0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A29L320UV-90IF

A29L320UV-90IF

  • 厂商:

    AMICC(欧密格)

  • 封装:

  • 描述:

    A29L320UV-90IF - 4M X 8 Bit / 2M X 16 Bit CMOS 3.3 Volt-only, Boot Sector Flash Memory - AMIC Techno...

  • 数据手册
  • 价格&库存
A29L320UV-90IF 数据手册
A29L320 Series 4M X 8 Bit / 2M X 16 Bit CMOS 3.3 Volt-only, Preliminary Document Title 4M X 8 Bit / 2M X 16 Bit CMOS 3.3 Volt-only, Boot Sector Flash Memory Revision History Rev. No. 0.0 Boot Sector Flash Memory History Initial issue Issue Date September 21, 2005 Remark Preliminary PRELIMINARY (September, 2005, Version 0.0) AMIC Technology, Corp. A29L320 Series 4M X 8 Bit / 2M X 16 Bit CMOS 3.3 Volt-only, Preliminary Features Single power supply operation - Regulated voltage range: 3.0 to 3.6 volt read and write operations for compatibility with high performance 3.3 volt microprocessors Access times: - 70/90 (max.) Current: - 9 mA typical active read current - 20 mA typical program/erase current - 200 nA typical CMOS standby - 200 nA Automatic Sleep Mode current Flexible sector architecture - Eight 8 Kbyte sectors - Sixty-three 64 kbyte sectors - Any combination of sectors can be erased - Supports full chip erase - Sector protection: A hardware method of protecting sectors to prevent any inadvertent program or erase operations within that sector. Temporary Sector Unprotect feature allows code changes in previously locked sectors Unlock Bypass Program Command - Reduces overall programming time when issuing multiple program command sequence Top or bottom boot block configurations available Embedded Algorithms - Embedded Erase algorithm will automatically erase the entire chip or any combination of designated sectors and verify the erased sectors - Embedded Program algorithm automatically writes and verifies data at specified addresses Typical 10,000 program/erase cycles per sector 20-year data retention at 125°C - Reliable operation for the life of the system CFI (Common Flash Interface) compliant - Provides device-specific information to the system, allowing host software to easily reconfigure for different Flash devices Compatible with JEDEC-standards - Pinout and software compatible with single-power-supply Flash memory standard - Superior inadvertent write protection Data Polling and toggle bits - Provides a software method of detecting completion of program or erase operations Ready / BUSY pin (RY / BY ) - Provides a hardware method of detecting completion of program or erase operations (not available on 44-pin SOP) Erase Suspend/Erase Resume - Suspends a sector erase operation to read data from, or program data to, a non-erasing sector, then resumes the erase operation Hardware reset pin ( RESET ) - Hardware method to reset the device to reading array data WP /ACC input pin - Write protect ( WP ) function allows protection of sector protect status - Acceleration (ACC) function provides accelerated program times Package options - 44-pin SOP or 48-pin TSOP (I) or 48-ball TFBGA Boot Sector Flash Memory General Description The A29L320 is a 32Mbit, 3.3 volt-only Flash memory organized as 2,097,152 words of 16 bits or 4,194,304 bytes of 8 bits each. The 8 bits of data appear on I/O0 - I/O7; the 16 bits of data appear on I/O0~I/O15. The A29L320 is offered in 48-ball FBGA, 44-pin SOP and 48-Pin TSOP packages. This device is designed to be programmed in-system with the standard system 3.3 volt VCC supply. Additional 12.0 volt VPP is not required for in-system write or erase operations. However, the A29L320 can also be programmed in standard EPROM programmers. The A29L320 has the first toggle bit, I/O6, which indicates whether an Embedded Program or Erase is in progress, or it is in the Erase Suspend. Besides the I/O6 toggle bit, the A29L320 has a second toggle bit, I/O2, to indicate whether the addressed sector is being selected for erase. The A29L320 also offers the ability to program in the Erase Suspend mode. The standard A29L320 offers access times of 70 and 90ns, allowing high-speed microprocessors to operate without wait states. To eliminate bus contention the device has separate chip enable ( CE ), write enable ( WE ) and output enable ( OE ) controls. The device requires only a single 3.3 volt power supply for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. The A29L320 is entirely software command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices. PRELIMINARY (September, 2005, Version 0.0) 1 AMIC Technology, Corp. A29L320 Series Device programming occurs by writing the proper program command sequence. This initiates the Embedded Program algorithm - an internal algorithm that automatically times the program pulse widths and verifies proper program margin. Device erasure occurs by executing the proper erase command sequence. This initiates the Embedded Erase algorithm - an internal algorithm that automatically preprograms the array (if it is not already programmed) before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper erase margin. The Unlock Bypass mode facilitates faster programming times by requiring only two write cycles to program data instead of four. The host system can detect whether a program or erase operation is complete by observing the RY / BY pin, or by reading the I/O7 ( Data Polling) and I/O6 (toggle) status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command. The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The A29L320 is fully erased when shipped from the factory. The hardware sector protection feature disables operations for both program and erase in any combination of the sectors of memory. This can be achieved via programming equipment. The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period of time to read data from, or program data to, any other sector that is not selected for erasure. True background erase can thus be achieved. The hardware RESET pin terminates any operation in progress and resets the internal state machine to reading array data. The RESET pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the system microprocessor to read the boot-up firmware from the Flash memory. The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the automatic sleep mode. The system can also place the device into the standby mode. Power consumption is greatly reduced in both these modes. Pin Configurations TSOP (I) A15 A14 A13 A12 A11 A10 A9 A8 A20 NC WE RESET NC WP/ACC RY/BY A18 A17 A7 A6 A5 A4 A3 A2 A1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A29L320V 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 A16 BYTE VSS I/O 15(A-1) I/O7 I/O14 I/O6 I/O 13 I/O5 I/O 12 I/O4 VCC I/O 11 I/O3 I/O 10 I/O2 I/O9 I/O1 I/O8 I/O0 OE VSS CE A0 PRELIMINARY (September, 2005, Version 0.0) 2 AMIC Technology, Corp. A29L320 Series Pin Configurations (continued) TFBGA TFBGA Top View, Balls Facing Down A6 B6 C6 D6 E6 F6 G6 H6 A13 A5 A12 B5 A14 C5 A15 D5 A16 E5 BYTE F5 I/O15 (A-1) G5 VSS H5 A9 A4 A8 B4 A10 C4 A11 D4 I/O7 E4 I/O14 F4 I/O13 G4 I/O6 H4 WE A3 RESET B3 NC C3 A19 D3 I/O5 E3 I/O12 F3 VCC G3 I/O4 H3 RY/BY A2 WP/ACC B2 A18 C2 A20 D2 I/O2 E2 I/O10 F2 I/O11 G2 I/O3 H2 A7 A1 A17 B1 A6 C1 A5 D1 I/O0 E1 I/O8 F1 I/O9 G1 I/O1 H1 A3 A4 A2 A1 A0 CE OE VSS PRELIMINARY (September, 2005, Version 0.0) 3 AMIC Technology, Corp. A29L320 Series Block Diagram RY/BY VCC VSS I/O0 - I/O15 (A-1) Sector Switches Erase Voltage Generator State Control PGM Voltage Generator Chip Enable Output Enable Logic STB Data Latch Input/Output Buffers RESET WE BYTE Command Register CE OE STB VCC Detector Timer Address Latch Y-Decoder Y-Gating A0-A20 X-decoder Cell Matrix Pin Descriptions Pin No. A0 – A20 I/O0 - I/O14 I/O15 I/O15 (A-1) A-1 Description Address Inputs Data Inputs/Outputs Data Input/Output, Word Mode LSB Address Input, Byte Mode Chip Enable Write Enable Output Enable Hardware Reset Selects Byte Mode or Word Mode Ready/ BUSY - Output Ground Power Supply Pin not connected internally CE WE OE RESET BYTE RY/ BY VSS VCC NC PRELIMINARY (September, 2005, Version 0.0) 4 AMIC Technology, Corp. A29L320 Series Absolute Maximum Ratings* Storage Temperature Plastic Packages. . . -65°C to + 150°C Ambient Temperature with Power Applied. -55°C to + 125°C Voltage with Respect to Ground VCC (Note 1) . . . . . . . . . . . . . . . . . . . . ……. . -0.5V to +4.0V A9, OE & RESET (Note 2) . . . . . . . . . . . …. -0.5 to +12.5V All other pins (Note 1) . . . . . . . . . . …. . -0.5V to VCC + 0.5V Output Short Circuit Current (Note 3) . . . . . . . …. . 200mA *Comments Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of these specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Notes: 1. Minimum DC voltage on input or I/O pins is -0.5V. During voltage transitions, input or I/O pins may undershoot VSS to -2.0V for periods of up to 20ns. Maximum DC voltage on input and I/O pins is VCC +0.5V. During voltage transitions, input or I/O pins may overshoot to VCC +2.0V for periods up to 20ns. 2. Minimum DC input voltage on A9, OE and RESET is 0.5V. During voltage transitions, A9, OE and RESET may overshoot VSS to -2.0V for periods of up to 20ns. Maximum DC input voltage on A9 is +12.5V which may overshoot to 14.0V for periods up to 20ns. 3. No more than one output is shorted at a time. Duration of the short circuit should not be greater than one second. Operating Ranges Commercial (C) Devices Ambient Temperature (TA) . . . . . . . . . . . ….. . . 0°C to +70°C Extended Range Devices Ambient Temperature (TA) For –I series. . . . . . . . . . . . . . . . . . . . . . . . . . -25°C to +85°C For –U series . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C VCC Supply Voltages VCC for all devices . . . . . . . . . . . . . . . . . …...+3.0V to +3.6V Operating ranges define those limits between which the functionally of the device is guaranteed. Device Bus Operations This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is composed of latches that store the commands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. The appropriate device bus operations table lists the inputs and control levels required, and the resulting output. The following subsections describe each of these operations in further detail. Table 1. A29L320 Device Bus Operations Operation CE L L L VCC ± 0.3 V L OE L H H X H WE RESET H L L X H H H H VCC ± 0.3 V H WP / ACC L/H (Note 3) VHH H L/H L/H A0 - A20 (Note 1) AIN AIN AIN X X X I/O0 - I/O7 I/O8 - I/O15 BYTE =VIH DOUT (Note 4) (Note 4) High-Z High-Z DOUT (Note 4) (Note 4) High-Z High-Z Read Write Accelerated Program Standby Output Disable Reset BYTE =VIL I/O8~I/O14=High-Z I/O15=A-1 High-Z High-Z High-Z High-Z X X X X High-Z High-Z Sector Address, Sector Protect L/H (Note 4) X X L H L L A6=L, A1=H, A0=L (Note 2) Sector Address, Sector Unprotect L H L L (Note 3) (Note 4) X X A6=H, A1=H, A0=L (Note 2) Temporary Sector X X X X (Note 3) AIN (Note 4) (Note 4) High-Z Unprotect Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5V, X = Don't Care, DIN = Data In, DOUT = Data Out, AIN = Address In Notes: =V 1. Addresses are A20:A0 in word mode ( BYTE IH), A20: A-1 in byte mode ( BYTE =VIL). 2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See “Sector/Sector Block Protection and Unprotection”. 3. If WP /ACC=VIL, the two outermost boot sectors remain protected. If WP /ACC=VIH, the two outermost boot sector protection depends on whether they were last protected or unprotected using the method described in “Sector/Sector Block Protection and Unprotection. If WP /ACC = VHH, all sectors are unprotected. 4. DIN or DOUT as required by command sequence, data polling, or sector protection algorithm. PRELIMINARY (September, 2005, Version 0.0) 5 AMIC Technology, Corp. A29L320 Series Word/Byte Configuration The BYTE pin determines whether the I/O pins I/O15-I/O0 operate in the byte or word configuration. If the BYTE pin is set at logic ”1”, the device is in word configuration, I/O15-I/O0 are active and controlled by CE and OE . If the BYTE pin is set at logic “0”, the device is in byte configuration, and only I/O0-I/O7 are active and controlled by CE and OE . I/O8-I/O14 are tri-stated, and I/O15 pin is used as an input for the LSB(A-1) address function. Characteristics" section contains timing specification tables and timing diagrams for write operations. Program and Erase Operation Status During an erase or program operation, the system may check the status of the operation by reading the status bits on I/O7 - I/O0. Standard read cycle timings and ICC read specifications apply. Refer to "Write Operation Status" for more information, and to each AC Characteristics section for timing diagrams. Standby Mode When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE input. The device enters the CMOS standby mode when the CE & RESET pins are both held at VCC ± 0.3V. (Note that this is a more restricted voltage range than VIH.) If CE and RESET are held at VIH, but not within VCC ± 0.3V, the device will be in the standby mode, but the standby current will be greater. The device requires the standard access time (tCE) before it is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is completed. ICC3 and ICC4 in the DC Characteristics tables represent the standby current specification. Requirements for Reading Array Data To read array data from the outputs, the system must drive the CE and OE pins to VIL. CE is the power control and selects the device. OE is the output control and gates array data to the output pins. WE should remain at VIH all the time during read operation. The BYTE pin determines whether the device outputs array data in words and bytes. The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered. See "Reading Array Data" for more information. Refer to the AC Read Operations table for timing specifications and to the Read Operations Timings diagram for the timing waveforms, lCC1 in the DC Characteristics table represents the active current specification for reading array data. Automatic Sleep Mode The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for tACC +30ns. The automatic sleep mode is independent of the CE , WE and OE control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. ICC4 in the DC Characteristics table represents the automatic sleep mode current specification. Writing Commands/Command Sequences To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE and CE to VIL, and OE to VIH. For program operations, the BYTE pin determines whether the device accepts program data in bytes or words, Refer to “Word/Byte Configuration” for more information. The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The “ Word / Byte Program Command Sequence” section has details on programming data to the device using both standard and Unlock Bypass command sequence. An erase operation can erase one sector, multiple sectors, or the entire device. The Sector Address Tables indicate the address range that each sector occupies. A "sector address" consists of the address inputs required to uniquely select a sector. See the "Command Definitions" section for details on erasing a sector or the entire chip, or suspending/resuming the erase operation. After the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on I/O7 - I/O0. Standard read cycle timings apply in this mode. Refer to the "Autoselect Mode" and "Autoselect Command Sequence" sections for more information. ICC2 in the DC Characteristics table represents the active current specification for the write mode. The "AC PRELIMINARY (September, 2005, Version 0.0) 6 Output Disable Mode When the OE input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state. RESET : Hardware Reset Pin The RESET pin provides a hardware method of resetting the device to reading array data. When the system drives the RESET pin low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all data output pins, and ignores all read/write attempts for the duration of the RESET pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity. Current is reduced for the duration of the RESET pulse. When RESET is held at VSS ± 0.3V, the device draws CMOS standby current (ICC4 ). If RESET is held at VIL but not within VSS ± 0.3V, the standby current will be greater. AMIC Technology, Corp. A29L320 Series The RESET pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory. If RESET is asserted during a program or erase operation, the RY/ BY pin remains a “0” (busy) until the internal reset operation is complete, which requires a time tREADY (during Embedded Algorithms). The system can thus monitor RY/ BY to determine whether the reset operation is complete. If RESET is asserted when a program or erase operation is not executing (RY/ BY pin is “1”), the reset operation is completed within a time of tREADY (not during Embedded Algorithms). The system can read data tRH after the RESET pin return to VIH. Refer to the AC Characteristics tables for RESET parameters and diagram. Table 2. A29L320 Top Boot Block Sector Address Table Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 A20-A12 000000XXX 000001XXX 000010XXX 000011XXX 000100XXX 000101XXX 000110XXX 000111XXX 001000XXX 001001XXX 001010XXX 001011XXX 001100XXX 001101XXX 001110XXX 001111XXX 010000XXX 010001XXX 010010XXX 010011XXX 010100XXX 010 101XXX 010110XXX 010111XXX 011000XXX 011001XXX 011010XXX 011011XXX 011100XXX 011101XXX 011110XXX 011111XXX 100000XXX 100001XXX 100010XXX Sector Size (Kbytes/ Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 Address Range (in hexadecimal) Byte Mode (x8) Word Mode (x16) 000000 - 00FFFF 010000 - 01FFFF 020000 - 02FFFF 030000 - 03FFFF 040000 - 04FFFF 050000 - 05FFFF 060000 - 06FFFF 070000 - 07FFFF 080000 - 08FFFF 090000 - 09FFFF 0A0000 - 0AFFFF 0B0000 - 0BFFFF 0C0000 - 0CFFFF 0D0000 - 0DFFFF 0E0000 - 0EFFFF 0F0000 - 0FFFFF 100000 - 10FFFF 110000 - 11FFFF 120000 - 12FFFF 130000 - 13FFFF 140000 - 14FFFF 150000 - 15FFFF 160000 - 16FFFF 170000 - 17FFFF 180000 - 18FFFF 190000 - 19FFFF 1A0000 - 1AFFFF 1B0000 - 1BFFFF 1C0000 - 1CFFFF 1D0000 - 1DFFFF 1E0000 - 1EFFFF 1F0000 - 1FFFFF 200000 – 20FFFF 210000 – 21FFFF 220000 – 22FFFF 000000 - 007FFF 008000 - 00FFFF 010000 - 017FFF 018000 - 01FFFF 020000 - 027FFF 028000 - 02FFFF 030000 - 037FFF 038000 - 03FFFF 040000 - 047FFF 048000 - 04FFFF 050000 - 057FFF 058000 - 05FFFF 060000 - 067FFF 068000 - 06FFFF 070000 - 077FFF 078000 - 07FFFF 080000 - 087FFF 088000 - 08FFFF 090000 - 097FFF 098000 - 09FFFF 0A0000 - 0A7FFF 0A8000 - 0AFFFF 0B0000 - 0B7FFF 0B8000 - 0BFFFF 0C0000 - 0C7FFF 0C8000 - 0CFFFF 0D0000 - 0D7FFF 0D8000 - 0DFFFF 0E0000 - 0E7FFF 0E8000 - 0EFFFF 0F0000 - 0F7FFF 0F8000 - 0FBFFF 100000 - 107FFF 108000 – 10FFFF 110000 - 17FFFF PRELIMINARY (September, 2005, Version 0.0) 7 AMIC Technology, Corp. A29L320 Series Sector Size (Kbytes/ Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 Address Range (in hexadecimal) Byte Mode (x8) Word Mode (x16) 230000 - 23FFFF 240000 - 24FFFF 250000 - 25FFFF 260000 - 26FFFF 270000 - 27FFFF 280000 - 28FFFF 290000 - 29FFFF 2A0000 – 2AFFFF 2B0000 – 2BFFFF 2C0000 – 2CFFFF 2D0000 – 2DFFFF 2E0000 – 2EFFFF 2F0000 – 2FFFFF 300000 – 30FFFF 310000 – 31FFFF 320000 – 32FFFF 330000 – 33FFFF 340000 – 34FFFF 350000 – 35FFFF 360000 – 36FFFF 370000 – 37FFFF 380000 – 38FFFF 390000 – 39FFFF 3A0000 – 3AFFFF 3B0000 – 3BFFFF 3C0000 – 3CFFFF 3D0000 – 3DFFFF 3E0000 – 3EFFFF 3F0000 – 3FFFFF 3F2000 – 3F3FFF 3F4000 – 3F5FFF 3F6000 – 3F7FFF 3F8000 – 3F9FFF 3FA000 – 3FBFFF 3FC000 – 3FDFFF 3FE000 – 3FFFFF 118000 - 11FFFF 120000 - 127FFF 128000 – 12FFFF 130000 – 137FFF 138000 – 13FFFF 140000 – 147FFF 148000 – 14FFFF 150000 – 157FFF 158000 – 15FFFF 160000 – 167FFF 168000 – 16FFFF 170000 – 177FFF 178000 – 17FFFF 180000 – 187FFF 188000 – 18FFFF 190000 – 197FFF 198000 – 19FFFF 1A0000 – 1A7FFF 1A8000 – 1AFFFF 1B0000 – 1B7FFF 1B8000 – 1BFFFF 1C0000 – 1C7FFF 1C8000 – 1CFFFF 1D0000 – 1D7FFF 1D8000 – 1DFFFF 1E0000 – 1E7FFF 1E8000 – 1EFFFF 1F0000 – 1F7FFF 1F8000 – 1F8FFF 1F9000 – 1F9FFF 1FA000 – 1FAFFF 1FB000 – 1FBFFF 1FC000 – 1FCFFF 1FD000 – 1FDFFF 1FE000 – 1FEFFF 1FF000 – 1FFFFF Sector SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 A20-A12 100011XXX 100100XXX 100101XXX 100110XXX 100111XXX 101000XXX 101001XXX 101010XXX 101011XXX 101100XXX 101101XXX 101110XXX 101111XXX 110000XXX 110001XXX 110010XXX 110011XXX 110100XXX 110101XXX 110110XXX 110111XXX 111000XXX 111001XXX 111010XXX 111011XXX 111100XXX 111101XXX 111110XXX 111111000 111110001 111111010 111110011 111111100 111110101 111111110 111111111 Note: Address range is A20 : A-1 in byte mode and A20 : A0 in word mode. See “Word/Byte Configuration” section. PRELIMINARY (September, 2005, Version 0.0) 8 AMIC Technology, Corp. A29L320 Series Table 3. A29L320 Bottom Boot Block Sector Address Table Sector A20 -A12 Sector Size (Kbytes/ Kwords) SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 000000000 000000001 000000010 000000011 000000100 000000101 000000110 000000111 000001xxx 000010xxx 000011xxx 000100xxx 000101xxx 000110xxx 000111xxx 001000xxx 001001xxx 001010xxx 001011xxx 001100xxx 001101xxx 001110xxx 001111xxx 010000xxx 010001xxx 010010xxx 010011xxx 010100xxx 1010101xxx 010110xxx 010111xxx 011000xxx 011001xxx 011010xxx 011011xxx 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 Address Range (in hexadecimal) Byte Mode (x8) 000000 - 001FFF 002000 - 003FFF 004000 - 005FFF 006000 - 007FFF 008000 - 009FFF 00A000 – 00BFFF 00C000 – 00DFFF 00E000 - 00FFFF 010000 - 01FFFF 020000 - 02FFFF 030000 - 03FFFF 040000 - 04FFFF 050000 - 05FFFF 060000 - 06FFFF 070000 - 07FFFF 080000 - 08FFFF 090000 - 09FFFF 0A0000 – 0AFFFF 0B0000 – 0BFFFF 0C0000 – 0CFFFF 0D0000 – 0DFFFF 0E0000 – 0EFFFF 0F0000 – 0FFFFF 100000 - 10FFFF 110000 - 11FFFF 120000 - 12FFFF 130000 - 13FFFF 140000 - 14FFFF 140000 - 14FFFF 160000 - 16FFFF 170000 - 17FFFF 180000 - 18FFFF 190000 - 19FFFF 1A0000 – 1AFFFF 1B0000 – 1BFFFF Word Mode (x16) 000000 - 000FFF 001000 - 001FFF 002000 - 002FFF 003000 - 003FFF 004000 - 004FFF 005000 - 005FFF 006000 - 006FFF 007000 - 007FFF 008000 - 00FFFF 010000 - 017FFF 018000 – 01FFFF 020000 - 027FFF 028000 – 02FFFF 030000 - 037FFF 038000 – 03FFFF 040000 – 047FFF 048000 – 04FFFF 050000 – 057FFF 058000 – 05FFFF 060000 – 067FFF 068000 – 06FFFF 070000 – 077FFF 078000 – 07FFFF 080000 – 087FFF 088000 – 07FFFF 090000 – 097FFF 098000 – 09FFFF 0A0000 – 0A7FFF 0A8000 – 0AFFFF 0B0000 – 0B7FFF 0B8000 – 0BFFFF 0C0000 – 0C7FFF 0C8000 – 0CFFFF 0D0000 – 0D7FFF 0D8000 – 0DFFFF PRELIMINARY (September, 2005, Version 0.0) 9 AMIC Technology, Corp. A29L320 Series Sector A20 -A12 Sector Size (Kbytes/ Kwords) SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 011100xxx 011101xxx 011110xxx 011111xxx 100000xxx 100001xxx 100010xxx 100011xxx 100100xxx 100101xxx 100110xxx 100111xxx 101000xxx 101001xxx 101010xxx 101011xxx 101100xxx 101101xxx 101110xxx 101111xxx 110000xxx 110001xxx 110010xxx 110011xxx 110100xxx 110101xxx 110110xxx 110111xxx 111000xxx 111001xxx 111010xxx 111011xxx 111100xxx 111101xxx 111110xxx 111111xxx 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 Address Range (in hexadecimal) Byte Mode (x8) 1C0000 – 1CFFFF 1D0000 – 1DFFFF 1E0000 – 1EFFFF 1F0000 – 1FFFFF 200000 – 20FFFF 210000 – 21FFFF 220000 – 22FFFF 230000 – 23FFFF 240000 – 24FFFF 250000 – 25FFFF 260000 – 26FFFF 270000 – 27FFFF 280000 – 28FFFF 290000 – 29FFFF 2A0000 – 2AFFFF 2B0000 – 2BFFFF 2C0000 – 2CFFFF 2D0000 – 2DFFFF 2E0000 – 2EFFFF 2F0000 – 2FFFFF 300000 – 30FFFF 310000 – 31FFFF 320000 – 32FFFF 330000 – 33FFFF 340000 – 34FFFF 350000 – 35FFFF 360000 – 36FFFF 370000 – 37FFFF 380000 – 38FFFF 390000 – 39FFFF 3A0000 – 3AFFFF 3B0000 – 3BFFFF 3C0000 – 3CFFFF 3D0000 – 3DFFFF 3E0000 – 3EFFFF 3F0000 – 3FFFFF Word Mode (x16) 0E0000 – 0E7FFF 0E8000 – 0EFFFF 0F0000 – 0F7FFF 0F8000 – 0FFFFF 100000 – 107FFF 108000 – 10FFFF 110000 – 117FFF 118000 – 11FFFF 120000 – 127FFF 128000 – 12FFFF 130000 – 137FFF 138000 – 13FFFF 140000 – 147FFF 148000 – 14FFFF 150000 – 157FFF 158000 – 15FFFF 160000 – 167FFF 168000 – 16FFFF 170000 – 177FFF 178000 – 17FFFF 180000 – 187FFF 188000 – 18FFFF 190000 – 197FFF 198000 – 19FFFF 1A0000 – 1A7FFF 1A8000 – 1AFFFF 1B0000 – 1B7FFF 1B8000 – 1BFFFF 1C0000 – 1C7FFF 1C8000 – 1CFFFF 1D0000 – 1D7FFF 1D8000 – 1DFFFF 1E0000 – 1E7FFF 1E8000 – 1EFFFF 1F0000 – 1F7FFF 1F8000 – 1FFFFF Note: Address range is A20 : A-1 in byte mode and A20 : A0 in word mode. See “Word/Byte Configuration” section. PRELIMINARY (September, 2005, Version 0.0) 10 AMIC Technology, Corp. A29L320 Series Autoselect Mode The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on I/O7 - I/O0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register. When using programming equipment, the autoselect mode requires VID (11.5V to 12.5 V) on address pin A9. Address pins A6, A1, and A0 must be as shown in Autoselect Codes (High Voltage Method) table. In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits. Refer to the corresponding Sector Address Tables. The Command Definitions table shows the remaining address bits that are don't care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on I/O7 - I/O0.To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in the Command Definitions table. This method does not require VID. See "Command Definitions" for details on using the autoselect mode. Table 4. A29L320 Autoselect Codes (High Voltage Method) Description Mode CE OE WE A20 to A12 X A11 to A10 X A9 A8 to A7 X A6 A5 to A2 X A1 A0 I/O8 to I/O15 X 22h I/O7 to I/O0 37h F6h F6h F9h F9h 7Fh 01h (protected) 00h (unprotected) Manufacturer ID: AMIC Device ID: A29L320 (Top Boot Block) Device ID: A29L320 (Bottom Boot Block) Continuation ID Byte Byte Word Word L L H VID L L L L L H X X VID X L X L H X 22h L L H X X VID X L X L H X L L H X X VID X L X H H X X Sector Protection Verification L L H SA X VID X L X H L X L=Logic Low= VIL, H=Logic High=VIH, SA=Sector Address, X=Don’t Care. Note: The autoselect codes may also be accessed in-system via command sequences. PRELIMINARY (September, 2005, Version 0.0) 11 AMIC Technology, Corp. A29L320 Series Sector Protection/Unprotection The hardware sector protection feature disables both program and erase operations in any sector. The hardware sector unprotection feature re-enables both program and erase operations in previously protected sectors. It is possible to determine whether a sector is protected or unprotected. See “Autoselect Mode” for details. Sector protection / unprotection can be implemented via two methods. The primary method requires VID on the RESET pin only, and can be implemented either in-system or via programming equipment. Figure 2 shows the algorithm and the Sector Protect / Unprotect Timing Diagram illustrates the timing waveforms for this feature. This method uses standard microprocessor bus cycle timing. For sector unprotect, all unprotected sectors must first be protected prior to the first sector unprotect write cycle. The alternate method must be implemented using programming equipment. The procedure requires a high voltage (VID) on address pin A9 and the control pins. The device is shipped with all sectors unprotected. It is possible to determine whether a sector is protected or unprotected. See "Autoselect Mode" for details. Temporary Sector Unprotect This feature allows temporary unprotection of previous protected sectors to change data in-system. The Sector Unprotect mode is activated by setting the RESET pin to VID. During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once VID is removed from the RESET pin, all the previously protected sectors are protected again. Figure 1 shows the algorithm, and the Temporary Sector Unprotect diagram shows the timing waveforms, for this feature. START RESET = VID (Note 1) Hardware Data Protection The requirement of command unlocking sequence for programming or erasing provides data protection against inadvertent writes (refer to the Command Definitions table). In addition, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during VCC power-up transitions, or from system noise. The device is powered up to read array data to avoid accidentally writing data to the array. Perform Erase or Program Operations RESET = VIH Write Pulse "Glitch" Protection Noise pulses of less than 5ns (typical) on OE , CE or WE do not initiate a write cycle. Temporary Sector Unprotect Completed (Note 2) Logical Inhibit Write cycles are inhibited by holding any one of OE =VIL, CE = VIH or WE = VIH. To initiate a write cycle, CE and Notes: 1. All protected sectors unprotected. 2. All previously protected sectors are protected once again. WE must be a logical zero while OE is a logical one. Power-Up Write Inhibit If WE = CE = VIL and OE = VIH during power up, the device does not accept commands on the rising edge of WE . The internal state machine is automatically reset to reading array data on the initial power-up. Figure 1. Temporary Sector Unprotect Operation PRELIMINARY (September, 2005, Version 0.0) 12 AMIC Technology, Corp. A29L320 Series START Protect all sectors: The indicated portion of the sector protect algorithm must be performed for all unprotected sectors prior to issuing the first sector unprotect address START PLSCNT=1 PLSCNT=1 RESET=VID RESET=VID Wait 1 us Wait 1 us Temporary Sector Unprotect Mode No First Write Cycle=60h? Yes Set up sector address No First Write Cycle=60h? Yes All sectors protected? Yes Set up first sector address No Temporary Sector Unprotect Mode Sector Protec: Write 60h to sector address with A6=0, A1=1, A0=0 Wait 150 us Verify Sector Protect: Write 40h to sector address with A6=0, A1=1, A0=0 Sector Unprotect: Write 60h to sector address with A6=1, A1=1, A0=0 Reset PLSCNT=1 Increment PLSCNT Wait 500 ms Verify Sector Unprotect : Write 40h to sector address with A6=1, A1=1, A0=0 Read from sector address with A6=0, A1=1, A0=0 No PLSCNT =25? Yes Device failed No Data=01h? Increment PLSCNT Read from sector address with A6=1, A1=1, A0=0 No Set up next sector address Yes Protect another sector? No Remove VID from RESET Write reset command Yes PLSCNT= 1000? No Data=00h? Yes Device failed Yes Last sector verified? Yes Remove VID from RESET No Sector Protect Algorithm Sector Protect complete Sector Unprotect Algorithm Write reset Command Sector Unprotect complete Figure 2. In-System Sector Protect/Unprotect Algorithms PRELIMINARY (September, 2005, Version 0.0) 13 AMIC Technology, Corp. A29L320 Series Common Flash Memory Interface (CFI) The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors can standardize their existing interface for long-term compatibility. This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h in word mode (or address AAh in byte mode), any time the device is ready to read array data. The system can read CFI information at the addresses given in Table 5-8. In word mode, the upper address bits (A7-MSB) must be all zeros. To terminate reading CFI data, the system must write the reset command. The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses given in Table 5-8. The system must write the reset command to return the device to the autoselect mode. Table 5. CFI Query Identification String Addresses (Word Mode) Addresses (Byte Mode) Data Description 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 20h 22h 24h 26h 28h 2Ah 2Ch 2Eh 30h 32h 34h 0051h 0052h 0059h 0002h 0000h 0040h 0000h 0000h 0000h 0000h 0000h Query Unique ASCII string “QRY” Primary OEM Command Set Address for Primary Extended Table Alternate OEM Command Set (00h = none exists) Address for Alternate OEM Extended Table (00h = none exists) Table 6 System Interface String Addresses (Word Mode) 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h Addresses (Byte Mode) 36h 38h 3Ah 3Ch 3Eh 40h 42h 44h 46h 48h 4Ah 4Ch Data 0027h 0036h 0000h 0000h 0004h 0000h 000Ah 0000h 0005h 0000h 0004h 0000h VCC Min. (write/erase) Description I/O7- I/O4 : volt, I/O3- I/O0: 100 millivolt VCC Max. (write/erase) I/O7- I/O4: volt, I/O3- I/O0: 100 millivolt Vpp Min. voltage (00h = no Vpp pin present) Vpp Max. voltage (00h = no Vpp pin present) Typical timeout per single byte/word write 2N µs Typical timeout for Min. size buffer write 2N µs (00h = not supported) Typical timeout per individual block erase 2N ms Typical timeout for full chip erase 2N ms (00h = not supported) Max. timeout for byte/word write 2N times typical Max. timeout for buffer write 2N times typical Max. timeout per individual block erase 2N times typical Max. timeout for full chip erase 2N times typical (00h = not supported) PRELIMINARY (September, 2005, Version 0.0) 14 AMIC Technology, Corp. A29L320 Series Table 7 Device Geometry Definition Addresses (Word Mode) 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3BH 3Ch Addresses (Byte Mode) 4Eh 50h 52h 54h 56h 58h 5Ah 5Ch 5Eh 60h 62h 64h 66h 68h 6Ah 6Ch 6Eh 40h 72h 74h 76h 78h Data 0016h 0002h 0000h 0000h 0000h 0002h 0007h 0000h 0020h 0000h 003Eh 0000h 0000h 0001h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h Erase Block Region 4 Information Erase Block Region 3 Information Erase Block Region 2 Information Erase Block Region 1 Information (refer to the CFI specification) Device Size = 2N byte Flash Device Interface description Max. number of byte in multi-byte write = 2N (00h = not supported) Number of Erase Block Regions within device Description PRELIMINARY (September, 2005, Version 0.0) 15 AMIC Technology, Corp. A29L320 Series Table 8 Primary Vendor-Specific Extended Query Addresses (Word Mode) 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h Addresses (Byte Mode) 80h 82h 84h 86h 88h 8Ah 8Ch 8Eh 90h 92h Data 0050h 0052h 0049h 0031h 0030h 0000h 0002h 0004h 0001h 0004h Major version number, ASCII Minor version number, ASCII Address Sensitive Unlock 0 = Required, 1 = Not Required Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write Sector Protect 0 = Not Supported, X = Number of sectors in per group Sector Temporary Unprotect 00 = Not Supported, 01 = Supported Sector Protect/Unprotect scheme 01 = 29F040 mode, 02 = 29F016 mode, 03 = 29F400 mode, 04 = 29L160 mode 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 94h 96h 98h 9Ah 9Ch 9Eh 0000h 0000h 0000h 00B5h 00C5h 000Xh Simultaneous Operation 00 = Not Supported, 01 = Supported Burst Mode Type 00 = Not Supported, 01 = Supported Page Mode Type 00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page ACC (Acceleration) Supply Minimum 00 = Not Supported, D7-D4: Volt, D3-D0: 100mV ACC (Acceleration) Supply Maximum 00 = Not Supported, D7-D4: Volt, D3-D0: 100mV Top/Bottom Boot Sector Flag 02 = Bottom Boot Device, 03h = Top Boot Device Query-unique ASCII string “PRI” Description PRELIMINARY (September, 2005, Version 0.0) 16 AMIC Technology, Corp. A29L320 Series Command Definitions Writing specific address and data commands or sequences into the command register initiates device operations. The Command Definitions table defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence resets the device to reading array data. All addresses are latched on the falling edge of WE or CE , whichever happens later. All data is latched on the rising edge of WE or CE , whichever happens first. Refer to the appropriate timing diagrams in the "AC Characteristics" section. Autoselect Command Sequence The autoselect command sequence allows the host system to access the manufacturer and devices codes, and determine whether or not a sector is protected. The Command Definitions table shows the address and data requirements. This method is an alternative to that shown in the Autoselect Codes (High Voltage Method) table, which is intended for PROM programmers and requires VID on address bit A9. The autoselect command sequence is initiated by writing two unlock cycles, followed by the autoselect command. The device then enters the autoselect mode, and the system may read at any address any number of times, without initiating another command sequence. A read cycle at address XX00h retrieves the manufacturer code and another read cycle at XX11h retrieves the continuation code. A read cycle at address XX01h returns the device code. A read cycle containing a sector address (SA) and the address 02h in returns 01h if that sector is protected, or 00h if it is unprotected. Refer to the Sector Address tables for valid sector addresses. The system must write the reset command to exit the autoselect mode and return to reading array data. Reading Array Data The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is also ready to read array data after completing an Embedded Program or Embedded Erase algorithm. After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode. The system can read array data using the standard read timings, except that if it reads at an address within erase-suspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See "Erase Suspend/Erase Resume Commands" for more information on this mode. The system must issue the reset command to re-enable the device for reading array data if I/O5 goes high, or while in the autoselect mode. See the "Reset Command" section, next. See also "Requirements for Reading Array Data" in the "Device Bus Operations" section for more information. The Read Operations table provides the read parameters, and Read Operation Timings diagram shows the timing diagram. Word/Byte Program Command Sequence The system may program the device by word or byte, depending on the state of the BYTE pin. Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated program pulses and verify the programmed cell margin. Table 9 shows the address and data requirements for the byte program command sequence. When the Embedded Program algorithm is complete, the device then returns to reading array data and addresses are longer latched. The system can determine the status of the program operation by using I/O7, I/O6, or RY/ BY . See “White Operation Status” for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardware reset immediately terminates the programming operation. The Byte Program command sequence should be reinitiated once the device has reset to reading array data, to ensure data integrity. Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from a “0” back to a “1”. Attempting to do so may halt the operation and set I/O5 to “1”, or cause the Data Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the data is still “0”. Only erase operations can convert a “0” to a “1”. Reset Command Writing the reset command to the device resets the device to reading array data. Address bits are don't care for this command. The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to reading array data (also applies to programming in Erase Suspend mode). Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to reading array data (also applies to autoselect during Erase Suspend). If I/O5 goes high during a program or erase operation, writing the reset command returns the device to reading array data (also applies during Erase Suspend). PRELIMINARY (September, 2005, Version 0.0) 17 AMIC Technology, Corp. A29L320 Series 00h. Addresses are don’t care for both cycle. The device returns to reading array data. Figure 3 illustrates the algorithm for the program operation. See the Erase/Program Operations in “AC Characteristics” for parameters, and to Program Operation Timings for timing diagrams. START Write Program Command Sequence Chip Erase Command Sequence Chip erase is a six-bus-cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. The Command Definitions table shows the address and data requirements for the chip erase command sequence. Any commands written to the chip during the Embedded Erase algorithm are ignored. The system can determine the status of the erase operation by using I/O7, I/O6, or I/O2. See "Write Operation Status" for information on these status bits. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. Figure 4 illustrates the algorithm for the erase operation. See the Erase/Program Operations tables in "AC Characteristics" for parameters, and to the Chip/Sector Erase Operation Timings for timing waveforms. Embedded Program algorithm in progress Data Poll from System Verify Data ? No Yes Increment Address No Last Address ? Yes Programming Completed Sector Erase Command Sequence Sector erase is a six-bus-cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the address of the sector to be erased, and the sector erase command. The Command Definitions table shows the address and data requirements for the sector erase command sequence. The device does not require the system to preprogram the memory prior to erase. The Embedded Erase algorithm automatically programs and verifies the sector for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. After the command sequence is written, a sector erase timeout of 50µs begins. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50µs, otherwise the last address and command might not be accepted, and erasure may begin. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. If the time between additional sector erase commands can be assumed to be less than 50µs, the system need not monitor I/O3. Any command other than Sector Erase or Erase Suspend during the time-out period resets the device to reading array data. The system must rewrite the command sequence and any additional sector addresses and commands. Note : See the appropriate Command Definitions table for program command sequence. Figure 3. Program Operation Unlock Bypass Command Sequence The unlock bypass feature allows the system to program bytes or words to the device faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time. Table 9 shows the requirements for the command sequence. During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode, the system must issue the twocycle unlock bypass reset command sequence. The first cycle must contain the data 90h; the second cycle the data PRELIMINARY (September, 2005, Version 0.0) 18 AMIC Technology, Corp. A29L320 Series The system can monitor I/O3 to determine if the sector erase timer has timed out. (See the " I/O3: Sector Erase Timer" section.) The time-out begins from the rising edge of the final WE pulse in the command sequence. Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by using I/O7, I/O6, or I/O2. Refer to "Write Operation Status" for information on these status bits. 4 illustrates the algorithm for the erase operation. Refer to the Erase/Program Operations tables in the "AC Characteristics" section for parameters, and to the Sector Erase Operations Timing diagram for timing waveforms. The system must write the Erase Resume command (address bits are "don't care") to exit the erase suspend mode and continue the sector erase operation. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the device has resumed erasing. START Erase Suspend/Erase Resume Commands The Erase Suspend command allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50µs time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. Writing the Erase Suspend command during the Sector Erase time-out immediately terminates the time-out period and suspends the erase operation. Addresses are "don't cares" when writing the Erase Suspend command. When the Erase Suspend command is written during a sector erase operation, the device requires a maximum of 20µs to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After the erase operation has been suspended, the system can read array data from or program data to any sector not selected for erasure. (The device "erase suspends" all sectors selected for erasure.) Normal read and write timings and command definitions apply. Reading at any address within erase-suspended sectors produces status data on I/O7 - I/O0. The system can use I/O7, or I/O6 and I/O2 together, to determine if a sector is actively erasing or is erasesuspended. See "Write Operation Status" for information on these status bits. After an erase-suspended program operation is complete, the system can once again read array data within nonsuspended sectors. The system can determine the status of the program operation using the I/O7 or I/O6 status bits, just as in the standard program operation. See "Write Operation Status" for more information. The system may also write the autoselect command sequence when the device is in the Erase Suspend mode. The device allows reading autoselect codes even at addresses within erasing sectors, since the codes are not stored in the memory array. When the device exits the autoselect mode, the device reverts to the Erase Suspend mode, and is ready for another valid operation. See "Autoselect Command Sequence" for more information. Write Erase Command Sequence Data Poll from System Embedded Erase algorithm in progress No Data = FFh ? Yes Erasure Completed Note : 1. See the appropriate Command Definitions table for erase command sequences. 2. See "I/O 3 : Sector Erase Timer" for more information. Figure 4. Erase Operation PRELIMINARY (September, 2005, Version 0.0) 19 AMIC Technology, Corp. A29L320 Series Table 9. A29L320 Command Definitions Command Sequence (Note 1) Read (Note 6) Reset (Note 7) Manufacturer ID Autoselect (Note 8) Device ID, Top Boot Block Device ID, Bottom Boot Block Continuation ID Sector Protect Verify (Note 9) Word Byte Word Byte Word Byte Word Byte Word 4 Byte Word Byte Byte Program Byte Word Unlock Bypass Byte Unlock Bypass Program (Note 11) Unlock Bypass Reset (Note 12) Word Chip Erase Byte Word Sector Erase Byte Erase Suspend (Note 13) Erase Resume (Note 14) CFI Query (Note 10) 1 4 3 2 2 6 6 1 1 AAA 55 AA 555 AAA 555 AAA XXX 98 AA AA A0 2AA 555 2AA 555 PA XXX 2AA 555 2AA 555 55 55 PD 00 55 55 555 AAA 555 AAA A0 20 PA PD Cycles Bus Cycles (Notes 2 - 5) First Addr Data RA RD XXX F0 555 AA AAA 555 AA AAA 555 AA AAA 555 AA AAA 555 AA 555 Second Addr Data Third Fourth Fifth Addr Data Addr Data Addr Data Sixth Addr Data 1 1 4 4 4 4 2AA 555 2AA 555 2AA 555 2AA 555 2AA 55 55 55 55 555 AAA 555 AAA 555 AAA 555 AAA 555 90 90 90 90 X00 37 X01 22F4 X02 F4 X01 22F9 X02 F9 X03 7F X06 (SA) XX00 X02 XX01 00 (SA) X04 01 55 AAA 90 XXX 90 555 AA AAA 555 AA AAA XXX B0 XXX 30 555 AAA 555 AAA 80 80 555 AAA 555 AAA AA AA 2AA 555 2AA 555 55 55 555 AAA SA 10 30 Legend: X = Don't care RA = Address of the memory location to be read. RD = Data read from location RA during read operation. PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE or CE pulse, whichever happens later. PD = Data to be programmed at location PA. Data latches on the rising edge of WE or CE pulse, whichever happens first. SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A20- A12 select a unique sector. Note: 1. See Table 1 for description of bus operations. 2. All values are in hexadecimal. 3. Except when reading array or autoselect data, all bus cycles are write operation. 4. Address bits A20 - A11 are don't cares for unlock and command cycles, unless SA or PA required. 5. No unlock or command cycles required when reading array data. 6. The Reset command is required to return to reading array data when device is in the autoselect mode, or if I/O5 goes high (while the device is providing status data). 7. The fourth cycle of the autoselect command sequence is a read cycle. 8. The data is 00h for an unprotected sector and 01h for a protected sector. See "Autoselect Command Sequence" for more information. 9. The data is 00h for an unprotected sector and 01h for a protected sector. See “Autoselect Command Sequence” for more information. 10. Command is valid when device is ready to read array data or when device is in autoselect mode. 11. The Unlock Bypass command is required prior to the Unlock Bypass Program command. 12. The Unlock Bypass Reset command is required to return to reading array data when the device is in the unlock bypass mode. 13. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. 14. The Erase Resume command is valid only during the Erase Suspend mode. PRELIMINARY (September, 2005, Version 0.0) 20 AMIC Technology, Corp. A29L320 Series Write Operation Status Several bits, I/O2, I/O3, I/O5, I/O6, I/O7, RY/ BY are provided in the A29L320 to determine the status of a write operation. Table 10 and the following subsections describe the functions of these status bits. I/O7, I/O6 and RY/ BY each offer a method for determining whether a program or erase operation is complete or in progress. These three bits are discussed first. START Read I/O7-I/O0 Address = VA I/O7: Data Polling The Data Polling bit, I/O7, indicates to the host system whether an Embedded Algorithm is in progress or completed, or whether the device is in Erase Suspend. Data Polling is valid after the rising edge of the final WE pulse in the program or erase command sequence. During the Embedded Program algorithm, the device outputs on I/O7 the complement of the datum programmed to I/O7. This I/O7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to I/O7. The system must provide the program address to read valid status information on I/O7. If a program address falls within a protected sector, Data Polling on I/O7 is active for approximately 2µs, then the device returns to reading array data. During the Embedded Erase algorithm, Data Polling produces a "0" on I/O7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data Polling produces a "1" on I/O7.This is analogous to the complement/true datum output described for the Embedded Program algorithm: the erase function changes all the bits in a sector to "1"; prior to this, the device outputs the "complement," or "0." The system must provide an address within any of the sectors selected for erasure to read valid status information on I/O7. After an erase command sequence is written, if all sectors selected for erasing are protected, Data Polling on I/O7 is active for approximately 100µs, then the device returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. When the system detects I/O7 has changed from the complement to true data, it can read valid data at I/O7 - I/O0 on the following read cycles. This is because I/O7 may change asynchronously with I/O0 - I/O6 while Output Enable ( OE ) is asserted low. The Data Polling Timings (During Embedded Algorithms) figure in the "AC Characteristics" section illustrates this. Table 10 shows the outputs for Data Polling on I/O7. Figure 5 shows the Data Polling algorithm. Yes I/O7 = Data ? No No I/O5 = 1? Yes Read I/O7 - I/O0 Address = VA Yes I/O7 = Data ? No FAIL PASS Note : 1. VA = Valid address for programming. During a sector erase operation, a valid address is an address within any sector selected for erasure. During chip erase, a valid address is any non-protected sector address. 2. I/O7 should be rechecked even if I/O5 = "1" because I/O7 may change simultaneously with I/O . 5 Figure 5. Data Polling Algorithm PRELIMINARY (September, 2005, Version 0.0) 21 AMIC Technology, Corp. A29L320 Series RY/ BY : Read/ Busy The RY/ BY is a dedicated, open-drain output pin that indicates whether an Embedded algorithm is in progress or complete. The RY/ BY status is valid after the rising edge of the final WE pulse in the command sequence. Since RY/ BY is an open-drain output, several RY/ BY pins can be tied together in parallel with a pull-up resistor to VCC. (The RY/ BY pin is not available on the 44-pin SOP package) If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is ready to read array data (including during the Erase Suspend mode), or is in the standby mode. Table 10 shows the outputs for RY/ BY . Refer to “ RESET Timings”, “Timing Waveforms for Program Operation” and “Timing Waveforms for Chip/Sector Erase Operation” for more information. I/O2: Toggle Bit II The "Toggle Bit II" on I/O2, when used with I/O6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE pulse in the command sequence. I/O2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE or CE to control the read cycles.) But I/O2 cannot distinguish whether the sector is actively erasing or is erase-suspended. I/O6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 10 to compare outputs for I/O2 and I/O6. Figure 6 shows the toggle bit algorithm in flowchart form, and the section " I/O2: Toggle Bit II" explains the algorithm. See also the " I/O6: Toggle Bit I" subsection. Refer to the Toggle Bit Timings figure for the toggle bit timing diagram. The I/O2 vs. I/O6 figure shows the differences between I/O2 and I/O6 in graphical form. I/O6: Toggle Bit I Toggle Bit I on I/O6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out. During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause I/O6 to toggle. (The system may use either OE or CE to control the read cycles.) When the operation is complete, I/O6 stops toggling. After an erase command sequence is written, if all sectors selected for erasing are protected, I/O6 toggles for approximately 100µs, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. The system can use I/O6 and I/O2 together to determine whether a sector is actively erasing or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), I/O6 toggles. When the device enters the Erase Suspend mode, I/O6 stops toggling. However, the system must also use I/O2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use I/O7 (see the subsection on " I/O7 : Data Polling"). If a program address falls within a protected sector, I/O6 toggles for approximately 2µs after the program command sequence is written, then returns to reading array data. I/O6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete. The Write Operation Status table shows the outputs for Toggle Bit I on I/O6. Refer to Figure 6 for the toggle bit algorithm, and to the Toggle Bit Timings figure in the "AC Characteristics" section for the timing diagram. The I/O2 vs. I/O6 figure shows the differences between I/O2 and I/O6 in graphical form. See also the subsection on " I/O2: Toggle Bit II". Reading Toggle Bits I/O6, I/O2 Refer to Figure 6 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read I/O7 - I/O0 at least twice in a row to determine whether a toggle bit is toggling. Typically, a system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on I/O7 - I/O0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of I/O5 is high (see the section on I/O5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as I/O5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data. The remaining scenario is that the system initially determines that the toggle bit is toggling and I/O5 has not gone high. The system may continue to monitor the toggle bit and I/O5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Figure 6). I/O5: Exceeded Timing Limits I/O5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under these conditions I/O5 produces a "1." This is a failure condition that indicates the program or erase cycle was not successfully completed. PRELIMINARY (September, 2005, Version 0.0) 22 AMIC Technology, Corp. A29L320 Series The I/O5 failure condition may appear if the system tries to program a "1 "to a location that is previously programmed to "0." Only an erase operation can change a "0" back to a "1." Under this condition, the device halts the operation, and when the operation has exceeded the timing limits, I/O5 produces a "1." Under both these conditions, the system must issue the reset command to return the device to reading array data. START Read I/O7-I/O0 I/O3: Sector Erase Timer After writing a sector erase command sequence, the system may read I/O3 to determine whether or not an erase operation has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies after each additional sector erase command. When the time-out is complete, I/O3 switches from "0" to "1." The system may ignore I/O3 if the system can guarantee that the time between additional sector erase commands will always be less than 50µs. See also the "Sector Erase Command Sequence" section. After the sector erase command sequence is written, the system should read the status on I/O7 ( Data Polling) or I/O6 (Toggle Bit 1) to ensure the device has accepted the command sequence, and then read I/O3. If I/O3 is "1", the internally controlled erase cycle has begun; all further commands (other than Erase Suspend) are ignored until the erase operation is complete. If I/O3 is "0", the device will accept additional sector erase commands. To ensure the command has been accepted, the system software should check the status of I/O3 prior to and following each subsequent sector erase command. If I/O3 is high on the second status check, the last command might not have been accepted. Table 10 shows the outputs for I/O3. Read I/O7-I/O0 (Note 1) Toggle Bit = Toggle ? Yes No No I/O5 = 1? Yes Read I/O7 - I/O0 Twice (Notes 1,2) Toggle Bit = Toggle ? No Yes Program/Erase Operation Not Commplete, Write Reset Command Program/Erase Operation Complete Notes : 1. Read toggle bit twice to determine whether or not it is toggling. See text. 2. Recheck toggle bit because it may stop toggling as I/O5 changes to "1". See text. Figure 6. Toggle Bit Algorithm PRELIMINARY (September, 2005, Version 0.0) 23 AMIC Technology, Corp. A29L320 Series Table 10. Write Operation Status Operation Standard Mode Erase Suspend Mode Embedded Program Algorithm Embedded Erase Algorithm Reading within Erase Suspended Sector Reading within Non-Erase Suspend Sector Erase-Suspend-Program Notes: 1. I/O7 and I/O2 require a valid address when reading status information. Refer to the appropriate subsection for further details. 2. I/O5 switches to “1” when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. See “I/O5: Exceeded Timing Limits” for more information. I/O7 (Note 1) I/O6 I/O5 (Note 2) Toggle Toggle No toggle Data Toggle 0 0 0 Data 0 N/A 1 N/A Data N/A I/O3 I/O2 (Note 1) No toggle Toggle Toggle Data N/A 0 0 1 1 0 RY/ BY I/O7 0 1 Data I/O7 Maximum Negative Input Overshoot 20ns +0.8V 20ns -0.5V -2.0V 20ns Maximum Positive Input Overshoot 20ns VCC+2.0V VCC+0.5V 2.0V 20ns 20ns PRELIMINARY (September, 2005, Version 0.0) 24 AMIC Technology, Corp. A29L320 Series DC Characteristics CMOS Compatible Parameter Parameter Description Symbol ILI Input Load Current ILIT ILO A9 Input Load Current Output Leakage Current Test Description VIN = VSS to VCC. VCC = VCC Max VCC = VCC Max, A9 =12.5V VOUT = VSS to VCC. VCC = VCC Max Min. Typ. Max. ±1.0 35 ±1.0 9 2 9 2 20 0.2 0.2 0.2 -0.5 0.7 x VCC VCC = 3.3 V IOL = 4.0mA, VCC = VCC Min IOH = -2.0 mA, VCC = VCC Min IOH = -100 µA, VCC = VCC Min 0.85 x VCC VCC - 0.4 11.5 16 4 16 4 30 5 5 5 0.8 VCC + 0.3 12.5 0.45 mA µA µA µA V V V V V V mA Unit µA µA µA CE = VIL, OE = VIH Byte Mode ICC1 VCC Active Read Current (Notes 1, 2) 5 MHz 1 MHz 5 MHz 1 MHz CE = VIL, OE = VIH Word Mode ICC2 ICC3 ICC4 ICC5 VIL VIH VID VOL VOH1 VOH2 VCC Active Write (Program/Erase) Current (Notes 2, 3, 4) VCC Standby Current (Note 2) VCC Standby Current During Reset (Note 2) Automatic Sleep Mode (Note 2, 4, 5) Input Low Level Input High Level Voltage for Autoselect and Temporary Unprotect Sector Output Low Voltage Output High Voltage CE = VIL, OE =VIH CE = VIH, RESET = VCC ± 0.3V RESET = VSS ± 0.3V VIH = VCC ± 0.3V; VIL = VSS ± 0.3V Notes: 1. The ICC current listed is typically less than 2 mA/MHz, with OE at VIH. Typical VCC is 3.3V. 2. Maximum ICC specifications are tested with VCC = VCC max. 3. ICC active while Embedded Algorithm (program or erase) is in progress. 4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30ns. Typical sleep mode current is 200nA. 5. Not 100% tested. PRELIMINARY (September, 2005, Version 0.0) 25 AMIC Technology, Corp. A29L320 Series DC Characteristics (continued) Zero Power Flash 25 Supply Current in mA 20 15 10 5 0 0 500 1000 1500 2000 Time in ns Note: Addresses are switching at 1MHz 2500 3000 3500 4000 ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents) 10 3.6V 8 3.0V Supply Current in mA 6 4 2 0 1 Note : T = 25 ° C 2 3 Frequency in MHz 4 5 Typical ICC1 vs. Frequency PRELIMINARY (September, 2005, Version 0.0) 26 AMIC Technology, Corp. A29L320 Series AC Characteristics Read Only Operations Parameter Symbols JEDEC tAVAV tAVQV Std tRC tACC Read Cycle Time (Note 1) Address to Output Delay Min. Description Test Setup -70 70 70 Speed -90 90 90 ns ns Unit CE = VIL OE = VIL OE = VIL Max. tELQV tGLQV tCE tOE Chip Enable to Output Delay Output Enable to Output Delay Read Output Enable Hold Toggle and Time (Note 1) Data Polling Chip Enable to Output High Z (Notes 1) Output Enable to Output High Z (Notes 1) Output Hold Time from Addresses, CE or OE , Whichever Occurs First (Note 1) Max. Max. Min. Min. Max. 70 30 0 10 25 25 90 35 0 10 30 30 ns ns ns ns ns ns tOEH tEHQZ tGHQZ tHZ tDF tAXQX tOH Min. 0 0 ns Notes: 1. Not 100% tested. 2. See Test Conditions and Test Setup for test specifications. Timing Waveforms for Read Only Operation tRC Addresses tACC CE tDF OE tOEH WE Output High-Z tCE Output Valid tOH High-Z tOE Addresses Stable RESET 0V RY/BY PRELIMINARY (September, 2005, Version 0.0) 27 AMIC Technology, Corp. A29L320 Series AC Characteristics Hardware Reset ( RESET ) Parameter JEDEC Std tREADY tREADY tRP tRH tRB tRPD Description Test Setup Max Max Min Min Min Min All Speed Options 20 500 500 50 0 20 Unit µs ns ns ns ns µs RESET Pin Low (During Embedded Algorithms) to Read or Write (See Note) RESET Pin Low (Not During Embedded Algorithms) to Read or Write (See Note) RESET Pulse Width RESET High Time Before Read (See Note) RY/ BY Recovery Time RESET Low to Standby Mode Note: Not 100% tested. RESET Timings RY/BY CE, OE tRH RESET tRP tReady Reset Timings NOT during Embedded Algorithms Reset Timings during Embedded Algorithms tReady RY/BY ~~ ~~ tRB CE, OE ~ ~ RESET tRP PRELIMINARY (September, 2005, Version 0.0) 28 AMIC Technology, Corp. A29L320 Series Temporary Sector Unprotect Parameter JEDEC Std tVIDR tRSP Description VID Rise and Fall Time (See Note) Min Min All Speed Options 500 4 Unit ns µs RESET Setup Time for Temporary Sector Unprotect Note: Not 100% tested. Temporary Sector Unprotect Timing Diagram 12V 0 or 3V RESET CE tVIDR Program or Erase Command Sequence ~ ~ 0 or 3V tVIDR ~ ~ WE ~~ ~~ tRSP RY/BY AC Characteristics Word/Byte Configuration ( BYTE ) Parameter JEDEC Std tELFL/tELFH tFLQZ tHQV Description All Speed Options -70 -90 5 25 70 30 90 ns ns ns Unit CE to BYTE Switching Low or High BYTE Switching Low to Output High-Z BYTE Switching High to Output Active Max Max Min PRELIMINARY (September, 2005, Version 0.0) 29 AMIC Technology, Corp. A29L320 Series BYTE Timings for Read Operations CE OE BYTE tELFL BYTE Switching from word to byte mode I/O0-I/O14 Data Output (I/O0-I/O14) Data Output (I/O0-I/O7) I/O15 (A-1) tELFH I/O15 Output tFLQZ Address Input BYTE I/O0-I/O14 Data Output (I/O0-I/O7) Data Output (I/O0-I/O14) BYTE Switching from byte to word mode I/O15 (A-1) Address Input tFHQV I/O15 Output BYTE Timings for Write Operations CE The falling edge of the last WE signal WE BYTE tSET (tAS) tHOLD(tAH) Note: Refer to the Erase/Program Operations table for tAS and tAH specifications. PRELIMINARY (September, 2005, Version 0.0) 30 AMIC Technology, Corp. A29L320 Series AC Characteristics Erase and Program Operations Parameter JEDEC tAVAV tAVWL tWLAX tDVWH tWHDX Std tWC tAS tAH tDS tDH tOES tGHWL tELWL tWHEH tWLWH tWHWL tGHWL tCS tCH tWP tWPH Write Cycle Time (Note 1) Address Setup Time Address Hold Time Data Setup Time Data Hold Time Output Enable Setup Time Read Recover Time Before Write ( OE high to WE low) Min. Min. Min. Min. Min. Min. Min. Min. Min. Min. Min. Byte Word Typ. Typ. Typ. Min. Min Min 35 30 20 µs 40 1.0 50 0 90 sec µs ns ns 45 35 0 0 0 0 0 35 Description -70 70 0 45 45 Speed -90 90 ns ns ns ns ns ns ns ns ns ns ns Unit CE Setup Time CE Hold Time Write Pulse Width Write Pulse Width High Byte Programming Operation (Note 2) Sector Erase Operation (Note 2) VCC Set Up Time (Note 1) Recovery Time from RY/ BY (Note 1) Program/Erase Valid to RY/ BY Delay (Note 1) tWHWH1 tWHWH1 tWHWH2 tWHWH2 tvcs tRB tBUSY Notes: 1. Not 100% tested. 2. See the "Erase and Programming Performance" section for more information. PRELIMINARY (September, 2005, Version 0.0) 31 AMIC Technology, Corp. A29L320 Series Timing Waveforms for Program Operation Program Command Sequence (last two cycles) Read Status Data (last two cycles) Addresses 555h PA ~ ~ tWC tAS PA PA tAH CE tCH OE tWP WE tCS tDS Data A0h tWPH tDH PD ~ ~ tWHWH1 ~ ~ ~ ~ ~~ ~~ Status DOUT tRB tBUSY RY/BY tVCS VCC Note : 1. PA = program addrss, PD = program data, Dout is the true data at the program address. 2. Illustration shows device in word mode. ~~ ~~ PRELIMINARY (September, 2005, Version 0.0) 32 AMIC Technology, Corp. A29L320 Series Timing Waveforms for Chip/Sector Erase Operation Erase Command Sequence (last two cycles) Read Status Data Addresses 2AAh SA 555h for chip erase ~ ~ VA tWC tAS VA tAH CE OE tCH tWP WE tCS tDS Data 55h tDH 30h 10h for chip erase tWPH ~ ~ tWHWH2 ~ ~ ~~ ~~ In Progress ~ ~ Complete tRB tBUSY RY/BY tVCS VCC Note : 1. SA = Sector Address (for Sector Erase), VA = Valid Address for reading status data (see "Write Operaion Ststus"). 2. Illustratin shows device in word mode. ~ ~ ~ ~ PRELIMINARY (September, 2005, Version 0.0) 33 AMIC Technology, Corp. A29L320 Series Timing Waveforms for Data Polling (During Embedded Algorithms) tRC Addresses VA tACC CE tCH tCE ~ ~ VA VA OE tOEH WE tOH High-Z I/O7 Complement Complement True Valid Data tDF ~ ~ ~ ~ ~ ~ tOE ~~ ~~ High-Z High-Z tBUSY RY/BY Status Data ~ ~ I/O0 - I/O6 Status Data True Valid Data Note : VA = Valid Address. Illustation shows first status cycle after command sequence, last status read cycle, and array data read cycle. ~ ~ PRELIMINARY (September, 2005, Version 0.0) 34 AMIC Technology, Corp. A29L320 Series Timing Waveforms for Toggle Bit (During Embedded Algorithms) tRC Addresses VA tACC CE tCH tCE VA ~ ~ VA VA tOE tOEH WE tDF tOH I/O6 , I/O2 High-Z tBUSY Valid Status (first read) Valid Status (second read) ~ ~ ~ ~ Valid Status (stop togging) ~ ~ OE ~~ ~~ Valid Data RY/BY Note: VA = Valid Address; not required for I/O6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle. ~ ~ PRELIMINARY (September, 2005, Version 0.0) 35 AMIC Technology, Corp. A29L320 Series Timing Waveforms for Sector Protect/Unprotect VID RESET VIH SA, A6, A1, A0 Valid* Sector Protect/Unprotect ~ ~ Valid* Valid* ~ ~ Verify Data 1us 60h 60h Sector Protect:150us Sector Unprotect:15ms ~ ~ 40h Status CE WE OE Note : For sector protect, A6=0, A1=1, A0=0. For sector unprotect, A6=1, A1=1, A0=0 Timing Waveforms for I/O2 vs. I/O6 ~ ~ ~ ~ ~ ~ ~ ~ WE Erase Erase Suspend Read Erase Suspend Program Erase Suspend Read Erase ~ ~ Erase Complete Enter Embedded Erasing Erase Suspend Enter Erase Suspend Program ~ ~ Erase Resume ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I/O6 ~ ~ ~ ~ I/O2 I/O2 and I/O6 toggle with OE and CE Note : Both I/O6 and I/O2 toggle with OE or CE. See the text on I/O and I/O2 in the section "Write Operation Status" for 6 more information. PRELIMINARY (September, 2005, Version 0.0) 36 AMIC Technology, Corp. ~ ~ ~ ~ A29L320 Series Timing Waveforms for Alternate CE Controlled Write Operation 555 for program 2AA for erase PA for program SA for sector erase 555 for chip erase Data Polling ~ ~ Addresses tWC tWH WE OE tAS PA CE tWS tDS tCPH tBUSY tDH ~ ~ ~ ~ tCP tWHWH1 or 2 ~ ~ ~ ~ tAH ~ ~ Data tRH I/O7 DOUT A0 for program 55 for erase RESET RY/BY Note : 1. PA = Program Address, PD = Program Data, SA = Sector Address, I/O = Complement of Data Input, DOUT = Array Data. 7 2. Figure indicates the last two bus cycles of the command sequence. Erase and Programming Performance Parameter Sector Erase Time Chip Erase Time Byte Programming Time Word Programming Time Chip Programming Time (Note 3) Byte Mode Word Mode Typ. (Note 1) 1.0 35 20 40 22 15 300 500 33 22 Max. (Note 2) 8 Unit sec sec µs µs sec sec Excludes system-level overhead (Note 5) Comments Excludes 00h programming prior to erasure Notes: 1. Typical program and erase times assume the following conditions: 25°C, 3.0V VCC, 10,000 cycles. Additionally, programming typically assumes checkerboard pattern. 2. Under worst case conditions of 90°C, VCC = 3.0V, 100,000 cycles. 3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes program faster than the maximum byte program time listed. If the maximum byte program time given is exceeded, only then does the device set I/O5 = 1. See the section on I/O5 for further information. 4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure. 5. System-level overhead is the time required to execute the four-bus-cycle command sequence for programming. See Table 9 for further information on command definitions. 6. The device has a guaranteed minimum erase and program cycle endurance of 10,000 cycles. ~ ~ ~ ~ PD for program 30 for sector erase 10 for chip erase PRELIMINARY (September, 2005, Version 0.0) 37 AMIC Technology, Corp. A29L320 Series Latch-up Characteristics Description Input Voltage with respect to VSS on all I/O pins VCC Current Input voltage with respect to VSS on all pins except I/O pins (including A9, OE and RESET ) Includes all pins except VCC. Test conditions: VCC = 5.0V, one pin at time. Min. -1.0V -100 mA -1.0V Max. VCC+1.0V +100 mA 12.5V TSOP and SOP Pin Capacitance Parameter Symbol CIN COUT CIN2 Parameter Description Input Capacitance Output Capacitance Control Pin Capacitance Test Setup VIN=0 VOUT=0 VIN=0 Typ. 6 8.5 7.5 Max. 7.5 12 9 Unit pF pF pF Notes: 1. Sampled, not 100% tested. 2. Test conditions TA = 25°C, f = 1.0MHz Data Retention Parameter Minimum Pattern Data Retention Time Test Conditions 150°C 125°C Min 10 20 Unit Years Years PRELIMINARY (September, 2005, Version 0.0) 38 AMIC Technology, Corp. A29L320 Series Test Conditions Test Specifications Test Condition Output Load Output Load Capacitance, CL(including jig capacitance) Input Rise and Fall Times Input Pulse Levels Input timing measurement reference levels Output timing measurement reference levels 30 5 0.0 - 3.0 1.5 1.5 -70 -90 1 TTL gate 100 5 0.0 - 3.0 1.5 1.5 pF ns V V V Unit Test Setup 3.3 V 2.7 KΩ Device Under Test CL 6.2 KΩ Diodes = IN3064 or Equivalent PRELIMINARY (September, 2005, Version 0.0) 39 AMIC Technology, Corp. A29L320 Series Ordering Information Top Boot Sector Flash Part No. A29L320TV-70 A29L320TV-70U A29L320TV-70I A29L320TV-70F A29L320TV-70UF A29L320TV-70IF A29L320TG-70 A29L320TG-70U A29L320TG-70I A29L320TG-70F A29L320TG-70UF A29L320TG-70IF A29L320TV-90 A29L320TV-90U A29L320TV-90I A29L320TV-90F A29L320TV-90UF A29L320TV-90IF A29L320TG-90 A29L320TG-90U A29L320TG-90I A29L320TG-90F A29L320TG-90UF A29L320TG-90IF Note: -U is for industrial operating temperature range: -40°C to +85°C -I is for industrial operating temperature range: -25°C to +85°C Access Time (ns) Active Read Current Typ. (mA) Program/Erase Current Typ. (mA) Standby Current Typ. (µA) Package 48Pin TSOP 48Pin TSOP 48Pin TSOP 48 Pin Pb-Free TSOP 48 Pin Pb-Free TSOP 48 Pin Pb-Free TSOP 48-ball TFBGA 48-ball TFBGA 48-ball TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA 48Pin TSOP 48Pin TSOP 48Pin TSOP 48Pin Pb-Free TSOP 48Pin Pb-Free TSOP 48Pin Pb-Free TSOP 48-ball TFBGA 48-ball TFBGA 48-ball TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA PRELIMINARY (September, 2005, Version 0.0) 40 AMIC Technology, Corp. A29L320 Series Ordering Information (continued) Bottom Boot Sector Flash Part No. A29L320UV-70 A29L320UV-70U A29L320UV-70I A29L320UV-70F A29L320UV-70UF A29L320UV-70IF A29L320UG-70 A29L320UG-70U A29L320UG-70I A29L320UG-70F A29L320UG-70UF A29L320UG-70IF A29L320UV-90 A29L320UV-90U A29L320UV-90I A29L320UV-90F A29L320UV-90UF A29L320UV-90IF A29L320UG-90 A29L320UG-90U A29L320UG-90I A29L320UG-90F A29L320UG-90UF A29L320UG-90IF Note: -U is for industrial operating temperature range: -40°C to +85°C -I is for industrial operating temperature range: -25°C to +85°C Access Time (ns) Active Read Current Typ. (mA) Program/Erase Current Typ. (mA) Standby Current Typ. (µA) Package 48Pin TSOP 48Pin TSOP 48Pin TSOP 48 Pin Pb-Free TSOP 48 Pin Pb-Free TSOP 48 Pin Pb-Free TSOP 48-ball TFBGA 48-ball TFBGA 48-ball TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA 48Pin TSOP 48Pin TSOP 48Pin TSOP 48Pin Pb-Free TSOP 48Pin Pb-Free TSOP 48Pin Pb-Free TSOP 48-ball TFBGA 48-ball TFBGA 48-ball TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA 48-ball Pb-Free TFBGA PRELIMINARY (September, 2005, Version 0.0) 41 AMIC Technology, Corp. A29L320 Series Package Information TSOP 48L (Type I) Outline Dimensions unit: inches/mm D D1 1 48 A2 A E 25 c 0.25 L Dimensions in inches Min 0.002 0.037 0.007 0.004 0.779 0.720 0.016 0° Nom 0.039 0.009 0.787 0.724 0.472 0.020 BASIC 0.020 0.011 Typ. 0.004 8° 0° 0.024 0.40 Max 0.047 0.006 0.042 0.011 0.008 0.795 0.728 0.476 Dimensions in mm Min 0.05 0.94 0.18 0.12 19.80 18.30 Nom 1.00 0.22 20.00 18.40 12.00 0.50 BASIC 0.50 0.28 Typ. 0.10 8° 0.60 Max 1.20 0.15 1.06 0.27 0.20 20.20 18.50 12.10 24 θ Detail "A" Detail "A" Symbol A A1 A2 b c D D1 E e L S y θ Notes: 1. The maximum value of dimension D includes end flash. 2. Dimension E does not include resin fins. 3. Dimension S includes end flash. PRELIMINARY (September, 2005, Version 0.0) 42 AMIC Technology, Corp. S e b y D A1 A29L320 Series Package Information 48 Balls CSP (6 x 8 mm) Outline Dimensions (48TFBGA) unit: mm TOP VIEW BOTTOM VIEW b 654321 123456 H G F E D C B A E D C B A e E1 e D1 D H G F Ball*A1 CORNER SIDE VIEW C 0.10 C SEATING PLANE A1 Symbol A A1 b D D1 e E E1 A Dimensions in mm Min. 0.20 0.30 5.90 Nom. Max. 1.20 0.30 0.40 6.10 8.10 0.25 6.00 4.00 BSC 0.80 7.90 8.00 5.60 BSC PRELIMINARY (September, 2005, Version 0.0) 43 AMIC Technology, Corp. E
A29L320UV-90IF 价格&库存

很抱歉,暂时无法提供与“A29L320UV-90IF”相匹配的价格&库存,您可以联系我们找货

免费人工找货