AME
AME5130
n General Description
The AME5130 is a fixed off-time step-up DC/DC converter in a small 5-lead SOT-25 package.The AME5130 is ideal for LCD panels requiring low current and high efficiency as well as LED applications for cellular phone backlighting, PDAS,and other hand-held devices. The low 400ns off-time allows the use of tiny external components. AME5130 can drive up 8 white LEDs from a single LiIon battery DC 2V to 5.5V; can be turned on by putting more than 1V at pin 4(EN). To control LED brightness, the LED current can be pulsed by applying a PWM (pulse width modulated) signal with a frequency range of 100Hz to 50KHz to the EN pin.
Micropower Step-Up DC/DC Converter
n Typical Application
V IN 2.5V-4.2V 5 V IN L 10µH 1 SW ILED COUT 4.7µ F Ceramic AME5130 D Option for 6LEDs
CIN 4.7µF Ceramic
>1.1V 4 EN 0V GND 2 FB
3 R2 80Ω
* ILED =VFB/R2
n Features
l 0.7Ω internal switch l Uses small surface mount components l Adjustable output voltage up to 20V l 2V to 5.5V input range l Input undervoltage lockout l 0.01µA shutdown current l Small 5-Lead SOT-25 package l All AME’ s Lead Free Product Meet RoHS Standard
Figure 1: Six White LEDs Application in Li-lon Battery
V IN 2.5V-4.2V
L 15µ H
D
20V 20mA
5 CIN 4.7µF Ceramic 4 VIN
1 SW 3
R1 200K
AME5130 FB EN GND 2
COUT 4.7µ F Ceramic
R2 13K
n Applications
l l l l l White LED Back-Lighting Hand-held Devices Digital Cameras Portable Applications LCD Bias Power Figure 2: Typical 20V Application
Rev.F.02
1
AME
AME5130
n Function Block Diagram
L VIN CIN VIN SW D
Micropower Step-Up DC/DC Converter
VOUT COUT
V OUT Vref=1.23 Enable Comp
R1 FB
+
-
+ CL Comp 400ns one Shot Current sensing
R2 CL Adjust
Driver Under Voltage Lockout Logic control
RUN
GND
Figure 3: AME5130 Block Diagram
2
Rev.F.02
AME
AME5130
n Pin Configuration
SOT-25 Top View
5 4
Micropower Step-Up DC/DC Converter
AME5130 1. SW 2. GND
AME5130
3. FB 4. EN 5. VIN * Die Attach: Conductive Epoxy
1
2
3
n Pin Description
Pin Number
1
Pin Name
SW
Pin Description
Power Switch input. This is the drain of the internal NMOS power switch. Minimize the metal trace area connected to this pin to minimize EMI. Ground. Tie directly to ground plane. Output voltage feedback input. Set the output voltage by selecting values for R1 and R2 using:
2
GND
3
FB
V R1 = R 2 out − 1 1 . 23V
Connect the ground of the feedback network to an AGND(Analog Ground) plane which should be tied directly to the GND pin.
4
EN
Shutdown control input, active low. The shutdown pin is an active low control. Tie this pin above 1V to enable the device. Tie this pin below 0.4V to turn off the device. Analog and Power input. Input Supply Pin. Bypass this pin with a capacitor as close to the device as possible.
5
VIN
Rev.F.02
3
AME
AME5130
n Ordering Information AME5130 x x x x xxx x
Special Feature Output Voltage Number of Pins Package Type Operating Ambient Temperature Range Pin Configuration Number of Pins V: 5
Micropower Step-Up DC/DC Converter
Pin Configuration A
(TSOT-25)
Operating Ambient Package Type Temperature Range E: -40OC to +85OC E: SOT-2X
Output Voltage
Special Feature
1. SW 2. GND 3. FB 4. EN 5. VIN
ADJ: Adjustable
Z:
Lead free
n Ordering Information
Part Number
AME5130AEEVADJZ
Marking*
BCLww
Output Voltage
ADJ
Package
SOT-25
Operating Ambient Temperature Range
-40OC to +85OC
Note: ww represents the date code and pls refer to Date Code Rule before Package Dimension. * A line on top of the first letter represents lead free plating such as BCLww. Please consult AME sales office or authorized Rep./Distributor for the availability of package type.
4
Rev.F.02
AME
AME5130
n Absolute Maximum Ratings
Parameter
Input Supply Voltage RUN, VFB Voltages SW Voltage N-Channel Switch Sink Current ESD Classification
Micropower Step-Up DC/DC Converter
Symbol
VIN VRUN ,VFB VSW ISW
Maximum
6 VIN VOUT+0.3 800 B*
Unit
V V V mA
Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device * HBM B: 2000V~3999V and SW pin pass 1500V only
n Recommended Operating Conditions
Parameter
Ambient Temperature Range Junction Temperature Range Storage Temperature Range
Symbol
TA TJ TSTG
Rating
-40 to +85 -40 to +125 -65 to +150
Unit
o
C C C
o
o
n Thermal Information
Parameter
Thermal Resistance* (Junction to Case) Thermal Resistance (Junction to Ambient) Internal Power Dissipation Maximum Junction Temperature Solder Iron (10Sec)** * Measure θJC on backside center of molding compund if IC has no tab. ** MIL-STD-202G 210F
Rev.F.02 5
Package
Die Attach
Symbol
θJC
Maximum
81
Unit
o
C/W
SOT-25
Conductive Epoxy
θJA
PD
260
400 150 350
mW
o
C C
o
AME
AME5130
n Electrical Specifications
VIN=2.2V, EN = VIN, TA = 25oC Unless otherwise noted. Parameter Input Voltage Symbol VIN Test Condition TA= -40oC to +85oC FB = 1.3V (Not Switching) Quiescent Current IQ FB = 1.15V (Switching) Shutdown Current Feedback Trip Point Feedback Hysteresis ISD VFB VFB Hysteresis ICL IFB RDSON TOFF EN = VIN , TA= 25 C EN Input Current IEN EN = VIN , TA= 85oC EN = GND Switch Leakage Current Input Undervoltage Lockout EN LOW (Shutdown) EN High (Enable the device) ISW UVP VSW = 20V ON/OFF Threshold TA= -40oC to +85oC EN Threshold TA= -40oC to +85oC
o
Micropower Step-Up DC/DC Converter
Min 2
Typ
Max 5.5
Units V
TA= 25oC VIN =5.5V TA= -40oC to +85oC TA= 25oC VIN =5.5V TA= -40oC to +85oC
64
80 150
69
90 150
µA
EN = 0V TA= -40 C to +85 C
o o
0.01 1.199 1.23 8
2 1.261 V mV 610 mA 620
Switch Current Limit FB Pin Bias Current Switch RDSON Switch Off Time
IOUT=20mA VOUT=20V FB = 1.23V
TA= 25oC TA= -40oC to +85oC TA= -40oC to +85oC
490 420
550
0.2 0.7 400 0 15 0 0.05 1.6
0.7 1.6
µA Ω ns nA nA nA
TA= -40oC to +85oC
5.0
µΑ V
0.4
V
1
V
6
Rev.F.02
AME
AME5130
n Electrical Specifications
The AME5130 features a constant off-time control scheme. Operation can be best understood by referring to Figure 3. When the voltage at the FB pin is less than 1.23V, the Enable Comp in Figure 3 enables the device and the NMOS switch is turmed on pulling the SW pin to ground. When the NMOS switch is on, current is supplied by the output capacitor C OUT. Once the current in the inductor reaches the peak current limit, the 400ns One Shot turns off the NMOS switch. The SW voltage will then rise to the output voltage plus a diode drop and the inductor current will begin to decrease as shown in Figure 3. During this time the energy stored in the inductor is transferred to C OUT and the load. After the 400ns off-time the NMOS switch is turned on and energy is stored in the inductor again. This energy transfer from the inductor to the output causes a stepping effect in the output ripple. This cycle is continued until the voltage at FB reaches 1.23V. When FB reaches this voltage, the enable comparator then disables the device turning off the NMOS switch and reducing the Iq of the device to 64 µA. The load current is then supplied solely by C OUT indicated by the gradually decreasing slope at the output. When the FB pin drops slightly below 1.23V, the enable comparator enables the device and begins the cycle described previously. The EN pin can be used to turn off the AME5130 and reduce the Iq to 0.01µA. In shutdown mode the output voltage will be a diode drop lower than the input voltage.
Micropower Step-Up DC/DC Converter
n Application Information
INDUCTOR SELECTION The appropriate inductor for a given application is calculated using the following equation:
V − VIN(min) + VD TOFF L = OUT ICL
Where VD is the schottky diode voltage, I CL is the switch current limit found in the Typical Performance Characteristics section, and T OFF is the switch off time. When using this equation be sure to use in minimum input voltage for the application, such as for battery powered applications. Choosing inductors with low ESR decrease power lossed and increase efficiency. Care should be taken when choosing an inductor. For applications that require an input voltage that approaches the output voltage, such as when converting a Li-ion battery voltage to 5V, the 400ns off time may not be enough time to discharge the energy in the inductor and transfer the energy to the output capacitor and load. This can cause a ramping effect in the inductor current waveform and an increased ripple on the output voltage. Using a smaller inductor will cause the I PK to increase and will increase the output voltage ripple further. This can be solved by adding a 4.7pF capacitor across the R1 feedback resistor (Figure 3) and slightly increasing the output capacitor. A smaller inductor can then be used to ensure proper discharge in the 400ns off time. DIODE SELECTION To maintain high efficiency, the average current rating of the schottky diode should be larger than the peak inductor current, I PK. Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse breakdown of the schottky diode larger than the output voltage.
Rev.F.02
7
AME
AME5130
CAPACITOR SELECTION Choose low ESR capacitors for the output to minimize output voltage ripple. Multilayer ceramic capacitors are the best choice. For most applications, a 1µF ceramic capacitor is sufficient. For some applications a reduction in output voltage ripple can be achieved by increasing the output capacitor. Local bypassing for the input is needed on the AME5130. Multilayer ceramic capacitors are a good choice for this as well. A 4.7µF capacitor is sufficient for most applications. For additional bypassing, a 100nF ceramic capacitor can be used to shunt high frequency ripple on the input.
Micropower Step-Up DC/DC Converter
LAYOUT CONSIDERATIONS The input bypass capacitor C IN, as shown in Figure 3, must be placed close to the IC. This will reduce copper trace resistance which effects input voltage ripple of the IC. For additional input voltage filtering, a 100nF bypass capacitor can be placed in parallel with C IN to shunt any high frequency noise to ground. The output capacitor, C O UT, should also be placed close to the IC. Any copper trace connections for the C OUT capacitor can increase the series resistance, which directly effects output voltage ripple. The feedback network, resistors R1 and R2, should be kept close to the FB pin to minimize copper trace connections that can inject noise into the system. The ground connection for the feedback resistor network should connect directly to an analog ground plane. The analog ground plane should tie directly to the GND pin. If no analog ground plane is available, the ground connection for the feedback network should tie directly to the GND pin. Trace connections made to the inductor and schottky diode should be minimized to reduce power dissipation and increase overall efficiency.
8
Rev.F.02
AME
AME5130
n Application Information
Micropower Step-Up DC/DC Converter
VIN 2.5V-4.2V
L 10µ H
D
Option for 8LEDs
5 CIN 4.7µF Ceramic >1.1V 4 0V VIN
1 SW COUT 1µF Ceramic COUT 1µF Ceramic
AME5130 EN GND 2 R2 80Ω R3 80Ω FB 3
Figure4: Eight White LEDs Application in Li-Ion Battery
VIN 2.5V-4.2V 5 C IN 4.7µF Ceramic 4 VIN
L 2.2µH
D
5V 120mA
1 SW 3
R1 100K
CF B 5pF
AME5130 FB EN GND 2
C OUT 4.7 µ F Ceramic
R2 32.4K
Figure5: Li-Ion 5V Application
Rev.F.02
9
AME
AME5130
n Application Information
Micropower Step-Up DC/DC Converter
VIN 2.5V-4.5V 5 C IN 4.7µF Ceramic 4 VIN
L 10µ H
D
12V 40mA
1 SW 3
R1 100K
AME5130 FB EN GND 2
C OUT 4.7µ F Ceramic
R2 11.3K
Figure6: Li-Ion 12V Application
VIN 5V 5 C IN 4.7µF Ceramic 4 VIN
L 10µ H
D
12V 145mA
1 SW 3
R1 100K
AME5130 FB EN GND 2
C OUT 4.7µ F Ceramic
R2 11.3K
Figure7: 5V to 12V Application
10
Rev.F.02
AME
AME5130
Switch Current Limit vs. VIN
800 750
Micropower Step-Up DC/DC Converter
Efficiency vs. Load Current
90 85 V IN =4.2V V IN =3.3V VIN=2.5V
S witc h Cu rre n t L imit (m A)
700 650 600 550 500 450 400 350 2 2.5 3 3.5 4
E FF ICIE N C Y (% )
T A=25 oC T A=40 oC
80 75 70 65 60 55 50
T A=85 oC
VOUT=20V
0.5 5 10 15 20 25 30 35 40 45
4.5
5
5.5
Vin(V)
IOUT (mA)
Efficiency vs. Load Current
90 85 80
95
Efficiency vs. Load Current
90 85
VIN=5V VIN=3.3V
V IN=4.2V VIN=3.3V VIN=2.5V
V IN=4.2V
E FF ICIE N C Y (% )
E F FIC IE N C Y (% )
75 70 65 60 55 50 45 40 0.5
V IN=2.5V
80 75 70 65 60 55 50
VOUT =12V
4 8 20 40 55 70 80 110 115 140 145
45 40 0.5 3 6 9 20 35 50
VOUT=5V
80 110 140 160 190 220 250
IOUT (mA)
IOUT (mA)
Enable Current vs. VIN (Part Switching)
140 130
Disable Current vs. VIN (Part Not Switching)
140 130
D is a ble C ur r en t (uA )
E na ble C ir r en t (uA )
120 110 100 90 80 70 60 50 40 2 2.5 3 3.5 4
T A=25 o C
120 110 100 90 80 70 60 50 40
T A=25 o C
TA=85 oC
TA =-40 oC
TA=85 oC
TA =-40 oC
4.5
5
5.5
6
2
2.5
3
3.5
4
4.5
5
5.5
6
VIN (V)
VI N (V)
Rev.F.02
11
AME
AME5130
EN Threshold vs. VIN
1.05 1.0 0.95
Micropower Step-Up DC/DC Converter
Switch Rdson vs. VIN
1.2 1.1 1
T A=-40 o C
E N Th re s hol d (V )
0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 2 2.5 3
Rds o n (Ω )
oC T A= 25
0.9 0.8 0.7 0.6 0.5 0.4 0.3
T A=25 oC
TA=85 oC
T A=85 oC
TA =-40 oC
3.5
4
4.5
5
5.5
6
0.2 2 2.5 3 3.5 4 4.5 5 5.5 6
VI N (V)
VIN (V)
Efficiency vs. VIN
95
90
Efficiency vs. VIN
90
85
E ffic ie nc y (% )
TA=25 oC
85
E ffic ie nc y (% )
TA=25 oC
80
80
75
6 LEDs
75
8 LEDs
70
IOUT = 15mA
70 2 2.5 3 3.5 4 4.5 5
IOUT = 30mA
65 2 2.5 3 3.5 4 4.5 5
Vin (V)
Vin (V)
FB Trip Point and FB Pin Current vs Temperature
1.25 0.36 0.35 1.24
12.4
Output Voltage vs Load Current
COUT=4.7µ F VOUT=12V
Fe e dba c k Bi as c ur en t (uA )
Fe e dba c k Tri p P oint (V )
0.34 1.23 0.33 0.32 0.31 1.21 0.30 1.20 -40 0.29 85
O otpu t V ol tag e (V )
V
12.3
VIN =4.2V
12.2 VIN=2.5V 12.1 V IN =3.3V 12 VIN =5V
1.22
µA
11.9
-20
0
25
55
11.8 0.5
4
8
20
40
50
70
80
110 115
145
150
Ambient Tempature (oC)
IOUT (mA)
12
Rev.F.02
AME
AME5130
Typical Switching Waveform
Micropower Step-Up DC/DC Converter
Typical Switching Waveform
1
1
2
2
3
3
VOUT = 19.4V, VIN = 4.2V; 6 LEDs IOUT = 15mA 1) VSW, 20V / div, DC 2) Inductor current, 500mA / div, DC 3) VOUT, 100mV / div, AC
VOUT = 13.25V, VIN = 4.2V; 8 LEDs IOUT = 30mA 1) VSW, 20V / div, DC 2) Inductor current, 500mA / div, DC 3) VOUT, 100mV / div, AC
Start-Up/Shutdown
Start-Up/Shutdown
2
1
3
3
1
2
VOUT = 20V, VIN = 2.5V 1) Vout, 100mV/div.AC 2) Vsw,20V/div,DC 3) Inductor Current 500mA/div,DC T=20µs/div
VOUT = 20V, VIN = 2.5V 1) RUN, 1V/div,DC 2) VOUT, 20V/div,DC 3) IL, 200mA/div,DC T=400µs/div RL=1.3k Ω
Rev.F.02
13
AME
AME5130
n Date Code Rule
Marking A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Date Code W W W W W W W W W W W W W W W W W W W W Year xxx0 xxx1 xxx2 xxx3 xxx4 xxx5 xxx6 xxx7 xxx8 xxx9
Micropower Step-Up DC/DC Converter
n Tape and Reel Dimension
SOT-25
P
W AME PIN 1 AME
Carrier Tape, Number of Components Per Reel and Reel Size
Package SOT-25
Carrier Width (W) 8.0±0.1 mm
Pitch (P) 4.0±0.1 mm
Part Per Full Reel 3000pcs
Reel Size 180±1 mm
14
Rev.F.02
AME
AME5130
n Package Dimension
SOT-25
Top View D θ1 Side View
Micropower Step-Up DC/DC Converter
SYMBOLS A A1
H E
MILLIMETERS MIN MAX
INCHES MIN MAX
1.20REF 0.00 0.30 2.70 1.40 0.15 0.55 3.10 1.80
0.0472REF 0.0000 0.0118 0.1063 0.0551 0.0059 0.0217 0.1220 0.0709
b D E
PIN 1 L S1 e
e H L θ1
Front View A
1.90 BSC 2.60 3.00
0.07480 BSC 0.10236 0.11811 0.0146BSC
o
0.37BSC 0
o
10
0o
10o
S1
0.95BSC
0.0374BSC
b
Rev.F.02
A1
15
www.ame.com.tw
E-Mail: sales@ame.com.tw
Life Support Policy: These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc. AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information. © AME, Inc. , November 2008
Document: 1015-DS5130-F.02
Corporate Headquarter
AME, Inc.
2F, 302 Rui-Guang Road, Nei-Hu District Taipei 114, Taiwan. Tel: 886 2 2627-8687 Fax: 886 2 2659-2989