady RY/BY# tRB CE#, OE# RESET# tRP Figure 16. Reset Timings 44 Am29LV065MU September 12, 2006 DATA SHEET AC CHARACTERISTICS Erase and Program Operations Parameter JEDEC tAVAV tAVWL Std. tWC tAS tASO tWLAX tAH tAHT tDVWH tWHDX tDS tDH Description Write Cycle Time (Note 1) Address Setup Time Address Setup Time to OE# low during toggle bit polling Address Hold Time Address Hold Time From CE# or OE# high during toggle bit polling Data Setup Time Data Hold Time Min Min Min Min Min Min Min Min Min Min Min Min Min Typ Typ Typ Typ Typ Typ Min Min Min Max 90 Max 100 4 Speed Options 101, 112, 120, 90R 101R 112R 120R Unit 90 100 0 15 45 0 45 0 20 0 0 0 35 30 352 11 8.8 100 90 0.5 250 50 0 110 120 110 120 ns ns ns ns ns ns ns ns ns ns ns ns ns µs µs µs µs µs sec ns µs ns ns µs tOEPH Output Enable High during toggle bit polling tGHWL tELWL tWHEH tWLWH tWHDL tGHWL tCS tCH tWP tWPH Read Recovery Time Before Write (OE# High to WE# Low) CE# Setup Time CE# Hold Time Write Pulse Width Write Pulse Width High Write Buffer Program Operation (Note 2), (Note 3) Effective Byte Program Time, using the Write Buffer (Note 2), (Note 4) tWHWH1 tWHWH1 Effective Accelerated Byte Program Time, using the Write Buffer (Notes (Note 2), (Note 4) Single Byte Program Operation (Note 2), (Note 5) Accelerated Single Byte Programming Operation (Note 2), (Note 5) tWHWH2 tWHWH2 Sector Erase Operation (Note 2) tVHH tVCS tRB VHH Rise and Fall Time (Note 1) VCC Setup Time (Note 1) Write Recovery Time from RY/BY# tBUSY WE# High to RY/BY# Low tPOLL Program Valid Before Status Polling (Note 7) Notes: 1. 2. 3. 4. 5. 6. Not 100% tested. See the “Erase And Programming Performance” section for more information. For 1–32 bytes programmed. Effective write buffer specification is based upon a 32-byte write buffer operation. five Byte programming specification is based upon a single byte programming operation not utilizing the write buffer. AC specifications listed are tested with VIO = VCC. Contact AMD for information on AC operation with VIO 7. command is issued within tPOLL, tPOLL must be fully re-applied upon resuming the programming operation. If the suspend command is issued after tPOLL, tPOLL is not required again prior to reading the status bits upon resuming. ≠ VCC. When using the program suspend/resume feature, if the suspend September 12, 2006 Am29LV065MU 45 DATA SHEET AC CHARACTERISTICS Program Command Sequence (last two cycles) tWC Addresses 555h tAS PA tAH CE# OE# tPOLL tWP WE# tCS tDS Data tDH PD tBUSY RY/BY# Status DOUT tRB tWPH tWHWH1 PA PA Read Status Data (last two cycles) tCH A0h VCC tVCS Notes:. PA = program address, PD = program data, DOUT is the true data at the program address. Figure 17. Program Operation Timings VHH ACC VIL or VIH tVHH tVHH VIL or VIH Figure 18. Accelerated Program Timing Diagram 46 Am29LV065MU September 12, 2006 DATA SHEET AC CHARACTERISTICS Erase Command Sequence (last two cycles) tWC Addresses XXXh tAS SA XXXh for chip erase Read Status Data VA tAH VA CE# OE# tWP WE# tCS tDS tCH tWPH tWHWH2 tDH Data 55h 30h 10 for Chip Erase In Progress Complete tBUSY RY/BY# tVCS VCC tRB Notes: SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”) Figure 19. Chip/Sector Erase Operation Timings September 12, 2006 Am29LV065MU 47 DATA SHEET AC CHARACTERISTICS tRC Addresses tPOLL CE# tCH OE# tOEH WE# tOH DQ15 and DQ7 Complement Complement True Valid Data High Z VA tACC tCE VA VA tOE tDF DQ14–DQ8, DQ6–DQ0 tBUSY RY/BY# Status Data Status Data True Valid Data High Z Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle. Figure 20. Data# Polling Timings (During Embedded Algorithms) 48 Am29LV065MU September 12, 2006 DATA SHEET AC CHARACTERISTICS tAHT Addresses tAHT tASO CE# tOEH WE# tOEPH OE# tDH DQ6/DQ2 Valid Data Valid Status tAS tCEPH tOE Valid Status Valid Status Valid Data (first read) RY/BY# (second read) (stops toggling) Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle Figure 21. Toggle Bit Timings (During Embedded Algorithms) Enter Embedded Erasing WE# Erase Suspend Erase Enter Erase Suspend Program Erase Suspend Program Erase Resume Erase Suspend Read Erase Erase Complete Erase Suspend Read DQ6 DQ2 Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6. Figure 22. DQ2 vs. DQ6 September 12, 2006 Am29LV065MU 49 DATA SHEET AC CHARACTERISTICS Temporary Sector Unprotect Parameter JEDEC Std tVIDR tRSP tRRB Description VID Rise and Fall Time (See Note) RESET# Setup Time for Temporary Sector Unprotect RESET# Hold Time from RY/BY# High for Temporary Sector Group Unprotect Min Min Min All Speed Options 500 4 4 Unit ns µs µs Note: Not 100% tested. VID RESET# VSS, VIL, or VIH tVIDR Program or Erase Command Sequence CE# tVIDR VID VSS, VIL, or VIH WE# tRSP RY/BY# tRRB Figure 23. Temporary Sector Group Unprotect Timing Diagram 50 Am29LV065MU September 12, 2006 DATA SHEET AC CHARACTERISTICS VID VIH RESET# SA, A6, A1, A0 Valid* Sector Group Protect or Unprotect Valid* Verify 40h Sector Group Protect: 150 µs, Sector Group Unprotect: 15 ms Valid* Data 60h 60h Status 1 µs CE# WE# OE# * For sector group protect, A6:A0 = 0xx0010. For sector group unprotect, A6:A0 = 1xx0010. Figure 24. Sector Group Protect and Unprotect Timing Diagram September 12, 2006 Am29LV065MU 51 DATA SHEET AC CHARACTERISTICS Alternate CE# Controlled Erase and Program Operations Parameter JEDEC tAVAV tAVWL tELAX tDVEH tEHDX tGHEL tWLEL tEHWH tELEH tEHEL Std. tWC tAS tAH tDS tDH tGHEL tWS tWH tCP tCPH Description Write Cycle Time (Note Notes 1) Address Setup Time Address Hold Time Data Setup Time Data Hold Time Read Recovery Time Before Write (OE# High to WE# Low) WE# Setup Time WE# Hold Time CE# Pulse Width CE# Pulse Width High Write Buffer Program Operation (Notes Notes 2, Notes 3) Effective Byte Program Time, using the Write Buffer (Notes Notes 2, Notes 4) tWHWH1 tWHWH1 Effective Accelerated Byte Program Time, using the Write Buffer (Notes Notes 2, Notes 4) Single Byte Program Operation (Note Notes 2, Notes 5) Accelerated Single Byte Programming Operation (Note Notes 2, Notes 5) tWHWH2 tWHWH2 tRH tPOLL Sector Erase Operation (Note Notes 2) RESET # High Time Before Write (Note Notes 1) Program Valid Before Status Polling (Note Notes 7) Min Min Min Min Min Min Min Min Min Min Typ Typ 90R 90 Speed Options 101, 101R 100 0 45 45 0 0 0 0 45 30 352 11 112, 112R 110 120, 120R 120 Unit ns ns ns ns ns ns ns ns ns ns µs µs Typ 8.8 µs Typ Typ Typ Min Max 100 90 0.5 50 4 µs µs sec ns µs Notes: 1. Not 100% tested. 2. See the “Erase And Programming Performance” section for more information. 3. For 1–32 bytes programmed. 4. Effective write buffer specification is based upon a 32-byte write buffer operation. 5. Byte programming specification is based upon a single byte programming operation not utilizing the write buffer. 6. AC specifications listed are tested with VIO = VCC. Contact AMD for information on AC operation with VIO ≠ VCC. 7. When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be fully re-applied upon resuming the programming operation. If the suspend command is issued after tPOLL, tPOLL is not required again prior to reading the status bits upon resuming. 52 Am29LV065MU September 12, 2006 DATA SHEET AC CHARACTERISTICS 555 for program 2AA for erase PA for program SA for sector erase 555 for chip erase Data# Polling PA Addresses tWC tWH WE# tGHEL OE# tCP CE# tWS tCPH tDS tDH Data tRH A0A0 for program PD for program 5555 for erase 3030 for sector erase 1010 for chip erase tAS tAH tPOLL tWHWH1 or 2 tBUSY DQ7#, DQ15 DOUT RESET# RY/BY# Notes: 1. Figure indicates last two bus cycles of a program or erase operation. 2. PA = program address, SA = sector address, PD = program data. 3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device. Figure 25. Alternate CE# Controlled Write (Erase/Program) Operation Timings September 12, 2006 Am29LV065MU 53 DATA SHEET ERASE AND PROGRAMMING PERFORMANCE Parameter Sector Erase Time Chip Erase Time Effective Byte Program Time, using the Write Buffer (Note 3) Effective Accelerated Byte Program Time, using the Write Buffer (Note 3) Single Byte Program Time Accelerated Single Byte Program Time (Note 4) Chip Program Time, using the Write Buffer Typ (Note 1) 0.5 64 11 8.8 100 90 92 Max (Note 2) 15 128 57 49 800 720 170 Unit sec sec µs µs µs µs sec Comments Excludes 00h programming prior to erasure (Note 5) Excludes system level overhead (Note 6) Notes: 1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 100,000 cycles. Additionally, programming typicals assume checkerboard pattern. Under worst case conditions of 90°C, VCC = 3.0 V, 100,000 cycles. Effective write buffer specification is based upon a 32–byte write buffer operation. Byte programming specification is based upon a single byte programming operation not utilizing the write buffer. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 10 for further information on command definitions. 7. The device has a minimum erase and program cycle endurance of 100,000 cycles. 2. 3. 4. 5. 6. LATCHUP CHARACTERISTICS Description Input voltage with respect to VSS on all pins except I/O pins (including A9, OE#, and RESET#) Input voltage with respect to VSS on all I/O pins VCC Current Min –1.0 V –1.0 V –100 mA Max 12.5 V VCC + 1.0 V +100 mA Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time. 54 Am29LV065MU September 12, 2006 DATA SHEET TSOP PIN AND BGA PACKAGE CAPACITANCE Parameter Symbol CIN COUT CIN2 Notes: 1. Sampled, not 100% tested. 2. Test conditions TA = 25°C, f = 1.0 MHz. Parameter Description Input Capacitance Test Setup VIN = 0 VOUT = 0 VIN = 0 TSOP BGA TSOP BGA TSOP BGA Typ 6 4.2 8.5 5.4 7.5 3.9 Max 7.5 5.0 12 6.5 9 4.7 Unit pF pF pF pF pF pF Output Capacitance Control Pin Capacitance DATA RETENTION Parameter Description Minimum Pattern Data Retention Time Test Conditions 150°C 125°C Min 10 20 Unit Years Years September 12, 2006 Am29LV065MU 55 DATA SHEET PHYSICAL DIMENSIONS TS 048—48-Pin Standard Thin Small Outline Package Dwg rev AA; 10/99 56 Am29LV065MU September 12, 2006 DATA SHEET PHYSICAL DIMENSIONS TSR048—48-Pin Reverse Thin Small Outline Package Dwg rev AA; 10/99 September 12, 2006 Am29LV065MU 57 DATA SHEET PHYSICAL DIMENSIONS FBE063—63-Ball Fine-Pitch Ball Grid Array, 12 x 11 mm Package Dwg rev AF; 10/99 58 Am29LV065MU September 12, 2006 DATA SHEET REVISION SUMMARY Revision A (August 3, 2001) Initial release as abbreviated Advance Information data sheet. Revision B+2 (September 10, 2002) Product Selector Guide Added Note 2. Ordering Information Added Note 1. Sector Erase Command Sequence Deleted statement that describes the outcome of when the Embedded Erase operation is in progress. Revision A+1 (October 3, 2001) Global Added 120 ns device, changed 100 ns, VIO = 1.65–2.7 V device to 110 ns, changed 90 ns operating range to 3.0–3.6 V. Physical Dimensions Added section. Revision B+3 (November 7, 2002) Product Selector Guide and Read Only Operations Changed the page access times and TOE Customer Lockable: SecSi Sector NOT Programmed or Protected at the factory. Added second bullet, SecSi sector-protect verify text and figure 3. SecSi Sector Flash Memory Region, and Enter SecSi Sector/Exit SecSi Sector Command Sequence Noted that the ACC function and unlock bypass modes are not available when the SecSi sector is enabled. Byte/Word Program Command Sequence, Sector Erase Command Sequence, and Chip Erase Command Sequence Noted that the SecSi Sector, autoselect, and CFI functions are unavailable when a program or erase operation is in progress.” Common Flash Memory Interface (CFI) Revision B (April 26, 2002) Expanded data sheet to full specification version. Revision B+1 (August 9, 2002) MIRRORBIT 64 MBIT Device Family Added 64 Fortified BGA to LV640MU device. Alternate CE# Controlled Erase and Program Operations Added tRH parameter to table. Erase and Program Operations Added tBUSY parameter to table. Figure 16. Program Operation Timings Added RY/BY# to waveform. TSOP and BGA PIN Capacitance Added the FBGA package. Program Suspend/Program Resume Command Sequence Changed 15 μs typical to maximum and added 5 μs typical. Erase Suspend/Erase Resume Commands Changed typical from 20 μs to 5 μs and added a maximum of 20 μs. Special package handling instructions Modified the special handling wording. DC Characteristics table Deleted the IACC specification row. CFI Changed text in the third paragraph of CFI to read “reading array data.” Changed wording in last sentence of third paragraph from, “...the autoselect mode.” to “...reading array data.” Changed CFI website address. Revision B+4 (February 17, 2003) Distinctive Characteristics Corrected performance characteristics. Product Selector Guide Removed 90R speed option. Added note 2. Ordering Information Corrected Valid Combination to reflect speed option changes. Added Note. September 12, 2006 Am29LV065MU 59 DATA AC Characteristics Added Note Input values in the tWHWH1 and tWHWH2 parameters in the Erase and Program Options table that were previously TBD. Also added notes 5 and 6. Input values in the tWHWH1 and tWHWH2 parameters in the Alternate CE# Controlled Erase and Program Options table that were previously TBD. Also added notes 5. Erase and Programming Performance Input values into table that were previously TBD. Added note 4. SecSi (Secured Silicon) Sector Flash Memory Region Corrected SecSi Sector address range in table. Corrected the address to find the 16–byte random ESN. SHEET AC Characteristics - Erase and Program Operations Added tPOLL information. Added note. Trademarks Updated. ESN. Revision C + 1 (August 23, 2004) Added Max programming specifications. Added notation referencing superseding documentation. Revision C + 2 (November 9, 2004) Added Pb-free options. Revision C + 3 (December 13, 2005) This product has been retired and is not available for designs. For new and current designs, S29GL064A supersedes Am29LV065MU and is the factory-recomm e n d e d m i g r a t i o n p a t h . P l e a s e r e fe r t o t h e S29GL064A datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only. Trademark updated. Revision C (February 17, 2004) Table 1 Device Bus Operations Modified ACC column to replace instances of X to L/H. Table 10: Command Definitions Replaced the Addr information for both Program/Erase Suspend and Program/Erase Resume from BA to XXX. DC Characteristics - CMOS Compatible Removed additional sentence from note 4. Erase Suspend/Erase Resume Commands Added note on flash device performance during suspend/erase mode. Colophon Revision C4 (September 12, 2006) Erase and Program Operations table Changed tBUSY to a maximum specification. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion Inc. will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products. Trademarks Copyright © 2001–2005 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc. ExpressFlash is a trademark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Copyright © 2006 Spansion Inc. All Rights Reserved. Spansion, the Spansion logo, MirrorBit, ORNAND, HD-SIM, and combinations thereof are trademarks of Spansion Inc. Other names are for informational purposes only and may be trademarks of their respective owners. 60 Am29LV065MU September 12, 2006
AM29LV065MU90RWHI 价格&库存

很抱歉,暂时无法提供与“AM29LV065MU90RWHI”相匹配的价格&库存,您可以联系我们找货

免费人工找货