Am29LV640MT/B
Data Sheet
RETIRED PRODUCT
This product has been retired and is not available for designs. For new and current designs, S29GL064A supersedes Am29LV640MT/B and is the factory-recommended migration path. Please refer to the S29GL064A datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.
Continuity of Specifications
There is no change to this data sheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal data sheet improvement and are noted in the document revision summary.
For More Information
Please contact your local sales office for additional information about Spansion memory solutions.
Publication Number 26190 Revision C
Amendment 8 Issue Date February 1, 2007
THIS PAGE LEFT INTENTIONALLY BLANK.
DATA SHEET
Am29LV640MT/B
64 Megabit (4 M x 16-Bit/8 M x 8-Bit) MirrorBit™ 3.0 Volt-only Boot Sector Flash Memory
This product has been retired and is not available for designs. For new and current designs, S29GL064A supersedes Am29LV640M T/B and is the factory-recommended migration path. Please refer to the S29GL064A datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.
DISTINCTIVE CHARACTERISTICS
ARCHITECTURAL ADVANTAGES Single power supply operation — 3 V for read, erase, and program operations Manufactured on 0.23 µm MirrorBit process technology Secured Silicon Sector region — 128-word/256-byte sector for permanent, secure identification through an 8-word/16-byte random Electronic Serial Number, accessible through a command sequence — Can be programmed and locked at the factory or by the customer Flexible sector architecture — One hundred twenty-seven 32 Kword/64-Kbyte sectors — Eight 4 Kword/8 Kbyte boot sectors Compatibility with JEDEC standards — Provides pinout and software compatibility for single-power supply flash, and superior inadvertent write protection Minimum 100,000 erase cycle guarantee per sector 20-year data retention at 125°C PERFORMANCE CHARACTERISTICS High performance — 90 ns access time — 25 ns page read times — 0.5 s typical sector erase time — 22 µs typical effective write buffer word programming time: 16-word/32-byte write buffer reduces overall programming time for multiple-word/byte updates — 4-word/8-byte page read buffer — 16-word/32-byte write buffer Low power consumption (typical values at 3.0 V, 5 MHz) — 30 mA typical active read current — 50 mA typical erase/program current — 1 µA typical standby mode current Package options — 48-pin TSOP — 63-ball Fine-pitch BGA — 64-ball Fortified BGA SOFTWARE & HARDWARE FEATURES Software features — Program Suspend & Resume: read other sectors before programming operation is completed — Erase Suspend & Resume: read/program other sectors before an erase operation is completed — Data# polling & toggle bits provide status — Unlock Bypass Program command reduces overall multiple-word programming time — CFI (Common Flash Interface) compliant: allows host system to identify and accommodate multiple flash devices Hardware features — Sector Group Protection: hardware-level method of preventing write operations within a sector group — Temporary Sector Unprotect: VID-level method of changing code in locked sectors — WP#/ACC input: Write Protect input (WP#) protects top or bottom two sectors regardless of sector protection settings ACC (high voltage) accelerates programming time for higher throughput during system production — Hardware reset input (RESET#) resets device — Ready/Busy# output (RY/BY#) indicates program or erase cycle completion
Publication# 26190 Rev: C Amendment/8 Issue Date: February 1, 2007
DATA
SHEET
GENERAL DESCRIPTION
The Am29LV640M is a 64 Mbit, 3.0 volt single power supply flash memory device organized as 4,194,304 words o r 8,388 ,6 08 bytes. The device has an 8-bit/16-bit bus and can be programmed either in the host system or in standard EPROM programmers. An access time of 90, 100, 110, or 120 ns is available. Note that each access time has a specific operating voltage range (VCC) and an I/O voltage range (VIO), as specified in Product Selector Guide on page 6 and Ordering Information on page 10. The device is offered in a 48-pin TSOP, 63-ball Fine-pitch BGA or 64-ball Fortified BGA package. Each device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls. Each device requires only a single 3.0 volt power supply for both read and write functions. In addition to a V CC i nput, a high-voltage a ccelerated program (ACC) function provides shorter programming times through increased current on the WP#/ACC input. This feature is intended to facilitate factory throughput during system production, but can also be used in the field if desired. The device is entirely command set compatible with the JEDEC single-power-supply Flash standard . Commands are written to the device using standard microprocessor write timing. Write cycles also internally latch addresses and data needed for the programming and erase operations. The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory. Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy# (RY/BY#) output to determine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces command sequence overhead by requiring only two write cycles to program data instead of four. Hardware data protection measures include a low VCC detector that automatically inhibits write operations during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of memory. This is achieved in-system or via programming equipment. The Erase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or program any other sector and then complete the erase operation. The P rogram Suspend/Program Resume feature enables the host system to pause a program operation in a given sector to read any other sector and then complete the program operation. The hardware RESET# pin terminates any operation in progress and resets the device, after which it is then ready for a new operation. The RESET# pin can be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device. The device reduces power consumption in the standby mode when it detects specific voltage levels on CE# and RESET#, or when addresses have been stable for a specified period of time. The Write Protect (WP#) feature protects the top or bottom two sectors by asserting a logic low on the WP#/ACC pin. The protected sector is still protected even during accelerated programming. The Secured Silicon Sector provides a 128-word/256-byte area for code or data that can be permanently protected. Once this sector is protected, no further changes within the sector can occur. AMD MirrorBit flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via hot-hole assisted erase. The data is programmed using hot electron injection.
2
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
MIRRORBIT 64 MBIT DEVICE FAMILY
Device LV065MU LV640MT/B LV640MH/L LV641MH/L LV640MU Bus x8 x8/x16 x8/x16 x16 x16 Sector Architecture Uniform (64 Kbyte) Boot (8 x 8 Kbyte at top & bottom) Uniform (64 Kbyte) Uniform (32 Kword) Uniform (32 Kword) Packages 48-pin TSOP (std. & rev. pinout), 63-ball FBGA 48-pin TSOP, 63-ball Fine-pitch BGA, 64-ball Fortified BGA 56-pin TSOP (std. & rev. pinout), 64-ball Fortified BGA 48-pin TSOP (std. & rev. pinout) 64-ball Fortified BGA, 63-ball Fine-pitch BGA VIO Yes No Yes Yes Yes RY/BY# Yes Yes Yes No Yes WP#, ACC ACC only WP#/ACC pin WP#/ACC pin Separate WP# and ACC pins ACC only WP# Protection No WP# 2 x 8 Kbyte top or bottom 1 x 64 Kbyte high or low 1 x 32 Kword top or bottom No WP#
RELATED DOCUMENTS
To download related documents, click on the following links or go to www.amd.com→Flash Memory→Product Information→MirrorBit→Flash Information→Technical Documentation. MirrorBit™ Flash Memory Write Buffer Programming and Page Buffer Read Implementing a Common Layout for AMD MirrorBit and Intel StrataFlash Memory Devices Migrating from Single-byte to Three-byte Device IDs AMD MirrorBit™ White Paper
February 1, 2007 26190C8
Am29LV640MT/B
3
DATA
SHEET
TABLE OF CONTENTS
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 7 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . 10 Device Bus Operations . . . . . . . . . . . . . . . . . . . . 11
Table 1. Device Bus Operations .....................................................11
Sector Erase Command Sequence ........................................ 33
Figure 7. Erase Operation.............................................................. 34
Erase Suspend/Erase Resume Commands ........................... 35 Command Definitions ............................................................. 36
Table 12. Command Definitions (x16 Mode, BYTE# = VIH) ............ 36 Table 13. Command Definitions (x8 Mode, BYTE# = VIL)............... 37
Write Operation Status . . . . . . . . . . . . . . . . . . . . . 38 DQ7: Data# Polling ................................................................. 38
Figure 8. Data# Polling Algorithm .................................................. 38
Word/Byte Configuration ........................................................ 11 Requirements for Reading Array Data ................................... 11 Page Mode Read .................................................................... 12 Writing Commands/Command Sequences ............................ 12 Write Buffer ............................................................................. 12 Accelerated Program Operation ............................................. 12 Autoselect Functions .............................................................. 12 Standby Mode ........................................................................ 12 Automatic Sleep Mode ........................................................... 13 RESET#: Hardware Reset Pin ............................................... 13 Output Disable Mode .............................................................. 13
Table 2. Am29LV640MT Top Boot Sector Architecture ..................13 Table 3. Am29LV640MB Bottom Boot Sector Architecture .............16
RY/BY#: Ready/Busy#............................................................ 39 DQ6: Toggle Bit I .................................................................... 39
Figure 9. Toggle Bit Algorithm........................................................ 40
DQ2: Toggle Bit II ................................................................... 40 Reading Toggle Bits DQ6/DQ2 ............................................... 40 DQ5: Exceeded Timing Limits ................................................ 41 DQ3: Sector Erase Timer ....................................................... 41 DQ1: Write-to-Buffer Abort ..................................................... 41
Table 14. Write Operation Status ................................................... 41
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 42
Figure 10. Maximum Negative Overshoot Waveform ................... 42 Figure 11. Maximum Positive Overshoot Waveform..................... 42
Autoselect Mode..................................................................... 19
Table 4. Autoselect Codes, (High Voltage Method) .......................19
Sector Group Protection and Unprotection ............................. 20
Table 5. Am29LV640MT Top Boot Sector Protection .....................20 Table 6. Am29LV640MB Bottom Boot Sector Protection ................20
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 42 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 43 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 12. Test Setup.................................................................... 44 Table 15. Test Specifications ......................................................... 44
Write Protect (WP#) ................................................................ 21 Temporary Sector Group Unprotect ....................................... 21
Figure 1. Temporary Sector Group Unprotect Operation................ 21 Figure 2. In-System Sector Group Protect/Unprotect Algorithms ... 22
Key to Switching Waveforms. . . . . . . . . . . . . . . . 44
Figure 13. Input Waveforms and Measurement Levels...................................................................... 44
Secured Silicon Sector Flash Memory Region ....................... 23
Table 7. Secured Silicon Sector Contents ......................................23 Figure 3. Secured Silicon Sector Protect Verify .............................. 24
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 45 Read-Only Operations ........................................................... 45
Figure 14. Read Operation Timings ............................................... 45 Figure 15. Page Read Timings ...................................................... 46
Hardware Data Protection ...................................................... 24 Low VCC Write Inhibit ............................................................ 24 Write Pulse “Glitch” Protection ............................................... 24 Logical Inhibit .......................................................................... 24 Power-Up Write Inhibit ............................................................ 24 Common Flash Memory Interface (CFI) . . . . . . . 24 Table 8. CFI Query Identification String .............................. 25
Table 9. System Interface String......................................................25
Hardware Reset (RESET#) .................................................... 47
Figure 16. Reset Timings ............................................................... 47
Erase and Program Operations .............................................. 48
Figure 17. Program Operation Timings.......................................... Figure 18. Accelerated Program Timing Diagram.......................... Figure 19. Chip/Sector Erase Operation Timings .......................... Figure 20. Data# Polling Timings (During Embedded Algorithms). Figure 21. Toggle Bit Timings (During Embedded Algorithms)...... Figure 22. DQ2 vs. DQ6................................................................. 49 49 50 51 52 52
Table 10. Device Geometry Definition................................. 26 Table 11. Primary Vendor-Specific Extended Query........... 27 Command Definitions . . . . . . . . . . . . . . . . . . . . . 27 Reading Array Data ................................................................ 27 Reset Command ..................................................................... 28 Autoselect Command Sequence ............................................ 28 Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence .............................................................. 28 Word/Byte Program Command Sequence ............................. 28 Unlock Bypass Command Sequence ..................................... 29 Write Buffer Programming ...................................................... 29 Accelerated Program .............................................................. 30
Figure 4. Write Buffer Programming Operation............................... 31 Figure 5. Program Operation .......................................................... 32
Temporary Sector Unprotect .................................................. 53
Figure 23. Temporary Sector Group Unprotect Timing Diagram ... 53 Figure 24. Sector Group Protect and Unprotect Timing Diagram .. 54
Alternate CE# Controlled Erase and Program Operations ..... 55
Figure 25. Alternate CE# Controlled Write (Erase/Program) Operation Timings.......................................................................... 56
Program Suspend/Program Resume Command Sequence ... 32
Figure 6. Program Suspend/Program Resume............................... 33
Chip Erase Command Sequence ........................................... 33 4
Erase And Programming Performance. . . . . . . . 57 Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 57 TSOP Pin and BGA Package Capacitance . . . . . 58 Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 59 TS 048—48-Pin Standard Pinout Thin Small Outline Package (TSOP) ................................................................................... 59 FBE063—63-Ball Fine-pitch Ball Grid Array (FBGA) 12 x 11 mm Package .............................................................. 60 LAA064—64-Ball Fortified Ball Grid Array (FBGA) 13 x 11 mm Package .............................................................. 61 26190C8 February 1, 2007
Am29LV640MT/B
DATA Revision Summary. . . . . . . . . . . . . . . . . . . . . . . . 62
SHEET
February 1, 2007 26190C8
Am29LV640MT/B
5
DATA
SHEET
PRODUCT SELECTOR GUIDE
Part Number Speed Option VCC = 3.0–3.6 V VCC = 2.7–3.6 V 90 90 25 25 90R 100R 100 100 100 30 30 30 30 110 110 40 40 30 30 Am29LV640M 110R 110 120 120 40 40 120R 120
Max. Access Time (ns) Max. CE# Access Time (ns) Max. Page access time (tPACC) Max. OE# Access Time (ns)
Note: See AC Characteristics on page 45 for full specifications.
BLOCK DIAGRAM
RY/BY# VCC VSS Erase Voltage Generator RESET# WE# WP#/ACC BYTE# Input/Output Buffers Sector Switches DQ0–DQ15 (A-1)
State Control Command Register
PGM Voltage Generator Chip Enable Output Enable Logic STB Data Latch
CE# OE#
STB VCC Detector Timer Address Latch
Y-Decoder
Y-Gating
X-Decoder
Cell Matrix
A21–A0
6
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
CONNECTION DIAGRAMS
A15 A14 A13 A12 A11 A10 A9 A8 A19 A20 WE# RESET# A21 WP#/ACC RY/BY# A18 A17 A7 A6 A5 A4 A3 A2 A1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
48-Pin Standard TSOP
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
A16 BYTE# VSS DQ15/A-1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VCC DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 OE# VSS CE# A0
A8 NC A7 NC
B8 NC B7 NC C7 A13 C6 A9 C5 WE# C4 D7 A12 D6 A8 D5 RESET# D4
63-ball Fine-pitch BGA (FBGA) Top View, Balls Facing Down
E7 A14 E6 A10 E5 A21 E4 A18 E3 A6 E2 A2 F7 A15 F6 A11 F5 A19 F4 A20 F3 A5 F2 A1 G7 A16 G6 DQ7 G5 DQ5 G4 DQ2 G3 DQ0 G2 A0 H7 J7 K7 VSS K6 DQ6 K5 DQ4 K4 DQ3 K3 DQ1 K2 VSS
L8 NC* L7 NC*
M8 NC* M7 NC*
BYTE# DQ15/A-1 H6 DQ14 H5 DQ12 H4 DQ10 H3 DQ8 H2 CE# J6 DQ13 J5 VCC J4 DQ11 J3 DQ9 J2 OE#
RY/BY# WP#/ACC C3 A7 A2 NC* A1 NC* B1 C2 A3 D3 A17 D2 A4
L2 NC* L1
M2 NC* M1 NC*
* Balls are shorted together via the substrate but not connected to the die.
NC*
NC*
February 1, 2007 26190C8
Am29LV640MT/B
7
DATA
SHEET
CONNECTION DIAGRAMS
64-Ball Fortified BGA (fBGA) Top View, Balls Facing Down
A8 NC A7 A13 A6 A9 A5 WE# A4
B8 NC B7 A12 B6 A8 B5 RESET# B4
C8 NC C7 A14 C6 A10 C5 A21 C4 A18 C3 A6 C2 A2 C1 NC
D8 NC D7 A15 D6 A11 D5 A19 D4 A20 D3 A5 D2 A1 D1 NC
E8 VSS E7 A16 E6 DQ7 E5 DQ5 E4 DQ2 E3 DQ0 E2 A0 E1 NC
F8 NC F7
G8 NC G7
H8 NC H7 VSS H6 DQ6 H5 DQ4 H4 DQ3 H3 DQ1 H2 VSS H1 NC
BYTE# DQ15/A-1 F6 DQ14 F5 DQ12 F4 DQ10 F3 DQ8 F2 CE# F1 NC G6 DQ13 G5 VCC G4 DQ11 G3 DQ9 G2 OE# G1 NC
RY/BY# WP#/ACC A3 A7 A2 A3 A1 NC B3 A17 B2 A4 B1 NC
Special Package Handling Instructions
Special handling is required for Flash Memory products in molded packages (TSOP and BGA). The package
and/or data integrity can be compromised if the package body is exposed to temperatures above 150 ° C for prolonged periods of time.
8
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
PIN DESCRIPTION
A21–A0 = 22 Address inputs DQ14–DQ0 = 15 Data inputs/outputs DQ15/A-1 CE# OE# WE# WP#/ACC RESET# RY/BY# BYTE# VCC = DQ15 (Data input/output, word mode), A-1 (LSB Address input, byte mode) = Chip Enable input = Output Enable input = Write Enable input = Hardware Write Protect input/Programming Acceleration input = Hardware Reset Pin input = Ready/Busy output = Selects 8-bit or 16-bit mode = 3.0 volt-only single power supply (See Product Selector Guide on page 6 for speed options and voltage supply tolerances.) = Device Ground = Pin Not Connected Internally
LOGIC SYMBOL
22 A21–A0 CE# OE# WE# WP#/ACC RESET# BYTE# RY/BY# DQ15–DQ0 (A-1) 16 or 8
VSS NC
February 1, 2007 26190C8
Am29LV640MT/B
9
DATA
SHEET
ORDERING INFORMATION Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the following: Am29LV640M T 120R PC I
TEMPERATURE RANGE F = Industrial (-40°C to +85°C) with Pb-free Package I = Industrial (–40°C to +85°C) PACKAGE TYPE E = 48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048) PC = 64-Ball Fortified Ball Grid Array 1.0 mm pitch, 13 x 11 mm package (LAA064) WH = 63-Ball Fine Pitch Ball Grid Array 0.80 mm pitch, 12 x 11 mm package (FBE063) SPEED OPTION See Product Selector Guide and Valid Combinations SECTOR ARCHITECTURE AND WP# PROTECTION (WP# = VIL) T = Top boot sector device, top two address sectors protected B = Bottom boot sector device, bottom two address sectors protected DEVICE NUMBER/DESCRIPTION Am29LV640M 64 Megabit (4 M x 16-Bit/8 M x 8-Bit) MirrorBit™ Boot Sector Flash Memory 3.0 Volt-only Read, Program, and Erase
Valid Combinations for TSOP Package Am29LV640MT90R, Am29LV640MB90R Am29LV640MT100, Am29LV640MB100 Am29LV640MT110, Am29LV640MB110 Am29LV640MT120, Am29LV640MB120 Am29LV640MT100R, Am29LV640MB100R Am29LV640MT110R, Am29LV640MB110R Am29LV640MT120R, Am29LV640MB120R
Speed (ns)
VCC Range
Order Number Am29LV640MT90R Am29LV640MB90R WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI WHI PCI
90 100 110 EI EF 120 100 110 120
3.0– 3.6 V
2.7– 3.6 V
Am29LV640MT100 Am29LV640MB100 Am29LV640MT110
3.0– 3.6 V
Am29LV640MB110 Am29LV640MT120 Am29LV640MB120
Valid Combinations
Am29LV640MT100R
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.
Am29LV640MB100R Am29LV640MT110R Am29LV640MB110R Am29LV640MT120R Am29LV640MB120R
Valid Combinations for BGA Packages Package Order Number Marking L640MT90RI Am29LV640MT90R L640MT90NI L640MB90RI Am29LV640MB90R L640MB90NI L640MT10VI Am29LV640MT100 L640MT10PI L640MB10VI Am29LV640MB100 L640MB10PI L640MT11VI Am29LV640MT110 L640MT11PI L640MB11VI Am29LV640MB110 L640MB11PI L640MT12VI Am29LV640MT120 L640MT12PI L640MB12VI Am29LV640MB120 L640MB12PI L640MT10RI Am29LV640MT100R L640MT10NI L640MB10RI Am29LV640MB100R L640MB10NI L640MT11RI Am29LV640MT110R L640MT11NI L640MB11RI Am29LV640MB110R L640MB11NI L640MT12RI Am29LV640MT120R L640MT12NI L640MB12RI Am29LV640MB120R L640MB12NI
WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF WHF PCF
Package Marking L640MT90RF L640MT90NF L640MB90RF L640MB90NF L640MT10VF L640MT10PF L640MB10VF L640MB10PF L640MT11VF L640MT11PF L640MB11VF L640MB11PF L640MT12VF L640MT12PF L640MB12VF L640MB12PF L640MT10RF L640MT10NF L640MB10RF L640MB10NF L640MT11RF L640MT11NF L640MB11RF L640MB11NF L640MT12RF L640MT12NF L640MB12RF L640MB12NF
Speed VCC (ns) Range
90
3.0– 3.6 V
100
110
2.7– 3.6 V
120
100
110
3.0– 3.6 V
120
10
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
DEVICE BUS OPERATIONS
This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the Table 1. register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail.
Device Bus Operations
DQ8–DQ15
Operation Read Write (Program/Erase) Accelerated Program Standby Output Disable Reset Sector Group Protect (Note 2) Sector Group Unprotect (Note 2) Temporary Sector Group Unprotect
CE# L L L VCC ± 0.3 V L X L
OE# L H H X H X H
WE# H L L X H X L
RESET# H H H VCC ± 0.3 V H L VID
WP#
ACC
Addresses (Note 2) AIN AIN AIN X X X SA, A6 =L, A3=L, A2=L, A1=H, A0=L SA, A6=H, A3=L, A2=L, A1=H, A0=L AIN
DQ0– DQ7 DOUT
BYTE# = VIH DOUT
BYTE# = VIL DQ8–DQ14 = High-Z, DQ15 = A-1 High-Z High-Z High-Z X
X (Note 3) (Note 3) X X X H
X X VHH H X X X
(Note 4) (Note 4) (Note 4) (Note 4) High-Z High-Z High-Z (Note 4) High-Z High-Z High-Z X
L
H
L
VID
H
X
(Note 4)
X
X
X
X
X
VID
H
X
(Note 4) (Note 4)
High-Z
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 11.5–12.5 V, X = Don’t Care, SA = Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out Notes: 1. Addresses are A21:A0 in word mode; A21:A-1 in byte mode. Sector addresses are A21:A12 in both modes. 2. The sector protect and sector unprotect functions can also be implemented via programming equipment. See the See Sector Group Protection and Unprotection on page 20. 3. If WP# = VIL, the first or last sector remains protected. If WP# = VIH, the top two or bottom two sectors are protected or unprotected as determined by the method described in Sector Group Protection and Unprotection. All sectors are unprotected when shipped from the factory (The Secured Silicon Sector can be factory protected depending on version ordered.) 4. DIN or DOUT as required by command sequence, data polling, or sector protect algorithm (see Figure 2).
Word/Byte Configuration
The BYTE# pin controls whether the device data I/O pins operate in the byte or word configuration. If the BYTE# pin is set at logic ‘1’, the device is in word configuration, DQ0–DQ15 are active and controlled by CE# and OE#. If the BYTE# pin is set at logic ‘0’, the device is in byte configuration, and only data I/O pins DQ0–DQ7 are active and controlled by CE# and OE#. The data I/O
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH.
February 1, 2007 26190C8
Am29LV640MT/B
11
DATA The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered. See See Reading Array Data on page 27 for more information. See the table, Read-Only Operations on page 45 for timing specifications and to Figure 14 for the timing diagram. Refer to the DC Characteristics table for the active current specification on reading array data. Page Mode Read The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides faster read access speed for random locations within a page. The page size of the device is 4 words/8 bytes. The appropriate page is selected by the higher address bits A(max)–A2. Address bits A1–A0 in word mode (A1–A-1 in byte mode) determine the specific word within a page. This is an asynchronous operation; the microprocessor supplies the specific word location. The random or initial page access is equal to tACC or tCE and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to tPACC. When CE# is deasserted and reasserted for a subsequent access, the access time is t ACC o r t CE . Fast page mode accesses are obtained by keeping the “read-page addresses” constant and changing the “intra-read page” addresses.
SHEET Refer to the DC Characteristics table for the active current specification for the write mode. AC Characteristics on page 45 contains timing specification tables and timing diagrams for write operations. Write Buffer Write Buffer Programming allows the system to write a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. See Write Buffer on page 12 for more information. Accelerated Program Operation The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP#/ACC pin. This function is primarily intended to allow faster manufacturing throughput at the factory. If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin returns the device to normal operation. Note that the WP#/ACC pin must not be at VHH for operations other than accelerated programming, or device damage can result. In addition, no external pullup is necessary since the WP#/ACC pin has internal pullup to VCC. Autoselect Functions If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. See Autoselect Mode on page 19 and Autoselect Command Sequence on page 28 for more information.
Writing Commands/Command Sequences
To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH. The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The Word/Byte Program Command Sequence on page 29 has details on programming data to the device using both standard and Unlock Bypass command sequences. An erase operation can erase one sector, multiple sectors, or the entire device. Table 2 and Table 3 indicates the address space that each sector occupies.
Standby Mode
When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input. The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VCC ± 0.3 V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within VCC ± 0.3 V, the device is in the standby mode, but the standby current is greater. The device requires standard access time (tCE) for read access when the de-
12
Am29LV640MT/B
26190C8 February 1, 2007
DATA vice is in either of these standby modes, before it is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is completed. See the table in DC Characteristics on page 43 for the standby current specification.
SHEET device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. To ensure data integrity, reinitiate the operation that was interrupted, once the device is ready to accept another command sequence. Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS±0.3 V, the standby current is greater. The RESET# pin can be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory. Refer to the AC Characteristics tables for RESET# parameters and to Figure 16 for the timing diagram.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for t ACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. Refer to the DC Characteristics table for the automatic sleep mode current specification.
RESET#: Hardware Reset Pin
The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of tRP, the Table 2.
Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 Sector Address A21–A12 0000000xxx 0000001xxx 0000010xxx 0000011xxx 0000100xxx 0000101xxx 0000110xxx 0000111xxx 0001000xxx 0001001xxx 0001010xxx 0001011xxx 0001100xxx 0001101xxx 0001101xxx 0001111xxx 0010000xxx 0010001xxx 0010010xxx 0010011xxx 0010100xxx 0010101xxx 0010110xxx 0010111xxx 0011000xxx 0011001xxx 0011010xxx
Output Disable Mode
When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state.
Am29LV640MT Top Boot Sector Architecture
Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 000000h–00FFFFh 010000h–01FFFFh 020000h–02FFFFh 030000h–03FFFFh 040000h–04FFFFh 050000h–05FFFFh 060000h–06FFFFh 070000h–07FFFFh 080000h–08FFFFh 090000h–09FFFFh 0A0000h–0AFFFFh 0B0000h–0BFFFFh 0C0000h–0CFFFFh 0D0000h–0DFFFFh 0E0000h–0EFFFFh 0F0000h–0FFFFFh 100000h–00FFFFh 110000h–11FFFFh 120000h–12FFFFh 130000h–13FFFFh 140000h–14FFFFh 150000h–15FFFFh 160000h–16FFFFh 170000h–17FFFFh 180000h–18FFFFh 190000h–19FFFFh 1A0000h–1AFFFFh (x16) Address Range 00000h–07FFFh 08000h–0FFFFh 10000h–17FFFh 18000h–1FFFFh 20000h–27FFFh 28000h–2FFFFh 30000h–37FFFh 38000h–3FFFFh 40000h–47FFFh 48000h–4FFFFh 50000h–57FFFh 58000h–5FFFFh 60000h–67FFFh 68000h–6FFFFh 70000h–77FFFh 78000h–7FFFFh 80000h–87FFFh 88000h–8FFFFh 90000h–97FFFh 98000h–9FFFFh A0000h–A7FFFh A8000h–AFFFFh B0000h–B7FFFh B8000h–BFFFFh C0000h–C7FFFh C8000h–CFFFFh D0000h–D7FFFh
February 1, 2007 26190C8
Am29LV640MT/B
13
DATA
SHEET
Table 2. Am29LV640MT Top Boot Sector Architecture (Continued)
Sector SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 SA71 SA72 SA73 SA74 SA75 SA76 SA77 SA78 SA79 SA80 SA81 Sector Address A21–A12 0011011xxx 0011000xxx 0011101xxx 0011110xxx 0011111xxx 0100000xxx 0100001xxx 0100010xxx 0101011xxx 0100100xxx 0100101xxx 0100110xxx 0100111xxx 0101000xxx 0101001xxx 0101010xxx 0101011xxx 0101100xxx 0101101xxx 0101110xxx 0101111xxx 0110000xxx 0110001xxx 0110010xxx 0110011xxx 0100100xxx 0110101xxx 0110110xxx 0110111xxx 0111000xxx 0111001xxx 0111010xxx 0111011xxx 0111100xxx 0111101xxx 0111110xxx 0111111xxx 1000000xxx 1000001xxx 1000010xxx 1000011xxx 1000100xxx 1000101xxx 1000110xxx 1000111xxx 1001000xxx 1001001xxx 1001010xxx 1001011xxx 1001100xxx 1001101xxx 1001110xxx 1001111xxx 1010000xxx 1010001xxx Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 1B0000h–1BFFFFh 1C0000h–1CFFFFh 1D0000h–1DFFFFh 1E0000h–1EFFFFh 1F0000h–1FFFFFh 200000h–20FFFFh 210000h–21FFFFh 220000h–22FFFFh 230000h–23FFFFh 240000h–24FFFFh 250000h–25FFFFh 260000h–26FFFFh 270000h–27FFFFh 280000h–28FFFFh 290000h–29FFFFh 2A0000h–2AFFFFh 2B0000h–2BFFFFh 2C0000h–2CFFFFh 2D0000h–2DFFFFh 2E0000h–2EFFFFh 2F0000h–2FFFFFh 300000h–30FFFFh 310000h–31FFFFh 320000h–32FFFFh 330000h–33FFFFh 340000h–34FFFFh 350000h–35FFFFh 360000h–36FFFFh 370000h–37FFFFh 380000h–38FFFFh 390000h–39FFFFh 3A0000h–3AFFFFh 3B0000h–3BFFFFh 3C0000h–3CFFFFh 3D0000h–3DFFFFh 3E0000h–3EFFFFh 3F0000h–3FFFFFh 400000h–40FFFFh 410000h–41FFFFh 420000h–42FFFFh 430000h–43FFFFh 440000h–44FFFFh 450000h–45FFFFh 460000h–46FFFFh 470000h–47FFFFh 480000h–48FFFFh 490000h–49FFFFh 4A0000h–4AFFFFh 4B0000h–4BFFFFh 4C0000h–4CFFFFh 4D0000h–4DFFFFh 4E0000h–4EFFFFh 4F0000h–4FFFFFh 500000h–50FFFFh 510000h–51FFFFh (x16) Address Range D8000h–DFFFFh E0000h–E7FFFh E8000h–EFFFFh F0000h–F7FFFh F8000h–FFFFFh F9000h–107FFFh 108000h–10FFFFh 110000h–117FFFh 118000h–11FFFFh 120000h–127FFFh 128000h–12FFFFh 130000h–137FFFh 138000h–13FFFFh 140000h–147FFFh 148000h–14FFFFh 150000h–157FFFh 158000h–15FFFFh 160000h–167FFFh 168000h–16FFFFh 170000h–177FFFh 178000h–17FFFFh 180000h–187FFFh 188000h–18FFFFh 190000h–197FFFh 198000h–19FFFFh 1A0000h–1A7FFFh 1A8000h–1AFFFFh 1B0000h–1B7FFFh 1B8000h–1BFFFFh 1C0000h–1C7FFFh 1C8000h–1CFFFFh 1D0000h–1D7FFFh 1D8000h–1DFFFFh 1E0000h–1E7FFFh 1E8000h–1EFFFFh 1F0000h–1F7FFFh 1F8000h–1FFFFFh 200000h–207FFFh 208000h–20FFFFh 210000h–217FFFh 218000h–21FFFFh 220000h–227FFFh 228000h–22FFFFh 230000h–237FFFh 238000h–23FFFFh 240000h–247FFFh 248000h–24FFFFh 250000h–257FFFh 258000h–25FFFFh 260000h–267FFFh 268000h–26FFFFh 270000h–277FFFh 278000h–27FFFFh 280000h–28FFFFh 288000h–28FFFFh
14
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
Table 2. Am29LV640MT Top Boot Sector Architecture (Continued)
Sector SA82 SA83 SA84 SA85 SA86 SA87 SA88 SA89 SA90 SA91 SA92 SA93 SA94 SA95 SA96 SA97 SA98 SA99 SA100 SA101 SA102 SA103 SA104 SA105 SA106 SA107 SA108 SA109 SA110 SA111 SA112 SA113 SA114 SA115 SA116 SA117 SA118 SA119 SA120 SA121 SA122 SA123 SA124 SA125 SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134 Sector Address A21–A12 1010010xxx 1010011xxx 1010100xxx 1010101xxx 1010110xxx 1010111xxx 1011000xxx 1011001xxx 1011010xxx 1011011xxx 1011100xxx 1011101xxx 1011110xxx 1011111xxx 1100000xxx 1100001xxx 1100010xxx 1100011xxx 1100100xxx 1100101xxx 1100110xxx 1100111xxx 1101000xxx 1101001xxx 1101010xxx 1101011xxx 1101100xxx 1101101xxx 1101110xxx 1101111xxx 1110000xxx 1110001xxx 1110010xxx 1110011xxx 1110100xxx 1110101xxx 1110110xxx 1110111xxx 1111000xxx 1111001xxx 1111010xxx 1111011xxx 1111100xxx 1111101xxx 1111110xxx 1111111000 1111111001 1111111010 1111111011 1111111100 1111111101 1111111110 1111111111 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 (x8) Address Range 520000h–52FFFFh 530000h–53FFFFh 540000h–54FFFFh 550000h–55FFFFh 560000h–56FFFFh 570000h–57FFFFh 580000h–58FFFFh 590000h–59FFFFh 5A0000h–5AFFFFh 5B0000h–5BFFFFh 5C0000h–5CFFFFh 5D0000h–5DFFFFh 5E0000h–5EFFFFh 5F0000h–5FFFFFh 600000h–60FFFFh 610000h–61FFFFh 620000h–62FFFFh 630000h–63FFFFh 640000h–64FFFFh 650000h–65FFFFh 660000h–66FFFFh 670000h–67FFFFh 680000h–68FFFFh 690000h–69FFFFh 6A0000h–6AFFFFh 6B0000h–6BFFFFh 6C0000h–6CFFFFh 6D0000h–6DFFFFh 6E0000h–6EFFFFh 6F0000h–6FFFFFh 700000h–70FFFFh 710000h–71FFFFh 720000h–72FFFFh 730000h–73FFFFh 740000h–74FFFFh 750000h–75FFFFh 760000h–76FFFFh 770000h–77FFFFh 780000h–78FFFFh 790000h–79FFFFh 7A0000h–7AFFFFh 7B0000h–7BFFFFh 7C0000h–7CFFFFh 7D0000h–7DFFFFh 7E0000h–7EFFFFh 7F0000h–7F1FFFh 7F2000h–7F3FFFh 7F4000h–7F5FFFh 7F6000h–7F7FFFh 7F8000h–7F9FFFh 7FA000h–7FBFFFh 7FC000h–7FDFFFh 7FE000h–7FFFFFh (x16) Address Range 290000h–297FFFh 298000h–29FFFFh 2A0000h–2A7FFFh 2A8000h–2AFFFFh 2B0000h–2B7FFFh 2B8000h–2BFFFFh 2C0000h–2C7FFFh 2C8000h–2CFFFFh 2D0000h–2D7FFFh 2D8000h–2DFFFFh 2E0000h–2E7FFFh 2E8000h–2EFFFFh 2F0000h–2FFFFFh 2F8000h–2FFFFFh 300000h–307FFFh 308000h–30FFFFh 310000h–317FFFh 318000h–31FFFFh 320000h–327FFFh 328000h–32FFFFh 330000h–337FFFh 338000h–33FFFFh 340000h–347FFFh 348000h–34FFFFh 350000h–357FFFh 358000h–35FFFFh 360000h–367FFFh 368000h–36FFFFh 370000h–377FFFh 378000h–37FFFFh 380000h–387FFFh 388000h–38FFFFh 390000h–397FFFh 398000h–39FFFFh 3A0000h–3A7FFFh 3A8000h–3AFFFFh 3B0000h–3B7FFFh 3B8000h–3BFFFFh 3C0000h–3C7FFFh 3C8000h–3CFFFFh 3D0000h–3D7FFFh 3D8000h–3DFFFFh 3E0000h–3E7FFFh 3E8000h–3EFFFFh 3F0000h–3F7FFFh 3F8000h–3F8FFFh 3F9000h–3F9FFFh 3FA000h–3FAFFFh 3FB000h–3FBFFFh 3FC000h–3FCFFFh 3FD000h–3FDFFFh 3FE000h–3FEFFFh 3FF000h–3FFFFFh
February 1, 2007 26190C8
Am29LV640MT/B
15
DATA
SHEET
Table 3. Am29LV640MB Bottom Boot Sector Architecture
Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 Sector Address A21–A12 0000000000 0000000001 0000000010 0000000011 0000000100 0000000101 0000000110 0000000111 0000001xxx 0000010xxx 0000011xxx 0000100xxx 0000101xxx 0000110xxx 0000111xxx 0001000xxx 0001001xxx 0001010xxx 0001011xxx 0001100xxx 0001101xxx 0001101xxx 0001111xxx 0010000xxx 0010001xxx 0010010xxx 0010011xxx 0010100xxx 0010101xxx 0010110xxx 0010111xxx 0011000xxx 0011001xxx 0011010xxx 0011011xxx 0011000xxx 0011101xxx 0011110xxx 0011111xxx 0100000xxx 0100001xxx 0100010xxx 0101011xxx 0100100xxx 0100101xxx 0100110xxx 0100111xxx 0101000xxx 0101001xxx 0101010xxx 0101011xxx 0101100xxx 0101101xxx 0101110xxx Sector Size (Kbytes/Kwords) 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 000000h–001FFFh 002000h–003FFFh 004000h–005FFFh 006000h–007FFFh 008000h–009FFFh 00A000h–00BFFFh 00C000h–00DFFFh 00E000h–00FFFFFh 010000h–01FFFFh 020000h–02FFFFh 030000h–03FFFFh 040000h–04FFFFh 050000h–05FFFFh 060000h–06FFFFh 070000h–07FFFFh 080000h–08FFFFh 090000h–09FFFFh 0A0000h–0AFFFFh 0B0000h–0BFFFFh 0C0000h–0CFFFFh 0D0000h–0DFFFFh 0E0000h–0EFFFFh 0F0000h–0FFFFFh 100000h–00FFFFh 110000h–11FFFFh 120000h–12FFFFh 130000h–13FFFFh 140000h–14FFFFh 150000h–15FFFFh 160000h–16FFFFh 170000h–17FFFFh 180000h–18FFFFh 190000h–19FFFFh 1A0000h–1AFFFFh 1B0000h–1BFFFFh 1C0000h–1CFFFFh 1D0000h–1DFFFFh 1E0000h–1EFFFFh 1F0000h–1FFFFFh 200000h–20FFFFh 210000h–21FFFFh 220000h–22FFFFh 230000h–23FFFFh 240000h–24FFFFh 250000h–25FFFFh 260000h–26FFFFh 270000h–27FFFFh 280000h–28FFFFh 290000h–29FFFFh 2A0000h–2AFFFFh 2B0000h–2BFFFFh 2C0000h–2CFFFFh 2D0000h–2DFFFFh 2E0000h–2EFFFFh (x16) Address Range 00000h–00FFFh 01000h–01FFFh 02000h–02FFFh 03000h–03FFFh 04000h–04FFFh 05000h–05FFFh 06000h–06FFFh 07000h–07FFFh 08000h–0FFFFh 10000h–17FFFh 18000h–1FFFFh 20000h–27FFFh 28000h–2FFFFh 30000h–37FFFh 38000h–3FFFFh 40000h–47FFFh 48000h–4FFFFh 50000h–57FFFh 58000h–5FFFFh 60000h–67FFFh 68000h–6FFFFh 70000h–77FFFh 78000h–7FFFFh 80000h–87FFFh 88000h–8FFFFh 90000h–97FFFh 98000h–9FFFFh A0000h–A7FFFh A8000h–AFFFFh B0000h–B7FFFh B8000h–BFFFFh C0000h–C7FFFh C8000h–CFFFFh D0000h–D7FFFh D8000h–DFFFFh E0000h–E7FFFh E8000h–EFFFFh F0000h–F7FFFh F8000h–FFFFFh F9000h–107FFFh 108000h–10FFFFh 110000h–117FFFh 118000h–11FFFFh 120000h–127FFFh 128000h–12FFFFh 130000h–137FFFh 138000h–13FFFFh 140000h–147FFFh 148000h–14FFFFh 150000h–157FFFh 158000h–15FFFFh 160000h–167FFFh 168000h–16FFFFh 170000h–177FFFh
16
Am29LV640MT/B
26190C8 February 1, 2007
DATA Table 3.
Sector SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 SA71 SA72 SA73 SA74 SA75 SA76 SA77 SA78 SA79 SA80 SA81 SA82 SA83 SA84 SA85 SA86 SA87 SA88 SA89 SA90 SA91 SA92 SA93 SA94 SA95 SA96 SA97 SA98 SA99 SA100 SA101 SA102 SA103 SA104 SA105 SA106 SA107 SA108
SHEET
Am29LV640MB Bottom Boot Sector Architecture (Continued)
Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 2F0000h–2FFFFFh 300000h–30FFFFh 310000h–31FFFFh 320000h–32FFFFh 330000h–33FFFFh 340000h–34FFFFh 350000h–35FFFFh 360000h–36FFFFh 370000h–37FFFFh 380000h–38FFFFh 390000h–39FFFFh 3A0000h–3AFFFFh 3B0000h–3BFFFFh 3C0000h–3CFFFFh 3D0000h–3DFFFFh 3E0000h–3EFFFFh 3F0000h–3FFFFFh 400000h–40FFFFh 410000h–41FFFFh 420000h–42FFFFh 430000h–43FFFFh 440000h–44FFFFh 450000h–45FFFFh 460000h–46FFFFh 470000h–47FFFFh 480000h–48FFFFh 490000h–49FFFFh 4A0000h–4AFFFFh 4B0000h–4BFFFFh 4C0000h–4CFFFFh 4D0000h–4DFFFFh 4E0000h–4EFFFFh 4F0000h–4FFFFFh 500000h–50FFFFh 510000h–51FFFFh 520000h–52FFFFh 530000h–53FFFFh 540000h–54FFFFh 550000h–55FFFFh 560000h–56FFFFh 570000h–57FFFFh 580000h–58FFFFh 590000h–59FFFFh 5A0000h–5AFFFFh 5B0000h–5BFFFFh 5C0000h–5CFFFFh 5D0000h–5DFFFFh 5E0000h–5EFFFFh 5F0000h–5FFFFFh 600000h–60FFFFh 610000h–61FFFFh 620000h–62FFFFh 630000h–63FFFFh 640000h–64FFFFh 650000h–65FFFFh (x16) Address Range 178000h–17FFFFh 180000h–187FFFh 188000h–18FFFFh 190000h–197FFFh 198000h–19FFFFh 1A0000h–1A7FFFh 1A8000h–1AFFFFh 1B0000h–1B7FFFh 1B8000h–1BFFFFh 1C0000h–1C7FFFh 1C8000h–1CFFFFh 1D0000h–1D7FFFh 1D8000h–1DFFFFh 1E0000h–1E7FFFh 1E8000h–1EFFFFh 1F0000h–1F7FFFh 1F8000h–1FFFFFh 200000h–207FFFh 208000h–20FFFFh 210000h–217FFFh 218000h–21FFFFh 220000h–227FFFh 228000h–22FFFFh 230000h–237FFFh 238000h–23FFFFh 240000h–247FFFh 248000h–24FFFFh 250000h–257FFFh 258000h–25FFFFh 260000h–267FFFh 268000h–26FFFFh 270000h–277FFFh 278000h–27FFFFh 280000h–28FFFFh 288000h–28FFFFh 290000h–297FFFh 298000h–29FFFFh 2A0000h–2A7FFFh 2A8000h–2AFFFFh 2B0000h–2B7FFFh 2B8000h–2BFFFFh 2C0000h–2C7FFFh 2C8000h–2CFFFFh 2D0000h–2D7FFFh 2D8000h–2DFFFFh 2E0000h–2E7FFFh 2E8000h–2EFFFFh 2F0000h–2FFFFFh 2F8000h–2FFFFFh 300000h–307FFFh 308000h–30FFFFh 310000h–317FFFh 318000h–31FFFFh 320000h–327FFFh 328000h–32FFFFh
Sector Address A21–A12 0101111xxx 0110000xxx 0110001xxx 0110010xxx 0110011xxx 0100100xxx 0110101xxx 0110110xxx 0110111xxx 0111000xxx 0111001xxx 0111010xxx 0111011xxx 0111100xxx 0111101xxx 0111110xxx 0111111xxx 1000000xxx 1000001xxx 1000010xxx 1000011xxx 1000100xxx 1000101xxx 1000110xxx 1000111xxx 1001000xxx 1001001xxx 1001010xxx 1001011xxx 1001100xxx 1001101xxx 1001110xxx 1001111xxx 1010000xxx 1010001xxx 1010010xxx 1010011xxx 1010100xxx 1010101xxx 1010110xxx 1010111xxx 1011000xxx 1011001xxx 1011010xxx 1011011xxx 1011100xxx 1011101xxx 1011110xxx 1011111xxx 1100000xxx 1100001xxx 1100010xxx 1100011xxx 1100100xxx 1100101xxx
February 1, 2007 26190C8
Am29LV640MT/B
17
DATA Table 3.
Sector SA109 SA110 SA111 SA112 SA113 SA114 SA115 SA116 SA117 SA118 SA119 SA120 SA121 SA122 SA123 SA124 SA125 SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134
SHEET
Am29LV640MB Bottom Boot Sector Architecture (Continued)
Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 660000h–66FFFFh 670000h–67FFFFh 680000h–68FFFFh 690000h–69FFFFh 6A0000h–6AFFFFh 6B0000h–6BFFFFh 6C0000h–6CFFFFh 6D0000h–6DFFFFh 6E0000h–6EFFFFh 6F0000h–6FFFFFh 700000h–70FFFFh 710000h–71FFFFh 720000h–72FFFFh 730000h–73FFFFh 740000h–74FFFFh 750000h–75FFFFh 760000h–76FFFFh 770000h–77FFFFh 780000h–78FFFFh 790000h–79FFFFh 7A0000h–7AFFFFh 7B0000h–7BFFFFh 7C0000h–7CFFFFh 7D0000h–7DFFFFh 7E0000h–7EFFFFh 7F0000h–7FFFFFh (x16) Address Range 330000h–337FFFh 338000h–33FFFFh 340000h–347FFFh 348000h–34FFFFh 350000h–357FFFh 358000h–35FFFFh 360000h–367FFFh 368000h–36FFFFh 370000h–377FFFh 378000h–37FFFFh 380000h–387FFFh 388000h–38FFFFh 390000h–397FFFh 398000h–39FFFFh 3A0000h–3A7FFFh 3A8000h–3AFFFFh 3B0000h–3B7FFFh 3B8000h–3BFFFFh 3C0000h–3C7FFFh 3C8000h–3CFFFFh 3D0000h–3D7FFFh 3D8000h–3DFFFFh 3E0000h–3E7FFFh 3E8000h–3EFFFFh 3F0000h–3F7FFFh 3F8000h–3FFFFFh
Sector Address A21–A12 1100110xxx 1100111xxx 1101000xxx 1101001xxx 1101010xxx 1101011xxx 1101100xxx 1101101xxx 1101110xxx 1101111xxx 1110000xxx 1110001xxx 1110010xxx 1110011xxx 1110100xxx 1110101xxx 1110110xxx 1110111xxx 1111000xxx 1111001xxx 1111010xxx 1111011xxx 1111100xxx 1111101xxx 1111110xxx 1111111000
Note: The address range is A21:A-1 in byte mode (BYTE# = VIL) or A21:A0 in word mode (BYTE# = VIH)
18
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET sector address must appear on the appropriate highest order address bits (see Tables 2 and 3). Table 4 shows the remaining address bits that are don’t care. When all necessary bits have been set as required, the programming equipment can then read the corresponding identifier code on DQ7–DQ0. To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Table 12 and Table 13. This method does not require V ID. See Autoselect Command Sequence on page 28 for more information.
Autoselect Mode
The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device programmed with its corresponding programming algorithm. However, the autoselect codes can be accessed in-system through the command register. When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins A6, A3, A2, A1, and A0 must be set as shown in Table 4. In addition, when verifying sector protection, the
Table 4.
Description CE# OE# WE#
Autoselect Codes, (High Voltage Method)
A9 A8 to A7 X A6 A5 to A4 X A3 to A2 L L
A21 A14 to to A15 A10 X X
DQ8 to DQ15
A1 A0
BYTE# BYTE# = VIH = VIL
00 22 22 22 X X X X X X
DQ7 to DQ0
Manufacturer ID: AMD Device ID Cycle 1 Cycle 2 Cycle 3
L
L
H
VID
L
L L H H H
L H L H L
01h 7Eh 10h 00 (bottom boot) 01h (top boot) 01h (protected), 00h (unprotected) 98h (factory locked), 18h (not factory locked)
L
L
H
X
X
VID
X
L
X
H H
Sector Protection Verification Secured Silicon Sector Indicator Bit (DQ7), WP# protects top two address sector Secured Silicon Sector Indicator Bit (DQ7), WP# protects bottom two address sector
L
L
H
SA
X
VID
X
L
X
L
L
L
H
X
X
VID
X
L
X
L
H
H
X
X
L
L
H
X
X
VID
X
L
X
L
H
H
X
X
88h (factory locked), 08h (not factory locked)
Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.
February 1, 2007 26190C8
Am29LV640MT/B
19
DATA
SHEET
Sector/ Sector Block Size 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 192 (3x64) Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes
Sector Group Protection and Unprotection
The hardware sector group protection feature disables both program and erase operations in any sector group. In this device, a sector group consists of four adjacent sectors that are protected or unprotected at the same time (see Tables 5 and 6). The hardware sector group unprotection feature re-enables both program and erase operations in previously protected sector groups. Sector group protection/unprotection can be implemented via two methods. Sector protection/unprotection requires VID on the RESET# pin only, and can be implemented either in-system or via programming equipment. Figure 2 shows the algorithms and Figure 24 shows the timing diagram. This method uses standard microprocessor bus cycle timing. For sector group unprotect, all unprotected sector groups must first be protected prior to the first sector group unprotect write cycle. The device is shipped with all sector groups unprotected. AMD offers the option of programming and protecting sector groups at its factory prior to shipping the device through AMD’s ExpressFlash™ Service. Contact an AMD representative for details. It is possible to determine whether a sector group is protected or unprotected. See Autoselect Mode on page 19 Table 5. Am29LV640MT Top Boot Sector Protection
A21–A12 00000XXXXX 00001XXXXX 00010XXXXX 00011XXXXX 00100XXXXX 00101XXXXX 00110XXXXX 00111XXXXX 01000XXXXX 01001XXXXX 01010XXXXX 01011XXXXX 01100XXXXX 01101XXXXX 01110XXXXX 01111XXXXX 10000XXXXX 10001XXXXX 10010XXXXX 10011XXXXX Sector/ Sector Block Size 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes
Sector SA80-SA83 SA84-SA87 SA88-SA91 SA92-SA95 SA96-SA99 SA100-SA103 SA104-SA107 SA108-SA111 SA112-SA115 SA116-SA119 SA120-SA123 SA124-SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134
A21–A12 10100XXXXX 10101XXXXX 10110XXXXX 10111XXXXX 11000XXXXX 11001XXXXX 11010XXXXX 11011XXXXX 11100XXXXX 11101XXXXX 11110XXXXX 1111100XXX 1111101XXX 1111110XXX 1111111000 1111111001 1111111010 1111111011 1111111100 1111111101 1111111110 1111111111
Table 6.
Am29LV640MB Bottom Boot Sector Protection
A21–A12 0000000000 0000000001 0000000010 0000000011 0000000100 0000000101 0000000110 0000000111 0000001XXX, 0000010XXX, 0000011XXX, 00001XXXXX 00010XXXXX 00011XXXXX 00100XXXXX 00101XXXXX 00110XXXXX 00111XXXXX 01000XXXXX 01001XXXXX 01010XXXXX 01011XXXXX Sector/ Sector Block Size 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 192 (3x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes
Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8–SA10 SA11–SA14 SA15–SA18 SA19–SA22 SA23–SA26 SA27-SA30 SA31-SA34 SA35-SA38 SA39-SA42 SA43-SA46 SA47-SA50 SA51-SA54
Sector SA0-SA3 SA4-SA7 SA8-SA11 SA12-SA15 SA16-SA19 SA20-SA23 SA24-SA27 SA28-SA31 SA32-SA35 SA36-SA39 SA40-SA43 SA44-SA47 SA48-SA51 SA52-SA55 SA56-SA59 SA60-SA63 SA64-SA67 SA68-SA71 SA72-SA75 SA76-SA79
20
Am29LV640MT/B
26190C8 February 1, 2007
DATA Table 6. Am29LV640MB Bottom Boot Sector Protection (Continued)
Sector SA55–SA58 SA59–SA62 SA63–SA66 SA67–SA70 SA71–SA74 SA75–SA78 SA79–SA82 SA83–SA86 SA87–SA90 SA91–SA94 SA95–SA98 SA99–SA102 SA103–SA106 SA107–SA110 SA111–SA114 SA115–SA118 SA119–SA122 SA123–SA126 SA127–SA130 SA131–SA134 A21–A12 01100XXXXX 01101XXXXX 01110XXXXX 01111XXXXX 10000XXXXX 10001XXXXX 10010XXXXX 10011XXXXX 10100XXXXX 10101XXXXX 10110XXXXX 10111XXXXX 11000XXXXX 11001XXXXX 11010XXXXX 11011XXXXX 11100XXXXX 11101XXXXX 11110XXXXX 11111XXXXX Sector/ Sector Block Size 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes
SHEET
Temporary Sector Group Unprotect
(Note: In this device, a sector group consists of four adjacent sectors that are protected or unprotected at the same time (see Table 6).
This feature allows temporary unprotection of previously protected sector groups to change data in-system. The Sector Group Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected sector groups can be programmed or erased by selecting the sector group addresses. Once VID is removed from the RESET# pin, all the previously protected sector groups are protected again. Figure 1 shows the algorithm, and Figure 23 shows the timing diagrams, for this feature.
START
RESET# = VID (Note 1) Perform Erase or Program Operations
RESET# = VIH
Write Protect (WP#)
The Write Protect function provides a hardware method of protecting the top two or bottom two sectors without using VID. WP# is one of two functions provided by the WP#/ACC input. If the system asserts VIL on the WP#/ACC pin, the device disables program and erase functions in the first or last sector independently of whether those sectors were protected or unprotected using the method described in Sector Group Protection and Unprotection. Note that if WP#/ACC is at VIL when the device is in the standby mode, the maximum input load current is increased. See the table in DC Characteristics. If the system asserts VIH on the WP#/ACC pin, the device reverts to whether the top or bottom two sectors were previously set to be protected or unprotected using the method described in Sector Group Protection and Unprotection. Note: No external pullup is necessary since the WP#/ACC pin has internal pullup to VCC
Temporary Sector Group Unprotect Completed (Note 2)
Notes: 1. All protected sector groups unprotected (If WP# = VIL, the first or last sector remain protected). 2. All previously protected sector groups are protected once again.
Figure 1. Temporary Sector Group Unprotect Operation
February 1, 2007 26190C8
Am29LV640MT/B
21
DATA
SHEET
START PLSCNT = 1 RESET# = VID Wait 1 μs Protect all sector groups: The indicated portion of the sector group protect algorithm must be performed for all unprotected sector groups prior to issuing the first sector group unprotect address
START PLSCNT = 1 RESET# = VID Wait 1 μs
Temporary Sector Group Unprotect Mode
No
First Write Cycle = 60h?
First Write Cycle = 60h?
No
Temporary Sector Group Unprotect Mode
Yes Set up sector group address No
Yes All sector groups protected? Yes Set up first sector group address Sector Group Unprotect: Write 60h to sector group address with A6–A0 = 1xx0010 Reset PLSCNT = 1
Sector Group Protect: Write 60h to sector group address with A6–A0 = 0xx0010
Wait 150 µs
Increment PLSCNT
Verify Sector Group Protect: Write 40h to sector group address with A6–A0 = 0xx0010
Wait 15 ms
Read from sector group address with A6–A0 = 0xx0010 No No PLSCNT = 25? Data = 01h?
Increment PLSCNT
Verify Sector Group Unprotect: Write 40h to sector group address with A6–A0 = 1xx0010
Yes Yes Protect another sector group? No Remove VID from RESET# Yes
Read from sector group address with A6–A0 = 1xx0010 No Set up next sector group address Data = 00h?
No
PLSCNT = 1000? Yes
Device failed
Yes
Device failed Write reset command
Last sector group verified? Yes Remove VID from RESET#
No
Sector Group Protect Algorithm
Sector Group Protect complete
Sector Group Unprotect Algorithm
Write reset command
Sector Group Unprotect complete
Figure 2.
In-System Sector Group Protect/Unprotect Algorithms
22
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET Factory Locked: Secured Silicon Sector Programmed and Protected At the Factory In devices with an ESN, the Secured Silicon Sector is protected when the device is shipped from the factory. The Secured Silicon Sector cannot be modified in any way. See Table 7 for Secured Silicon Sector addressing. Customers can opt to have their code programmed by AMD through the AMD ExpressFlash service. The devices are then shipped from AMD’s factory with the Secured Silicon Sector permanently locked. Contact an AMD representative for details on using AMD’s ExpressFlash service. Customer Lockable: Secured Silicon Sector NOT Programmed or Protected At the Factory As an alternative to the factory-locked version, the device can be ordered such that the customer can program and protect the 128-word/256 bytes Secured Silicon sector. The system can program the Secured Silicon Sector using the write-buffer, accelerated and/or unlock bypass methods, in addition to the standard programming command sequence. See Command Definitions on page 27 Programming and protecting the Secured Silicon Sector must be used with caution since, once protected, there is no procedure available for unprotecting the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be modified in any way. The Secured Silicon Sector area can be protected using one of the following procedures: ■ Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then follow the in-system sector protect algorithm as shown in Figure 2, except that RESET# can be at either VIH or VID. This allows in-system protection of the Secured Silicon Sector without raising any device pin to a high voltage. Note that this method is only applicable to the Secured Silicon Sector. ■ To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm shown in Figure 3. Once the Secured Silicon Sector is programmed, locked and verified, the system must write the Exit Secured Silicon Sector Region command sequence to return to reading and writing within the remainder of the array.
Secured Silicon Sector Flash Memory Region
The Secured Silicon Sector feature provides a Flash memory region that enables permanent part identification through an Electronic Serial Number (ESN). The Secured Silicon Sector is 128 words/256 bytes in length, and uses a Secured Silicon Sector Indicator Bit (DQ7) to indicate whether or not the Secured Silicon Sector is locked when shipped from the factory. This bit is permanently set at the factory and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is shipped to the field. AMD offers the device with the Secured Silicon Sector either factory locked or customer lockable. The factory-locked version is always protected when shipped from the factory, and has the Secured Silicon Sector Indicator Bit per manently set to a “1.” The customer-lockable version is shipped with the Secured Silicon Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the Secured Silicon Sector Indicator Bit permanently set to a “0.” Thus, the Secured Silicon Sector Indicator Bit prevents customer-lockable devices from being used to replace devices that are factory locked. The Secured Silicon sector address space in this device is allocated as follows: Table 7. Secured Silicon Sector Contents
Secured Silicon Sector Address Range x16 000000h– 000007h 000008h– 00007Fh x8 000000h– 00000Fh 000010h– 0000FFh Standard Factory Locked ESN Unavailable ExpressFlash Factory Locked ESN or determined by customer Determined by customer Customer Lockable
Determined by customer
The system accesses the Secured Silicon Sector through a command sequence. See Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence on page 28 After the system has written the Enter Secured Silicon Sector command sequence, it can read the Secured Silicon Sector by using the addresses normally occupied by the first sector (SA0). This mode of operation continues until the system issues the Exit Secured Silicon Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to sector SA0. Note that the ACC function and unlock bypass modes are not available when the Secured Silicon Sector is enabled.
February 1, 2007 26190C8
Am29LV640MT/B
23
DATA
SHEET hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during VCC power-up and power-down transitions, or from system noise. Low VCC Write Inhibit When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent unintentional writes when V CC i s greater than VLKO. Write Pulse “Glitch” Protection
START RESET# = VIH or VID Wait 1 ms Write 60h to any address If data = 00h, SecSi Sector is unprotected. If data = 01h, SecSi Sector is protected.
Remove VIH or VID from RESET# Write reset command
Write 40h to SecSi Sector address with A6 = 0, A1 = 1, A0 = 0 Read from SecSi Sector address with A6 = 0, A1 = 1, A0 = 0
SecSi Sector Protect Verify complete
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle. Logical Inhibit Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one. Power-Up Write Inhibit If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on power-up.
Figure 3.
Secured Silicon Sector Protect Verify
Hardware Data Protection
The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes (refer to Tables 12 and 13 for command definitions). In addition, the following
COMMON FLASH MEMORY INTERFACE (CFI)
The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility. This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device is ready to read array data. The system can read CFI information at the addresses given in Tables 8–11. To terminate reading CFI data, the system must write the reset command. The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses given in Tables 8–11. The system must write the reset command to return the device to reading array data. For further information, please refer to the CFI Specification and CFI Publication 100, available via the World Wide Web at http://www.amd.com/flash/cfi. Alternatively, contact an AMD representative for copies of these documents.
24
Am29LV640MT/B
26190C8 February 1, 2007
DATA Table 8.
Addresses (x16) 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah Addresses (x8) 20h 22h 24h 26h 28h 2Ah 2Ch 2Eh 30h 32h 34h Data 0051h 0052h 0059h 0002h 0000h 0040h 0000h 0000h 0000h 0000h 0000h
SHEET
CFI Query Identification String
Description Query Unique ASCII string “QRY”
Primary OEM Command Set Address for Primary Extended Table Alternate OEM Command Set (00h = none exists) Address for Alternate OEM Extended Table (00h = none exists)
Table 9.
Addresses (x16) 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h Addresses (x8) 36h 38h 3Ah 3Ch 3Eh 40h 42h 44h 46h 48h 4Ah 4Ch Data 0027h 0036h 0000h 0000h 0007h 0007h 000Ah 0000h 0001h 0005h 0004h 0000h
System Interface String
Description
VCC Min. (write/erase) D7–D4: volt, D3–D0: 100 millivolt VCC Max. (write/erase) D7–D4: volt, D3–D0: 100 millivolt VPP Min. voltage (00h = no VPP pin present) VPP Max. voltage (00h = no VPP pin present) Typical timeout per single byte/word write 2N µs Typical timeout for Min. size buffer write 2N µs (00h = not supported) Typical timeout per individual block erase 2N ms Typical timeout for full chip erase 2N ms (00h = not supported) Max. timeout for byte/word write 2N times typical Max. timeout for buffer write 2N times typical Max. timeout per individual block erase 2N times typical Max. timeout for full chip erase 2N times typical (00h = not supported)
February 1, 2007 26190C8
Am29LV640MT/B
25
DATA Table 10.
Addresses (x16) 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch Addresses (x8) 4Eh 50h 52h 54h 56h 58h 5Ah 5Ch 5Eh 60h 62h 64h 66h 68h 6Ah 6Ch 6Eh 70h 72h 74h 76h 78h Data 0017h 0002h 0000h 0005h 0000h 0002h 007Fh 0000h 0020h 0000h 007Eh 0000h 0000h 0001h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h
SHEET
Device Geometry Definition
Description
Device Size = 2N byte Flash Device Interface description (refer to CFI publication 100) Max. number of byte in multi-byte write = 2N (00h = not supported) Number of Erase Block Regions within device (01h = uniform device, 02h = boot device) Erase Block Region 1 Information (refer to the CFI specification or CFI publication 100)
Erase Block Region 2 Information (refer to CFI publication 100)
Erase Block Region 3 Information (refer to CFI publication 100)
Erase Block Region 4 Information (refer to CFI publication 100)
26
Am29LV640MT/B
26190C8 February 1, 2007
DATA Table 11.
Addresses (x16) 40h 41h 42h 43h 44h 45h Addresses (x8) 80h 82h 84h 86h 88h 8Ah
SHEET
Primary Vendor-Specific Extended Query
Data 0050h 0052h 0049h 0031h 0033h 0008h Query-unique ASCII string “PRI” Major version number, ASCII Minor version number, ASCII
Description
Address Sensitive Unlock (Bits 1-0) 0 = Required, 1 = Not Required Process Technology (Bits 7-2) 0010b = 0.23 µm MirrorBit
46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh
8Ch 8Eh 90h 92h 94h 96h 98h 9Ah
0002h 0001h 0001h 0004h 0000h 0000h 0001h 00B5h
Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write Sector Protect 0 = Not Supported, X = Number of sectors in per group Sector Temporary Unprotect 00 = Not Supported, 01 = Supported Sector Protect/Unprotect scheme 04 = 29LV800 mode Simultaneous Operation 00 = Not Supported, X = Number of Sectors in Bank Burst Mode Type 00 = Not Supported, 01 = Supported Page Mode Type 00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV ACC (Acceleration) Supply Maximum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV Top/Bottom Boot Sector Flag
4Eh
9Ch
00C5h
4Fh
9Eh
0002h/ 0003h
00h = Uniform Device without WP# protect, 02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Uniform sectors bottom WP# protect, 05h = Uniform sectors top WP# protect Program Suspend 00h = Not Supported, 01h = Supported
50h
A0h
0001h
COMMAND DEFINITIONS
Writing specific address and data commands or sequences into the command register initiates device operations. Tables 12 and 13 define the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence can place the device in an unknown state. A reset command is then required to return the device to reading array data. All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. See AC Characteristics on page 45 for timing diagrams.
Reading Array Data
The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is ready to read array data after completing an Embedded Program or Embedded Erase algorithm. After the device accepts an Erase Suspend command, the device enters the erase-suspend-read mode, after
February 1, 2007 26190C8
Am29LV640MT/B
27
DATA which the system can read data from any non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the system can once again read array data with the same exception. See Erase Suspend/Erase Resume Commands on page 35 for more information. The system must issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more information. See also Requirements for Reading Array Data on page 11 in Device Bus Operations for more information. See the table, Read-Only Operations on page 45 for the read parameters, and Figure 14 for the timing diagram.
SHEET Write-to-Buffer-Abort Reset command sequence to reset the device for the next operation.
Autoselect Command Sequence
The autoselect command sequence allows the host system to read several identifier codes at specific addresses:
Identifier Code Manufacturer ID Device ID, Cycle 1 Device ID, Cycle 2 Device ID, Cycle 3 Secured Silicon Sector Factory Protect Sector Protect Verify A7:A0 (x16) 00h 01h 0Eh 0Fh 03h (SA)02h A6:A-1 (x8) 00h 02h 1Ch 1Eh 06h (SA)04h
Note: The device ID is read over three cycles. SA = Sector Address
Reset Command
Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don’t cares for this command. The reset command can be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command can be written between the sequence cycles in a program command sequence before programming begins. This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command can be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or erase-suspend-read mode if the device was in Erase Suspend). Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the
Tables 12 and 13 show the address and data requirements. This method is an alternative to that shown in Table 4, which is intended for PROM programmers and requires VID on address pin A9. The autoselect command sequence can be written to an address that is either in the read or erase-suspend-read mode. The autoselect command cannot be written while the device is actively programming or erasing. The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the autoselect command. The device then enters the autoselect mode. The system can read at any address any number of times without initiating another autoselect command sequence. The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in Erase Suspend).
Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence
The Secured Silicon Sector region provides a secured data area containing an 8-word/16-byte random Electronic Serial Number (ESN). The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon Sector command sequence. The device continues to access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured Silicon Sector command sequence. The Exit Secured Silicon Sector command sequence returns the device to normal operation. Tables 12 and 13 show the address and data requirements for both command sequences. See also Secured Silicon Sector Flash Memory Region for further information.
28
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. The first cycle must contain the data 90h. The second cycle must contain the data 00h. The device then returns to the read mode. Write Buffer Programming Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming occurs. The fourth cycle writes the sector address and the number of word locations, minus one, to be programmed. For example, if the system programs six unique address locations, then 05h should be written to the device. This tells the device how many write buffer addresses are loaded with data and therefore when to expect the Program Buffer to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation aborts. The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits AMAX–A 4. All subsequent add r e s s / d a t a p a i r s m u s t fa l l w i t h i n t h e selected-write-buffer-page. The system then writes the remaining address/data pairs into the write buffer. Write buffer locations can be loaded in any order. The write-buffer-page address must be the same for all address/data pairs loaded into the write buffer. (This means Write Buffer Programming cannot be performed across multiple write-buffer pages. This also means that Write Buffer Programming cannot be performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer page, the operation aborts. Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter is decremented for every data load operation. The host system must therefore account for loading a write-buffer location more than once. The counter decrements for each data load operation, not for each unique write-buffer-address location. Also note, if an address location is loaded more than once into the buffer, the final data loaded for that address is programmed. Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then begins programming. Data polling should be used while monitoring the last address location loaded into 29
Word/Byte Program Command Sequence
Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated program pulses and verifies the programmed cell margin. Tables 12 and 13 show the address and data requirements for the word program command sequence. Note that the autoselect and CFI functions are unavailable when a program operation is in progress. When the Embedded Program algorithm is complete, the device then returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7 or DQ6. See Write Operation Status on page 38 for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardware reset immediately terminates the program operation. The program command sequence should be reinitiated once the device has returned to the read mode, to ensure data integrity. Programming is allowed in any sequence and across sector boundaries. A b it cannot be programmed from “0” back to a “1.” A ttempting to do so can cause the device to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read shows that the data is still “0.” Only erase operations can convert a “0” to a “1.” Unlock Bypass Command Sequence The unlock bypass feature allows the system to program words to the device faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time. Tables 12 and 13 show the requirements for the command sequence. During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands
February 1, 2007 26190C8
Am29LV640MT/B
DATA the write buffer. DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming. The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device is ready to execute the next command. The Write Buffer Programming Sequence can be aborted in the following ways: ■ Load a value that is greater than the page buffer size during the Number of Locations to Program step. ■ Write to an address in a sector different than the one specified during the Write-Buffer-Load command. ■ Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer data loading stage of the operation. ■ Write data other than the Confirm Command after the specified number of data load cycles.
SHEET The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation. Note that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is required when using Write-Buffer-Programming features in Unlock Bypass mode. Accelerated Program The device offers accelerated program operations through the WP#/ACC pin. When the system asserts VHH on the WP#/ACC pin, the device automatically enters the Unlock Bypass mode. The system can then write the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not be at VHH for operations other than accelerated programming, or device damage can result. In addition, no external pullup is necessary since the WP#/ACC pin has internal pullup to VCC. Figure 5 illustrates the algorithm for the program operation. See the table, Erase and Program Operations on page 48 in AC Characteristics for parameters, and Figure 17 for timing diagrams.
30
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
Write “Write to Buffer” command and Sector Address
Write number of addresses to program minus 1(WC) and Sector Address
Part of “Write to Buffer” Command Sequence
Write first address/data
Yes
WC = 0 ? No Abort Write to Buffer Operation? No Yes Write to buffer ABORTED. Must write “Write-to-buffer Abort Reset” command sequence to return to read mode. Write to a different sector address
(Note 1)
Write next address/data pair
WC = WC - 1
Write program buffer to flash sector address
Notes:
1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses must fall within the selected Write-Buffer Page.
Read DQ7 - DQ0 at Last Loaded Address
2. 3.
DQ7 can change simultaneously with DQ5. Therefore, verify DQ7 . If this flowchart location was reached because DQ5= “1”, then the device FAILED. If this flowchart location was reached because DQ1= “1”, then the Write to Buffer operation was ABORTED. In either case, the proper reset command must write before the device can begin another operation. If DQ1=1, write the Write-Buffer-Programming-Abort-Reset command. if DQ5=1, write the Reset command.
See Table 13 for command sequences required for write buffer programming.
DQ7 = Data? No No DQ1 = 1? Yes DQ5 = 1? Yes Read DQ7 - DQ0 with address = Last Loaded Address No
Yes
4.
(Note 2)
DQ7 = Data? No
Yes
(Note 3)
FAIL or ABORT
PASS
Figure 4.
Write Buffer Programming Operation
February 1, 2007 26190C8
Am29LV640MT/B
31
DATA
SHEET
Program Suspend/Program Resume Command Sequence
START
Write Program Command Sequence
Embedded Program algorithm in progress
Data Poll from System
The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the program operation within 15 μs maximum (5 μs typical) and updates the status bits. Addresses are not required when writing the Program Suspend command. After the programming operation has been suspended, the system can read array data from any non-suspended sector. The Program Suspend command can also be issued during a programming operation while an erase is suspended. In this case, data can be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. The system can also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation. See Autoselect Command Sequence on page 28 for more information. After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See Write Operation Status on page 38 for more information.
Verify Data?
No
Yes No
Increment Address
Last Address?
Yes Programming Completed
Note: See Table 13 for program command sequence.
Figure 5.
Program Operation
32
Am29LV640MT/B
26190C8 February 1, 2007
DATA The system must write the Program Resume command (address bits are don’t care) to exit the Program Suspend mode and continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device has resume programming.
SHEET When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. See Write Operation Status on page 38 for information on these status bits. Any commands written during the chip erase operation are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. Figure 7 illustrates the algorithm for the erase operation. See the table, Erase and Program Operations on page 48 in AC Characteristics for parameters, and Figure 19 for timing diagrams.
Program Operation or Write-to-Buffer Sequence in Progress
Write address/data XXXh/B0h
Write Program Suspend Command Sequence Command is also valid for Erase-suspended-program operations
Wait 15 μs
Read data as required
Autoselect and SecSi Sector read operations are also allowed Data cannot be read from erase- or program-suspended sectors
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and the sector erase command. Tables 12 and 13 shows the address and data requirements for the sector erase command sequence. Note that the autoselect and CFI functions are unavailable when an erase operation is in progress. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector addresses and sector erase commands can be written. Loading the sector erase buffer can be done in any sequence, and the number of sectors can be from one sector to all sectors. The time between these additional cycles must be less than 50 µs, otherwise erasure can begin. Any sector erase address and command following the exceeded time-out might or might not be accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. Any command other than Sector Erase or Erase Suspend during the time-out period resets the device to the read mode. The system must rewrite the command sequence and any additional addresses and commands.
No
Done reading? Yes Write address/data XXXh/30h Write Program Resume Command Sequence
Device reverts to operation prior to Program Suspend
Figure 6. Program Suspend/Program Resume
Chip Erase Command Sequence
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Tables 12 and 13 shows the address and data requirements for the chip erase command sequence. Note that the autoselect and CFI functions are unavailable when an erase operation is in progress.
February 1, 2007 26190C8
Am29LV640MT/B
33
DATA The system can monitor DQ3 to determine if the sector erase timer has timed out. See DQ3: Sector Erase Timer on page 41. The time-out begins from the rising e d g e o f t h e f i n a l W E # p u l s e in t h e c o m m a n d sequence. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector. See Write Operation Status on page 38 for information on these status bits. Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. Figure 7 illustrates the algorithm for the erase operation. See the table, Erase and Program Operations on page 48 in AC Characteristics for parameters, and Figure 19 for timing diagrams.
SHEET
START
Write Erase Command Sequence (Notes 1, 2)
Data Poll to Erasing Bank from System
Embedded Erase algorithm in progress
No
Data = FFh?
Yes Erasure Completed
Notes: 1. See Table 12 and Table 13 for erase command sequence. 2. See DQ3: Sector Erase Timer on page 41 for information on the sector erase timer.
Figure 7.
Erase Operation
34
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET lect Mode on page 19 and Autoselect Command Sequence on page 28 for details. To resume the sector erase operation, the system must write the Erase Resume command. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing. Note: During an erase operation, this flash device performs multiple internal operations which are invisible to the system. When an erase operation is suspended, any of the internal operations that were not fully completed must be restarted. As such, if this flash device is continually issued suspend/resume commands in rapid succession, erase progress is impeded as a function of the number of suspends. The result is a longer cumulative erase time than without suspends. Note that the additional suspends do not affect device reliability or future performance. In most systems rapid erase/suspend activity occurs only briefly. In such cases, erase performance is not significantly impacted.
Erase Suspend/Erase Resume Commands
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50 µs time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. When the Erase Suspend command is written during the sector erase operation, the device requires a typical of 5 µs (maximum of 20 µs) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After the erase operation has been suspended, the device enters the erase-suspend-read mode. The system can read data from or program data to any sector not selected for erasure. (The device “erase suspends” all sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See Write Operation Status on page 38 for information on these status bits. After an erase-suspended program operation is complete, the device returns to the erase-suspend-read mode. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard word program operation. See Write Operation Status on page 38 for more information. In the erase-suspend-read mode, the system can also issue the autoselect command sequence. See Autose-
February 1, 2007 26190C8
Am29LV640MT/B
35
DATA
SHEET
Command Definitions
Table 12.
Cycles Command Sequence (Notes) Read (Note 5) Reset (Note 6) Autoselect (Note 7) Manufacturer ID Device ID (Note 8) Secured Silicon Sector Factory Protect (Note 9) Sector Group Protect Verify (Note 10)
Command Definitions (x16 Mode, BYTE# = VIH)
Bus Cycles (Notes 1–4) First Second Addr Data Third Addr Data Fourth Addr Data Fifth Addr Data Sixth Addr Data
Addr RA XXX 555 555 555 555 555 555 555 555 SA 555 555 XXX XXX 555 555 XXX XXX 55
Data RD F0 AA AA AA AA AA AA AA AA 29 AA AA A0 90 AA AA B0 30 98
1 1 4 6 4 4 3 4 4 6 1 3 3 2 2 6 6 1 1 1
2AA 2AA 2AA 2AA 2AA 2AA 2AA 2AA 2AA 2AA PA XXX 2AA 2AA
55 55 55 55 55 55 55 55 55 55 PD 00 55 55
555 555 555 555 555 555 555 SA 555 555
90 90 90 90 88 90 A0 25 F0 20
X00 X01 X03 (SA)X02
0001 227E (Note 9) 00/01 X0E 2210 X0F 2200/ 2201
Enter Secured Silicon Sector Region Exit Secured Silicon Sector Region Program Write to Buffer (Note 11) Program Buffer to Flash Write to Buffer Abort Reset (Note 12) Unlock Bypass Unlock Bypass Program (Note 13) Unlock Bypass Reset (Note 14) Chip Erase Sector Erase Program/Erase Suspend (Note 15) Program/Erase Resume (Note 16) CFI Query (Note 17)
XXX PA SA
00 PD WC PA PD WBL PD
555 555
80 80
555 555
AA AA
2AA 2AA
55 55
555 SA
10 30
Legend: X = Don’t care RA = Read Address of the memory location to be read. RD = Read Data read from location RA during read operation. PA = Program Address. Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later. PD = Program Data for location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first. Notes: 1. See Table 1 for description of bus operations. 2. 3. 4. All values are in hexadecimal. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles. During unlock cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than A11 (except where BA is required) and data bits higher than DQ7 are don’t cares. No unlock or command cycles required when device is in read mode. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase Suspend) when the device is in the autoselect mode, or if DQ5 goes high while the device is providing status information. The fourth cycle of the autoselect command sequence is a read cycle. Data bits DQ15–DQ8 are don’t care. Except RD, PD and WC. See Autoselect Command Sequence on page 28 for more information. The device ID must be read in three cycles. The data is 2201h for top boot and 2200h for bottom boot. If WP# protects the top two address sectors, the data is 98h for factory locked and 18h for not factory locked. If WP# protects the
SA = Sector Address of sector to be verified (in autoselect mode) or erased. Address bits A21–A15 uniquely select any sector. WBL = Write Buffer Location. Address must be within the same write buffer page as PA. WC = Word Count. Number of write buffer locations to load minus 1.
bottom two address sectors, the data is 88h for factory locked and 08h for not factor locked. 10. The data is 00h for an unprotected sector group and 01h for a protected sector group. 11. The total number of cycles in the command sequence is determined by the number of words written to the write buffer. The maximum number of cycles in the command sequence is 21, including "Program Buffer to Flash" command. 12. Command sequence resets device for next command after aborted write-to-buffer operation. 13. The Unlock Bypass command is required prior to the Unlock Bypass Program command. 14. The Unlock Bypass Reset command is required to return to the read mode when the device is in the unlock bypass mode. 15. The system can read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation. 16. The Erase Resume command is valid only during the Erase Suspend mode.
17. Command is valid when device is ready to read array data or when device is in autoselect mode.
5. 6.
7.
8. 9.
36
Am29LV640MT/B
26190C8 February 1, 2007
DATA Table 13.
Cycles Command Sequence (Notes) Read (Note 5) Reset (Note 6) Autoselect (Note 7) Manufacturer ID Device ID (Note 8) Secured Silicon Sector Factory Protect (Note 9) Sector Group Protect Verify (Note 10)
SHEET
Command Definitions (x8 Mode, BYTE# = VIL)
Bus Cycles (Notes 1–4) First Second Addr Data Third Addr Data Fourth Addr Data Fifth Addr Data Sixth Addr Data
Addr RA XXX AAA AAA AAA AAA AAA AAA AAA AAA SA AAA AAA XXX XXX AAA AAA XXX XXX AA
Data RD F0 AA AA AA AA AA AA AA AA 29 AA AA A0 90 AA AA B0 30 98
1 1 4 6 4 4 3 4 4 6 1 3 3 2 2 6 6 1 1 1
555 555 555 555 555 555 555 555 555 555 PA XXX 555 555
55 55 55 55 55 55 55 55 55 55 PD 00 55 55
AAA AAA AAA AAA AAA AAA AAA SA AAA AAA
90 90 90 90 88 90 A0 25 F0 20
X00 X02 X06 (SA)X04
01 7E (Note 9) 00/01 X1C 10 X1E 00/01
Enter Secured Silicon Sector Region Exit Secured Silicon Sector Region Program Write to Buffer (Note 11) Program Buffer to Flash Write to Buffer Abort Reset (Note 12) Unlock Bypass Unlock Bypass Program (Note 13) Unlock Bypass Reset (Note 14) Chip Erase Sector Erase Program/Erase Suspend (Note 15) Program/Erase Resume (Note 16) CFI Query (Note 17)
XXX PA SA
00 PD BC PA PD WBL PD
AAA AAA
80 80
AAA AAA
AA AA
555 555
55 55
AAA SA
10 30
Legend: X = Don’t care RA = Read Address of the memory location to be read. RD = Read Data read from location RA during read operation. PA = Program Address. Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later. PD = Program Data for location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first. Notes: 1. See Table 1 for description of bus operations. 2. All values are in hexadecimal. 3. 4. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles. During unlock cycles, when lower address bits are 555 or AAAh as shown in table, address bits higher than A11 (except where BA is required) and data bits higher than DQ7 are don’t cares. No unlock or command cycles required when device is in read mode. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase Suspend) when the device is in the autoselect mode, or if DQ5 goes high while the device is providing status information. The fourth cycle of the autoselect command sequence is a read cycle. Data bits DQ15–DQ8 are don’t care. See Autoselect Command Sequence on page 28 for more information. The device ID must be read in three cycles. The data is 01h for top boot and 00h for bottom boot If WP# protects the top two address sectors, the data is 98h for factory locked and 18h for not factory locked. If WP# protects the bottom two address sectors, the data is 88h for factory locked and 08h for not factor locked.
SA = Sector Address of sector to be verified (in autoselect mode) or erased. Address bits A21–A15 uniquely select any sector. WBL = Write Buffer Location. Address must be within the same write buffer page as PA. BC = Byte Count. Number of write buffer locations to load minus 1.
10. The data is 00h for an unprotected sector group and 01h for a protected sector group. 11. The total number of cycles in the command sequence is determined by the number of bytes written to the write buffer. The maximum number of cycles in the command sequence is 37, including "Program Buffer to Flash" command. 12. Command sequence resets device for next command after aborted write-to-buffer operation. 13. The Unlock Bypass command is required prior to the Unlock Bypass Program command. 14. The Unlock Bypass Reset command is required to return to the read mode when the device is in the unlock bypass mode. 15. The system can read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation. 16. The Erase Resume command is valid only during the Erase Suspend mode.
17. Command is valid when device is ready to read array data or when device is in autoselect mode.
5. 6.
7.
8. 9.
February 1, 2007 26190C8
Am29LV640MT/B
37
DATA
SHEET
WRITE OPERATION STATUS
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 14 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or has been completed. valid data, the data outputs on DQ0–DQ6 might be still invalid. Valid data on DQ0–DQ7 appears on successive read cycles. Table 14 shows the outputs for Data# Polling on DQ7. Figure 8 shows the Data# Polling algorithm. Figure 20 in AC Characteristics shows the Data# Polling timing diagram.
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command sequence. During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then the device returns to the read mode. During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide an address within any of the sectors selected for erasure to read valid status information on DQ7. After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the status might not be valid. Just prior to the completion of an Embedded Program or Erase operation, DQ7 can change asynchronously with DQ0–DQ6 while Output Enable (OE#) is asserted low. That is, the device can change from providing status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it can read the status or valid data. Even if the device has completed the program or erase operation and DQ7 has
START
Read DQ7–DQ0 Addr = VA
DQ7 = Data?
Yes
No No
DQ5 = 1?
Yes Read DQ7–DQ0 Addr = VA
DQ7 = Data?
Yes
No FAIL PASS
Notes: 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address. 2. Recheck DQ7 even if DQ5 = “1” because DQ7 can change simultaneously with DQ5.
Figure 8.
Data# Polling Algorithm
38
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 µs, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7. See DQ7: Data# Polling on page 38). If a program address falls within a protected sector, DQ6 toggles for approximately 1 μs after the program command sequence is written, then returns to reading array data. DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete. Table 14 shows the outputs for Toggle Bit I on DQ6. Figure 9 shows the toggle bit algorithm. Figure 21 in AC Characteristics shows the toggle bit timing diagrams. Figure 22 shows the differences between DQ2 and DQ6 in graphical form. See also DQ2: Toggle Bit II on page 40.
RY/BY#: Ready/Busy#
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC. If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or in the erase-suspend-read mode. Table 14 shows the outputs for RY/BY#.
DQ6: Toggle Bit I
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I can be read at any address, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out. During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The system can use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling.
February 1, 2007 26190C8
Am29LV640MT/B
39
DATA
SHEET
DQ2: Toggle Bit II
START
Read DQ7–DQ0
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence. DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system can use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 14 to compare outputs for DQ2 and DQ6. Figure 9 shows the toggle bit algorithm in flowchart form, and DQ2: Toggle Bit II on page 40 explains the algor ithm. See also RY/BY#: Ready/Busy# on page 39. Figure 21 shows the toggle bit timing diagram. Figure 22 shows the differences between DQ2 and DQ6 in graphical form.
Read DQ7–DQ0
Toggle Bit = Toggle? Yes
No
No
DQ5 = 1?
Yes
Read DQ7–DQ0 Twice
Reading Toggle Bits DQ6/DQ2
Refer to Figure 9 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high. (See DQ2: Toggle Bit II on page 40.) If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit might have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system must write the reset command to return to reading array data. The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system can continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it can choose to perform
Toggle Bit = Toggle?
No
Yes Program/Erase Operation Not Complete, Write Reset Command Program/Erase Operation Complete
Note: T he system should recheck the toggle bit even if DQ5 = “1” because the toggle bit can stop toggling as DQ5 changes to “1.” See DQ6: Toggle Bit I and DQ2: Toggle Bit II for more information.
Figure 9.
Toggle Bit Algorithm
40
Am29LV640MT/B
26190C8 February 1, 2007
DATA other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Figure 9).
SHEET switches from a “0” to a “1.” If the time between additional sector erase commands from the system can be assumed to be less than 50 µs, the system need not monitor DQ3. See also Sector Erase Command Sequence on page 33 . After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is “1,” the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is “0,” the device accepts additional sector erase commands. To ensure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted. Table 14 shows the status of DQ3 relative to the other status bits.
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program, erase, or write-to-buffer time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a “1,” indicating that the program or erase cycle was not successfully completed. The device might output a “1” on DQ5 if the system tries to program a “1” to a location that was previously programmed to “0.” O nly an erase operation can change a “0” back to a “1.” Under this condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 produces a “1.” In all these cases, the system must write the reset command to return the device to the reading the array (or to erase-suspend-read if the device was previously in the erase-suspend-program mode).
DQ3: Sector Erase Timer
After writing a sector erase command sequence, the system can read DQ3 to determine whether or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies after each additional sector erase command. When the time-out period is complete, DQ3 Table 14.
DQ1: Write-to-Buffer Abort
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1 produces a “1”. The system must issue the Write-to-Buffer-Abort-Reset command sequence to return the device to reading array data. See Write Buffer Programming on page 29 for more details.
Write Operation Status
DQ6 Toggle Toggle DQ5 (Note 1) 0 0 DQ3 N/A 1 DQ2 (Note 2) No toggle Toggle DQ1 0 N/A RY/BY# 0 0 1 1 N/A Data Toggle Toggle Toggle 0 0 0 N/A N/A N/A N/A N/A N/A N/A 0 1 Toggle N/A 1 1 0 0 0
Standard Mode Program Suspend Mode
Erase Suspend Mode
Write-toBuffer
DQ7 Status (Note 2) Embedded Program Algorithm DQ7# Embedded Erase Algorithm 0 Program-Suspended Program- Sector Suspend Non-Program Read Suspended Sector Erase-Suspended 1 EraseSector Suspend Non-Erase Suspended Read Sector Erase-Suspend-Program DQ7# (Embedded Program) Busy (Note 3) DQ7# Abort (Note 4) DQ7#
Invalid (not allowed) Data No toggle 0
Notes: 1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. See DQ5: Exceeded Timing Limits for more information. 2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details. 3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location. 4. DQ1 switches to ‘1’ when the device has aborted the write-to-buffer operation.
February 1, 2007 26190C8
Am29LV640MT/B
41
DATA
SHEET
ABSOLUTE MAXIMUM RATINGS
Storage Temperature Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C Ambient Temperature with Power Applied. . . . . . . . . . . . . . –65°C to +125°C Voltage with Respect to Ground VCC (Note 1) . . . . . . . . . . . . . . . . . –0.5 V to +4.0 V VIO . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.0 V A9, OE#, ACC, and RESET# (Note 2) . . . . . . . . . . . . . . . . . . . . –0.5 V to +12.5 V All other pins (Note 1) . . . . . . –0.5 V to VCC +0.5 V Output Short Circuit Current (Note 3) . . . . . . 200 mA
Notes: 1. Minimum DC voltage on input or I/O pins is –0.5 V. Dur ing voltage transitions, input or I/O pins can overshoot V SS t o –2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is VCC +0.5 V. See Figure 10. During voltage transitions, input or I/O pins can overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 11. 2. Minimum DC input voltage on pins A9, OE#, ACC, and RESET# is –0.5 V. During voltage transitions, A9, OE#, ACC, and RESET# can overshoot V SS t o –2.0 V for periods of up to 20 ns. See Figure 10. Maximum DC input voltage on pin A9, OE#, ACC, and RESET# is +12.5 V which can overshoot to +14.0 V for periods up to 20 ns. 3. No more than one output can be shorted to ground at a time. Duration of the short circuit should not be greater than one second. Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods can affect device reliability. +0.8 V –0.5 V –2.0 V 20 ns 20 ns 20 ns
Figure 10. Maximum Negative Overshoot Waveform
20 ns VCC +2.0 V VCC +0.5 V 2.0 V 20 ns 20 ns
Figure 11. Maximum Positive Overshoot Waveform
OPERATING RANGES
Industrial (I) Devices Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C Supply Voltages VCC for full voltage range . . . . . . . . . . . . . . . 2.7–3.6 V VCC for regulated voltage range . . . . . . . . . . 3.0–3.6 V
Note: Operating ranges define those limits between which the functionality of the device is guaranteed.
42
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
DC CHARACTERISTICS CMOS Compatible
Parameter Symbol ILI ILIT ILO ILR ICC1 ICC2 ICC3 ICC4 ICC5 ICC6 ICC7 VIL VIH VID VOL VOH1 VOH2 VLKO Notes:
1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ± 5.0 µA.
Parameter Description (Notes) Input Load Current (1) A9, ACC Input Load Current Output Leakage Current Reset Leakage Current VCC Active Read Current (2, 3) VCC Initial Page Read Current (2, 3) VCC Intra-Page Read Current (2, 3) VCC Active Write Current (3, 4) VCC Standby Current (3) VCC Reset Current (3) Automatic Sleep Mode (3, 5) Input Low Voltage Input High Voltage
Test Conditions VIN = VSS to VCC, VCC = VCC max VCC = VCC max; A9 = 12.5 V VOUT = VSS to VCC, VCC = VCC max VCC = VCC max; RESET= 12.5 V CE# = VIL, OE# = VIH, CE# = VIL, OE# = VIH CE# = VIL, OE# = VIH CE# = VIL, OE# = VIH CE#, RESET# = VCC ± 0.3 V, WP# = VIH RESET# = VSS ± 0.3 V, WP# = VIH VIH = VCC ± 0.3 V; VIL = VSS ± 0.3 V, WP# = VIH 5 MHz 1 MHz
Min
Typ
Max ±1.0 35 ±1.0 35
Unit µA µA µA µA mA mA mA mA µA µA µA V V V V V V
15 15 30 10 50 1 1 1 –0.5 1.9 11.5
20 20 50 20 60 5 5 5 0.8 VCC + 0.5 12.5 0.15 x VCC
Voltage for Autoselect and Temporary VCC = 2.7 –3.6 V Sector Unprotect Output Low Voltage Output High Voltage Low VCC Lock-Out Voltage (6)
4. 5. 6.
IOL = 4.0 mA, VCC = VCC min IOH = –2.0 mA, VCC = VCC min IOH = –100 µA, VCC = VCC min 0.85 VCC VCC–0.4 2.3
2.5
V
ICC active while Embedded Erase or Embedded Program is in progress. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Not 100% tested.
2. 3.
7.
The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. Maximum ICC specifications are tested with VCC = VCCmax.
Includes RY/BY#
February 1, 2007 26190C8
Am29LV640MT/B
43
DATA
SHEET
TEST CONDITIONS
Table 15.
3.3 V 2.7 kΩ Test Condition Output Load Output Load Capacitance, CL (including jig capacitance) CL 6.2 kΩ Input Rise and Fall Times Input Pulse Levels Input timing measurement reference levels (See Note) Note: Diodes are IN3064 or equivalent Output timing measurement reference levels
Test Specifications
All Speeds 1 TTL gate 30 5 0.0–3.0 1.5 0.5 VIO pF ns V V V Unit
Device Under Test
Figure 12.
Test Setup
Note: If VIO < VCC, the reference level is 0.5 VIO.
KEY TO SWITCHING WAVEFORMS
WAVEFORM INPUTS Steady Changing from H to L Changing from L to H Don’t Care, Any Change Permitted Does Not Apply Changing, State Unknown Center Line is High Impedance State (High Z) OUTPUTS
3.0 V 0.0 V
Input
1.5 V
Measurement Level
0.5 VIO V
Output
Note: If VIO < VCC, the input measurement reference level is 0.5 VIO.
Figure 13. Input Waveforms and Measurement Levels
44
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
AC CHARACTERISTICS Read-Only Operations
Parameter JEDEC Std. Description tAVAV tAVQV tELQV tRC Read Cycle Time (Note 1) tACC Address to Output Delay tCE Chip Enable to Output Delay tPACC Page Access Time tGLQV tEHQZ tGHQZ tOE Output Enable to Output Delay tDF tDF Chip Enable to Output High Z (Note 1) Output Enable to Output High Z (Note 1) CE#, OE# = VIL OE# = VIL Test Setup Min Max Max Max Max Max Max 90R 90 90 90 25 25 100R 100 100 100 30 30 30 30 16 16 Speed Options 100 110R 110, 120R 120 120 120 40 40 30 30 40 40 120 Unit ns ns ns ns ns ns ns
110 110 110
tAXQX
Output Hold Time From tOH Addresses, CE# or OE#, Whichever Occurs First Output Enable Read Hold Time Toggle and (Note 1) Data# Polling
Min Min Min
0 0 10
ns ns ns
tOEH
Notes: 1. Not 100% tested. 2. See Figure 12 and Table 15 for test specifications.
tRC Addresses CE# tRH tRH OE# tOEH WE# HIGH Z Outputs RESET# RY/BY# Output Valid tCE tOH HIGH Z tOE tDF Addresses Stable tACC
0V
Figure 14.
Read Operation Timings
February 1, 2007 26190C8
Am29LV640MT/B
45
DATA
SHEET
AC CHARACTERISTICS
A21-A2 Same Page
A1-A0
Aa
tACC
Ab
tPACC
Ac
tPACC tPACC
Ad
Data Bus CE# OE#
Qa
Qb
Qc
Qd
* Figure shows word mode. Addresses are A1–A-1 for byte mode.
Figure 15.
Page Read Timings
46
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
AC CHARACTERISTICS Hardware Reset (RESET#)
Parameter JEDEC Std. tReady tReady tRP tRH tRPD Description RESET# Pin Low (During Embedded Algorithms) to Read Mode (See Note) RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note) RESET# Pulse Width Reset High Time Before Read (See Note) RESET# Low to Standby Mode Max Max Min Min Min All Speed Options 20 500 500 50 20 Unit μs ns ns ns μs
Note: Not 100% tested.
RY/BY#
CE#, OE# tRH RESET# tRP tReady
Reset Timings NOT during Embedded Algorithms Reset Timings during Embedded Algorithms
tReady RY/BY# tRB CE#, OE#
RESET# tRP
Figure 16.
Reset Timings
February 1, 2007 26190C8
Am29LV640MT/B
47
DATA
SHEET
AC CHARACTERISTICS Erase and Program Operations
Parameter JEDEC tAVAV tAVWL Std. tWC tAS tASO tWLAX tAH tAHT tDVWH tWHDX tDS tDH tOEPH tGHWL tELWL tWHEH tWLWH tWHDL tGHWL tCS tCH tWP tWPH Description Write Cycle Time (Note 1) Address Setup Time Address Setup Time to OE# low during toggle bit polling Address Hold Time Address Hold Time From CE# or OE# high during toggle bit polling Data Setup Time Data Hold Time Output Enable High during toggle bit polling Read Recovery Time Before Write (OE# High to WE# Low) CE# Setup Time CE# Hold Time Write Pulse Width Write Pulse Width High Write Buffer Program Operation (Notes 2, 3) Effective Write Buffer Program Operation (Notes 2, 4) Accelerated Effective Write Buffer Program Operation (Notes 2, 4) Single Word/Byte Program Operation (Note 2, 5) Accelerated Single Word/Byte Programming Operation (Note 2, 5) tWHWH2 tWHWH2 tVHH tVCS tBUSY tPOLL Notes:
1. Not 100% tested.
Speed Options 90R Min Min Min Min Min Min Min Min Min Min Min Min Min Typ Typ Typ Typ Typ Typ Word Byte Typ Word Typ Min Min Max Max 90 100 4 90 0.5 250 50 110 120 sec ns µs ns µs 100 90 µs 90 100, 100R 100 0 15 45 0 45 0 20 0 0 0 35 30 352 11 22 8.8 17.6 100 µs 112, 112R 110 120, 120R 120 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns µs µs µs µs µs
Per Byte Per Word Per Byte Per Word Byte
tWHWH1
tWHWH1
Sector Erase Operation (Note 2) VHH Rise and Fall Time (Note 1) VCC Setup Time (Note 1) WE# High to RY/BY# Low Program Valid Before Status Polling (Note 6)
5. 6.
2. 3. 4.
See Erase And Programming Performance on page 57 for more information. For 1–16 words/ 1–32 bytes programmed. Effective write buffer specification is based upon a 16-word/ 32-byte write buffer operation.
Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer. When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be fully re-applied upon resuming the programming operation. If the suspend command is issued after tPOLL, tPOLL is not required again prior to reading the status bits upon resuming.
48
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
AC CHARACTERISTICS
Program Command Sequence (last two cycles) tWC Addresses 555h tAS PA tAH CE# OE# tPOLL tWP WE# tCS tDS Data tDH PD tBUSY RY/BY# Status DOUT tRB tWPH tWHWH1 PA PA Read Status Data (last two cycles)
tCH
A0h
VCC tVCS
Notes: 1. PA = program address, PD = program data, DOUT is the true data at the program address. 2. Illustration shows device in word mode.
Figure 17.
Program Operation Timings
VHH
ACC
VIL or VIH tVHH tVHH
VIL or VIH
Figure 18.
Accelerated Program Timing Diagram
February 1, 2007 26190C8
Am29LV640MT/B
49
DATA
SHEET
AC CHARACTERISTICS
Erase Command Sequence (last two cycles) tWC Addresses 2AAh tAS SA
555h for chip erase
Read Status Data
VA tAH
VA
CE#
OE# tWP WE# tCS tDS
tCH
tWPH
tWHWH2
tDH Data 55h 30h
10 for Chip Erase In Progress Complete
tBUSY RY/BY# tVCS VCC
tRB
Notes: 1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data. See Write Operation Status on page 38. 2. These waveforms are for the word mode.
Figure 19.
Chip/Sector Erase Operation Timings
50
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
AC CHARACTERISTICS
tRC Addresses tPOLL CE# tCH OE# tOEH WE# tOH DQ15 and DQ7
Complement Complement True Valid Data
High Z
VA tACC tCE
VA
VA
tOE tDF
DQ14–DQ8, DQ6–DQ0 tBUSY RY/BY#
Status Data
Status Data
True
Valid Data
High Z
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle.
Figure 20. Data# Polling Timings (During Embedded Algorithms)
February 1, 2007 26190C8
Am29LV640MT/B
51
DATA
SHEET
AC CHARACTERISTICS
tAHT Addresses
tAS
tAHT tASO CE# tOEH WE# tOEPH OE# tDH DQ6/DQ2 Valid Data
Valid Status
tCEPH
tOE
Valid Status Valid Status
Valid Data
(first read) RY/BY#
(second read)
(stops toggling)
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle
Figure 21.
Toggle Bit Timings (During Embedded Algorithms)
Enter Embedded Erasing WE#
Erase Suspend Erase
Enter Erase Suspend Program Erase Suspend Program
Erase Resume Erase Suspend Read Erase Erase Complete
Erase Suspend Read
DQ6
DQ2 Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system can use OE# or CE# to toggle DQ2 and DQ6.
Figure 22. DQ2 vs. DQ6
52
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
AC CHARACTERISTICS Temporary Sector Unprotect
Parameter JEDEC Std tVIDR tRSP Description VID Rise and Fall Time (See Note) RESET# Setup Time for Temporary Sector Unprotect Min Min All Speed Options 500 4 Unit ns µs
Note: Not 100% tested.
VID RESET# VSS, VIL, or VIH tVIDR Program or Erase Command Sequence CE# tVIDR
VID VSS, VIL, or VIH
WE# tRSP RY/BY# tRRB
Figure 23.
Temporary Sector Group Unprotect Timing Diagram
February 1, 2007 26190C8
Am29LV640MT/B
53
DATA
SHEET
AC CHARACTERISTICS
VID VIH
RESET#
SA, A6, A1, A0
Valid* Sector Group Protect or Unprotect
Valid* Verify 40h
Sector Group Protect: 150 µs, Sector Group Unprotect: 15 ms
Valid*
Data
60h
60h
Status
1 µs CE#
WE#
OE#
* For sector group protect, A6–A0 = 0xx0010. For sector group unprotect, A6–A0 = 1xx0010.
Figure 24.
Sector Group Protect and Unprotect Timing Diagram
54
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
AC CHARACTERISTICS Alternate CE# Controlled Erase and Program Operations
Parameter JEDEC tAVAV tAVWL tELAX tDVEH tEHDX tGHEL tWLEL tEHWH tELEH tEHEL Std. tWC tAS tAH tDS tDH tGHEL tWS tWH tCP tCPH Description Write Cycle Time (Note 1) Address Setup Time Address Hold Time Data Setup Time Data Hold Time Read Recovery Time Before Write (OE# High to WE# Low) WE# Setup Time WE# Hold Time CE# Pulse Width CE# Pulse Width High Write Buffer Program Operation (Notes 2, 3) Effective Write Buffer Program Operation (Notes 2, 4) Accelerated Effective Write Buffer Program Operation (Notes 2, 4) Single Word/Byte Program Operation (Note 2) Accelerated Single Word/Byte Programming Operation (Note 2) tWHWH2 tWHWH2 tRH tPOLL Notes: 1. Not 100% tested. 2. 3. 4. 5. 6. See Erase And Programming Performance on page 57 for more information. For 1–16 words programmed/1–32 bytes programmed. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer. When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be fully re-applied upon resuming the programming operation. If the suspend command is issued after tPOLL, tPOLL is not required again prior to reading the status bits upon resuming. Sector Erase Operation (Note 2) RESET High Time Before Write (Note 1) Program Valid Before Status Polling (Note 6) Per Byte Per Word Per Byte Per Word Byte Typ Word Byte Typ Word Typ Min Max 90 0.5 50 4 sec ns µs 100 90 µs Min Min Min Min Min Min Min Min Min Min Typ Typ Typ Typ Typ 90R 90 Speed Options 100, 100R 100 0 45 45 0 0 0 0 45 30 352 11 22 8.8 17.6 100 µs 112, 112R 110 120, 120R 120 Unit ns ns ns ns ns ns ns ns ns ns µs µs µs µs µs
tWHWH1
tWHWH1
February 1, 2007 26190C8
Am29LV640MT/B
55
DATA
SHEET
AC CHARACTERISTICS
555 for program 2AA for erase PA for program SA for sector erase 555 for chip erase
Data# Polling PA
Addresses tWC tWH WE# tGHEL OE# tCP CE# tWS tCPH tDS tDH Data tRH
A0 for program 55 for erase PD for program 30 for sector erase 10 for chip erase
tAS tAH
tPOLL
tWHWH1 or 2
tBUSY
DQ7#, DQ15
DOUT
RESET#
RY/BY#
Notes: 1. Figure indicates last two bus cycles of a program or erase operation. 2. PA = program address, SA = sector address, PD = program data. 3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device. 4. Waveforms are for the word mode.
Figure 25.
Alternate CE# Controlled Write (Erase/Program) Operation Timings
56
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
ERASE AND PROGRAMMING PERFORMANCE
Parameter Sector Erase Time Chip Erase Time Byte Single Word/Byte Program Time (Note 3) Word Accelerated Single Word/Byte Program Time (Note 3) Total Write Buffer Program Time (Note 4) Per Byte Effective Write Buffer Program Time (Note 5) Per Word Total Accelerated Write Buffer Program Time (Note 4) Effective Accelerated Write Buffer Program Time (Note 4) Per Byte Per Word 22 282 8.8 17.6 113 1560 49 98 µs µs µs µs Byte Word 100 90 90 352 11 800 720 720 1800 57 µs µs µs µs µs Excludes system level overhead (Note 7) Typ (Note 1) 0.5 64 100 Max (Note 2) 15 128 800 Unit sec sec µs Comments Excludes 00h programming prior to erasure (Note 6)
Notes: 1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC. Programming specifications assume that all bits are programmed to 00h. 2. Maximum values are measured at VCC = 3.0 V, worst case temperature. Maximum values are valid up to and including 100,000 program/erase cycles. 3. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer. 4. For 1-16 words or 1-32 bytes programmed in a single write buffer programming operation. 5. Effective write buffer specification is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer operation. 6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure. 7. System-level overhead is the time required to execute the command sequence(s) for the program command. See Tables 12 and 13 for further information on command definitions. 8. The device has a minimum erase and program cycle endurance of 100,000 cycles.
LATCHUP CHARACTERISTICS
Description Min Max
Input voltage with respect to VSS on all pins except I/O pins (including A9, OE#, and RESET#) Input voltage with respect to VSS on all I/O pins VCC Current Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.
–1.0 V –1.0 V –100 mA
12.5 V VCC + 1.0 V +100 mA
February 1, 2007 26190C8
Am29LV640MT/B
57
DATA
SHEET
TSOP PIN AND BGA PACKAGE CAPACITANCE
Parameter Symbol CIN COUT CIN2 Notes: 1. Sampled, not 100% tested. 2. Test conditions TA = 25°C, f = 1.0 MHz. Parameter Description Input Capacitance Test Setup VIN = 0 VOUT = 0 VIN = 0 TSOP Fine-pitch BGA TSOP Fine-pitch BGA TSOP Fine-pitch BGA Typ 6 4.2 8.5 5.4 7.5 3.9 Max 7.5 5.0 12 6.5 9 4.7 Unit pF pF pF pF pF pF
Output Capacitance
Control Pin Capacitance
DATA RETENTION
Parameter Description Minimum Pattern Data Retention Time Test Conditions 150°C 125°C Min 10 20 Unit Years Years
58
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
PHYSICAL DIMENSIONS TS 048—48-Pin Standard Pinout Thin Small Outline Package (TSOP)
Dwg rev AA; 10/99
February 1, 2007 26190C8
Am29LV640MT/B
59
DATA
SHEET
PHYSICAL DIMENSIONS FBE063—63-Ball Fine-pitch Ball Grid Array (FBGA) 12 x 11 mm Package
Dwg rev AF; 10/99
60
Am29LV640MT/B
26190C8 February 1, 2007
DATA
SHEET
PHYSICAL DIMENSIONS LAA064—64-Ball Fortified Ball Grid Array (FBGA) 13 x 11 mm Package
February 1, 2007 26190C8
Am29LV640MT/B
61
DATA
SHEET
REVISION SUMMARY Revision A (April 26, 2002)
Initial release.
Changed text in the third paragraph of CFI to read “reading array data.”
Revision B (May 23, 2002)
Changed packaging from 64-ball FBGA to 64-ball Fortified BGA. Changed Block Diagram: Moved VIO from RY/BY# to Input/Output Buffers. Changed Note about WP#/ACC pin to indicate internal pullup to VCC.
Revision B+3 (September 19, 2002)
Ordering Information Deleted FI from Valid Combinations Table.
Revision B+4 (October 15, 2002)
Connection Diagrams Changed from 56-Pin Standard TSOP to 48-Pin Standard TSOP. Product Selector Guide Added regulated OPNs.
Revision B+1 (July 31, 2002)
MIRRORBIT 64 MBIT Device Family Added 64 Fortified BGA to LV640MU device. Alternate CE# Controlled Erase and Program Operations Added tRH parameter to table. Erase and Program Operations Added tBUSY parameter to table. Figure 16. Program Operation Timings Added RY/BY# to waveform. TSOP and BGA PIN Capacitance Added the FBGA package. Program Suspend/Program Resume Command Sequence Changed 15 μs typical to maximum and added 5 μs typical. Erase Suspend/Erase Resume Commands Changed typical from 20 μs to 5 μs and added a maximum of 20 μs.
Revision C (December 5, 2002)
Secured Silicon Sector Flash Memory Region, and Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence Noted that the ACC function and unlock bypass modes are not available when the Secured Silicon sector is enabled. Byte/Word Program Command Sequence, Sector Erase Command Sequence, and Chip Erase Command Sequence Noted that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when a program or erase operation is in progress. Common Flash Memory Interface (CFI) Changed CFI website address. Command Definitions Changed wording in last sentence of first paragraph from, “...resets the device to reading array data.” to ...”may place the device to an unknown state. A reset command is then required to return the device to reading array data.” CMOS Compatible Added ILR parameter to table. Removed VIL, VIH, VOL, and VOH from table and added V IL1 , V IH1 , V IL2 , V IH2 , VOL , VOH1 , and VOH2 f rom the CMOS table in the Am29LV640MH/L datasheet. Changed VIH1 and VIH2 minimum to 1.9. Removed typos in notes. AC Characteristics and Read-Only Operations Changed the Chip Enable to Output High Z and Output Enable to Output High Z Speed Options from 30 ns to 16 ns.
Revision B+2 (August 9, 2002)
Valid Combinations for TSOP Package Added 100R, 110R, and 120R OPNs. Valid Combinations for BGA Package Added 100R, 110R, and 120R OPNs. CMOS Compatible Added Note 8. Special package handling instructions Modified the special handling wording. DC Characteristics table Deleted the IACC specification row. CFI
62
Am29LV640MT/B
26190C8 February 1, 2007
DATA Word/Byte Configuration Changed BYTE# Switching Low to Output High Z Speed Options from 30 ns to 16 ns. Customer Lockable: Secured Silicon Sector NOT Programmed or Protected at the factory. Added second bullet, Secured Silicon sector-protect.
SHEET Table 12 & Table 13: Command Definitions Modified the Addr information for both Program/Erase Suspend and Program/Erase Resume from BA to XXX. AC Characteristics - Erase and Program Operations, and Alternate CE# Controlled Erase and Program Operations Added tPOLL information. AC Characteristics Figures - Program Operation Timings, Data# Polling Timings (During Embedded Algorithms, and Alternate CE# Controlled Write (Erase/Program) Operation Timings Updated figures with tPOLL information.
Revision C+1 (February 16, 2003)
Distinctive Characteristics Corrected performance characteristics. Product Selector Guide Added note 2. Connection Diagrams Changed pin F1 to NC. Ordering Information Corrected Valid Combinations table. Added Note. AC Characteristics Removed 93, 93R speed option. Added Note Input values in the tWHWH1 and tWHWH2 parameters in the Erase and Program Options table that were previously TBD. Also, added note 5. Input values in the tWHWH1 and tWHWH2 parameters in the Alternate CE# Controlled Erase and Program Options table that were previously TBD. Also, added note 5. Erase and Programming Performance Input values into table that were previously TBD. Added note 3 and 4
Revision C+4 (August 19, 2004)
Added Max programming specifications. Cover sheet and Title page Added notation referencing superseding documentation.
Revision C+5 (November5, 2004)
Ordering Information and Valid Combinations Added Pb-Free options
Revision C+6 (December 7, 2004)
Coversheet and Title page Added notation referencing superseding documentation.
Revision C+7 (December 13, 2005)
Global This product has been retired and is not available for designs. For new and current designs, S29GL064A supersedes Am29LV640MT/B and is the factory-recommended migration path. Please refer to the S29GL064A datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.
Revision C+2 (June 12, 2003)
Ordering Information Added 90R speed grade. Erase and Programming Performance Modified table and notes, inserted values for Typical.
Revision C8 (February 1, 2007)
Global Changed SecSi Sector to Secured Silicon Sector. AC Characteristics Erase and Program Operations table: Changed tBUSY to a maximum specification.
Revision C+3 (February 12, 2004)
Erase Suspend/Erase Resume Commands Added note reference to erase operation.
February 1, 2007 26190C8
Am29LV640MT/B
63
DATA
SHEET
Colophon The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion Inc. will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products. Trademarks Copyright © 2002–2005 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc. ExpressFlash is a trademark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Copyright © 2006–2007 Spansion Inc. All Rights Reserved. Spansion, the Spansion logo, MirrorBit, ORNAND, HD-SIM, and combinations thereof are trademarks of Spansion Inc. Other names are for informational purposes only and may be trademarks of their respective owners.
64
Am29LV640MT/B
26190C8 February 1, 2007