0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCF5329DS

MCF5329DS

  • 厂商:

    ANALOGICTECH

  • 封装:

  • 描述:

    MCF5329DS - MCF5329 ColdFire Microprocessor Data Sheet - Advanced Analogic Technologies

  • 数据手册
  • 价格&库存
MCF5329DS 数据手册
Freescale Semiconductor Data Sheet: Advance Information MCF5329DS Rev. 0.1, 03/2006 MCF5329 ColdFire® Microprocessor Data Sheet Supports MCF5327, MCF5328, & MCF5329 by: Microcontroller Division The MCF532x devices are a family of highly-integrated 32-bit microprocessors based on the Version 3 ColdFire microarchitecture. All MCF532x devices contain a 32-Kbyte internal SRAM, an LCD controller, USB host and On-the-Go controllers, a 2-bank SDR/DDR SDRAM controller, a 16-channel DMA controller, up to three UARTs, a queued SPI, as well as other peripherals that enable the MCF532x family for use in general purpose industrial control applications. Optional peripherals include a Fast Ethernet controller, a CAN module, and cryptography hardware accelerators. This document provides an overview of the MCF532x microprocessor family, focusing on its highly diverse feature set. It was written from the perspective of the MCF5329 device. However, it also pertains to the MCF5327, and MCF5328. See the following section for a summary of differences between the various devices of the MCF532x family. Table of Contents 1 2 3 4 5 6 MCF532x Family Configurations .........................2 Ordering Information ...........................................3 Signal Descriptions..............................................3 Mechanicals and Pinouts ..................................10 Preliminary Electrical Characteristics ................15 Revision History ................................................46 This document contains information on a new product. Specifications and information herein are subject to change without notice. © Freescale Semiconductor, Inc., 2006. All rights reserved. • Preliminary MCF532x Family Configurations 1 MCF532x Family Configurations Table 1. MCF532x Family Configurations Module ColdFire Version 3 Core with EMAC (Enhanced Multiply-Accumulate Unit) Core (System) Clock Peripheral and External Bus Clock (Core clock ÷ 3) Performance (Dhrystone/2.1 MIPS) Unified Cache Static RAM (SRAM) LCD Controller SDR/DDR SDRAM Controller USB 2.0 Host USB 2.0 On-the-Go UTMI+ Low Pin Interface (ULPI) Synchronous Serial Interface (SSI) Fast Ethernet Controller (FEC) Cryptography Hardware Accelerators FlexCAN 2.0B communication module UARTs I 2C The following table compares the various device derivatives available within the MCF532x family. MCF5327 x MCF5328 x up to 240 MHz up to 80 MHz up to 211 16 Kbytes 32 Kbytes MCF5329 x x x x x — — — — — 3 x x x x 4 x 4 x 2 x x x x 196 MAPBGA x x x x x x x — — 3 x x x x 4 x 4 x 2 x x x x 256 MAPBGA x x x x x x x x x 3 x x x x 4 x 4 x 2 x x x x 256 MAPBGA QSPI PWM Module Real Time Clock 32-bit DMA Timers Watchdog Timer (WDT) Periodic Interrupt Timers (PIT) Edge Port Module (EPORT) Interrupt Controllers (INTC) 16-channel Direct Memory Access (DMA) FlexBus External Interface General Purpose I/O Module (GPIO) JTAG - IEEE® 1149.1 Test Access Port Package MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 2 Preliminary Freescale Semiconductor Ordering Information 2 Ordering Information Table 2. Orderable Part Numbers Freescale Part Number MCF5327CVM240 MCF5328CVM240 MCF5329CVM240 Description MCF5327 RISC Microprocessor, 196 MAPBGA MCF5328 RISC Microprocessor, 256 MAPBGA MCF5329 RISC Microprocessor, 256 MAPBGA Speed 240 MHz 240 MHz 240 MHz Temperature –40° to +85° C –40° to +85° C –40° to +85° C 3 Signal Descriptions The following table lists all the MCF532x pins grouped by function. The “Dir” column is the direction for the primary function of the pin only. Refer to Section 4, “Mechanicals and Pinouts,” for package diagrams. For a more detailed discussion of the MCF532x signals, consult the MCF5329 Reference Manual (MCF5329RM). NOTE In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A23), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon. NOTE The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality. Table 3. MCF5327/8/9 Signal Information and Muxing Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5327 196 MAPBGA MCF5328 256 MAPBGA MCF5329 256 MAPBGA Reset RESET2 RSTOUT — — — — — — Clock EXTAL XTAL2 EXTAL32K XTAL32K — — — — — — — — — — — — I O I O L14 K14 M11 N11 P16 N16 P13 R13 P16 N16 P13 R13 I O M12 P14 N15 P14 N15 P14 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 3 Signal Descriptions Table 3. MCF5327/8/9 Signal Information and Muxing (continued) Signal Name FB_CLK GPIO — Alternate 1 — Alternate 2 Dir.1 — Mode Selection RCON2 DRAMSEL — — — — — — FlexBus A[23:22] A[21:16] — — FB_CS[5:4] — — — O O B11,C11 B12, A12, D11, C12, B13, A13 A14, B14 C13, C14, D12 D13 D14, E11–14, F11–F14, G14 H3–H1, J4–J1, K1, L4, M2, M3, N1, N2, P1, P2, N3 F4–F1, G4–G2, L5, N4, P4, M5, N5, P5, M6 N6 H4, P3, G1, M4 L7 G13 P6 D2 C13, D13 E13, A14, B14, C14, A15, B15 D14, B16 C15, C16, D15 D16 E14–E16, F13–F16, G16– G14 M1–M4, N1–N4, T3, P4, R4, T4, N5, P5, R5, T5 J3–J1, K4–K1, L2, R6, N7, P7, R7, T7, P8, R8 T8 L4, P6, L3, N6 R9 G13 N8 H4 C13, D13 E13, A14, B14, C14, A15, B15 D14, B16 C15, C16, D15 D16 E14–E16, F13–F16, G16– G14 M1–M4, N1–N4, T3, P4, R4, T4, N5, P5, R5, T5 J3–J1, K4–K1, L2, R6, N7, P7, R7, T7, P8, R8 T8 L4, P6, L3, N6 R9 G13 N8 H4 I I N7 G10 M8 H12 M8 H12 O MCF5327 196 MAPBGA L1 MCF5328 256 MAPBGA T2 MCF5329 256 MAPBGA T2 A[15:14] A[13:11] A10 A[9:0] — — — — SD_BA[1:0] SD_A[13:11] — SD_A[9:0] — — — — O O O O D[31:16] — SD_D[31:16]3 — O D[15:1] — FB_D[31:17]3 — O D02 BE/BWE[3:0] OE TA2 R/W TS — PBE[3:0] PBUSCTL3 PBUSCTL2 PBUSCTL1 PBUSCTL0 FB_D[16]3 SD_DQM[3:0] — — — DACK0 — — — — — — Chip Selects O O O I O O FB_CS[5:4] FB_CS[3:1] PCS[5:4] PCS[3:1] — — O O — A11, D10, C10 B13, A13 A12, B12, C12 B13, A13 A12, B12, C12 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 4 Preliminary Freescale Semiconductor Signal Descriptions Table 3. MCF5327/8/9 Signal Information and Muxing (continued) Signal Name FB_CS0 GPIO — Alternate 1 — Alternate 2 Dir.1 — SDRAM Controller SD_A10 SD_CKE SD_CLK SD_CLK SD_CS1 SD_CS0 SD_DQS3 SD_DQS2 SD_SCAS SD_SRAS SD_SDR_DQS SD_WE — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — O O O O O O O O O O O O L2 E1 K3 K2 — E2 H5 L6 L3 M1 K4 D1 P2 H2 R1 R2 J4 H1 L1 T6 P3 R3 P1 H3 P2 H2 R1 R2 J4 H1 L1 T6 P3 R3 P1 H3 O MCF5327 196 MAPBGA B10 MCF5328 256 MAPBGA D12 MCF5329 256 MAPBGA D12 External Interrupts Port4 IRQ72 IRQ62 IRQ52 IRQ42 IRQ32 IRQ22 IRQ12 PIRQ72 PIRQ62 PIRQ52 PIRQ42 PIRQ32 PIRQ22 PIRQ12 — USBHOST_ VBUS_EN2 USBHOST_ VBUS_OC2 SSI_MCLK2 — USB_CLKIN2 DREQ12 — — — — — — SSI_CLKIN2 FEC FEC_MDC FEC_MDIO FEC_TXCLK FEC_TXEN FEC_TXD0 FEC_COL FEC_RXCLK FEC_RXDV PFECI2C3 PFECI2C2 PFECH7 PFECH6 PFECH5 PFECH4 PFECH3 PFECH2 I2C_SCL2 I2C_SDA2 — — ULPI_DATA0 ULPI_CLK ULPI_NXT ULPI_STP — — — — — — — — O I/O I O O I I I — — — — — — — — C1 C2 A2 B2 E4 A8 C8 D8 C1 C2 A2 B2 E4 A8 C8 D8 I I I I I I I H14 — — H13 H12 J14 J13 J13 J14 J15 J16 K14 K15 K16 J13 J14 J15 J16 K14 K15 K16 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 5 Signal Descriptions Table 3. MCF5327/8/9 Signal Information and Muxing (continued) Signal Name FEC_RXD0 FEC_CRS FEC_TXD[3:1] FEC_TXER FEC_RXD[3:1] FEC_RXER GPIO PFECH1 PFECH0 PFECL[7:5] PFECL4 PFECL[3:1] PFECL0 Alternate 1 ULPI_DATA4 ULPI_DIR ULPI_DATA[3:1] — ULPI_DATA[7:5] — Alternate 2 Dir.1 — — — — — — LCD Controller LCD_D17 LCD_D16 LCD_D17 LCD_D16 LCD_D15 LCD_D14 LCD_D13 LCD_D12 LCD_D[11:8] LCD_D7 LCD_D6 LCD_D5 LCD_D4 LCD_D[3:0] LCD_ACD/ LCD_OE LCD_CLS PLCDDH1 PLCDDH0 PLCDDH1 PLCDDH0 PLCDDM7 PLCDDM6 PLCDDM5 PLCDDM4 CANTX CANRX — — FEC_COL FEC_CRS FEC_RXCLK FEC_RXDV — — — — — — — — — — — — — — — — — — — — — — — O O O O O O O O O O O O O O O O O O O O O O O — — A6 B6 C6 D6 A5 B5 C5, D5, A4, B4 C4 B3 A3 A2 D4, C3, D3, B2 D7 C7 B7 A7 A8 B8 C8 D8 B9 — — C9 D9 A7 B7 C7 D7 D6, E6, A5, B5 C5 D5 A4 A3 B4, C4, B3, C3 B9 A9 D10 C10 B10 A10 A11 B11 C11 C9 D9 — — A7 B7 C7 D7 D6, E6, A5, B5 C5 D5 A4 A3 B4, C4, B3, C3 B9 A9 D10 C10 B10 A10 A11 B11 C11 I I O O I I MCF5327 196 MAPBGA — — — — — — MCF5328 256 MAPBGA C6 B8 D3–D1 B1 E7, A6, B6 D4 MCF5329 256 MAPBGA C6 B8 D3–D1 B1 E7, A6, B6 D4 PLCDDM[3:0] FEC_RXD[3:0] PLCDDL7 PLCDDL6 PLCDDL5 PLCDDL4 PLCDDL[3:0] PLCDCTLH0 PLCDCTLL7 FEC_RXER FEC_TXCLK FEC_TXEN FEC_TXER FEC_TXD[3:0] — — — — — — — — — LCD_CONTRAST PLCDCTLL6 LCD_FLM/ LCD_VSYNC LCD_LP/ LCD_HSYNC LCD_LSCLK LCD_PS LCD_REV LCD_SPL_SPR PLCDCTLL5 PLCDCTLL4 PLCDCTLL3 PLCDCTLL2 PLCDCTLL1 PLCDCTLL0 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 6 Preliminary Freescale Semiconductor Signal Descriptions Table 3. MCF5327/8/9 Signal Information and Muxing (continued) Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5327 196 MAPBGA MCF5328 256 MAPBGA MCF5329 256 MAPBGA USB Host & USB On-the-Go USBOTG_M USBOTG_P USBHOST_M USBHOST_P — — — — — — — — — — — — I/O I/O I/O I/O J12 K13 L12 M13 L15 L16 M15 M16 L15 L16 M15 M16 FlexCAN (MCF5329 only) CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing: I2C_SDA, SSI_RXD, or LCD_D16 for CANRX and I2C_SCL, SSI_TXD, or LCD_D17 for CANTX. PWM PWM7 PWM5 PWM3 PWM1 PPWM7 PPWM5 PPWM3 PPWM1 — — DT3OUT DT2OUT — — DT3IN DT2IN SSI SSI_MCLK SSI_BCLK SSI_FS SSI_RXD2 SSI_TXD2 SSI_RXD2 SSI_TXD2 PSSI4 PSSI3 PSSI2 PSSI1 PSSI0 PSSI1 PSSI0 — U2CTS U2RTS U2RXD U2TXD U2RXD U2TXD — PWM7 PWM5 CANRX CANTX — — I2C I2C_SCL2 I2C_SDA2 I2C_SCL2 I2C_SDA2 PFECI2C1 PFECI2C0 PFECI2C1 PFECI2C0 CANTX CANRX — — U2TXD U2RXD U2TXD U2RXD DMA DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing: TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1. QSPI QSPI_CS2 QSPI_CS1 PQSPI5 PQSPI4 U2RTS PWM7 — USBOTG_ PU_EN O O P10 L11 T12 T13 T12 T13 I/O I/O I/O I/O — — E3 E4 — — F3 F2 F3 F2 — — I/O I/O I/O I O I O — — — — — — — G4 F4 G3 — — G2 G1 G4 F4 G3 G2 G1 — — I/O I/O I/O I/O — — G12 G11 H13 H14 H15 H16 H13 H14 H15 H16 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 7 Signal Descriptions Table 3. MCF5327/8/9 Signal Information and Muxing (continued) Signal Name QSPI_CS0 QSPI_CLK QSPI_DIN QSPI_DOUT GPIO PQSPI3 PQSPI2 PQSPI1 PQSPI0 Alternate 1 PWM5 I2C_SCL2 U2CTS I2C_SDA Alternate 2 Dir.1 — — — — UARTs U1CTS U1RTS U1TXD U1RXD U0CTS U0RTS U0TXD U0RXD PUARTL7 PUARTL6 PUARTL5 PUARTL4 PUARTL3 PUARTL2 PUARTL1 PUARTL0 SSI_BCLK SSI_FS SSI_TXD2 SSI_RXD2 — — — — — — — — — — — — I O O I I O O I C9 D9 A9 A10 P13 N12 P12 P11 D11 E10 E11 E12 R15 T15 T14 R14 D11 E10 E11 E12 R15 T15 T14 R14 O O I O MCF5327 196 MAPBGA — N10 L10 M10 MCF5328 256 MAPBGA P11 R12 N12 P12 MCF5329 256 MAPBGA P11 R12 N12 P12 Note: The UART2 signals are multiplexed on the QSPI, SSI, DMA Timers, and I2C pins. DMA Timers DT3IN DT2IN DT1IN DT0IN PTIMER3 PTIMER2 PTIMER1 PTIMER0 DT3OUT DT2OUT DT1OUT DT0OUT U2RXD U2TXD DACK1 DREQ02 BDM/JTAG5 JTAG_EN6 DSCLK PSTCLK BKPT DSI DSO DDATA[3:0] PST[3:0] — — — — — — — — — TRST2 TCLK 2 I I I I C1 B1 A1 C2 F1 E1 E2 E3 F1 E1 E2 E3 — — — — — — — — I I O I I O O O J11 N14 M7 N13 M14 P9 M13 P15 T9 R16 N14 N11 M13 P15 T9 R16 N14 N11 TMS2 TDI2 TDO — — P7, L8, M8, N9, P9, N10, N9, P9, N10, N8 P10 P10 P8, L9, M9, N9 R10, T10, R11, T11 R10, T10, R11, T11 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 8 Preliminary Freescale Semiconductor Signal Descriptions Table 3. MCF5327/8/9 Signal Information and Muxing (continued) Signal Name GPIO Alternate 1 Alternate 2 Dir.1 MCF5327 196 MAPBGA MCF5328 256 MAPBGA MCF5329 256 MAPBGA Test TEST6 PLL_TEST 7 — — — — — — Power Supplies I I E10 — A16 N13 A16 N13 EVDD — — — E6, E7, F5–F7, H9, J8, J9, K8, K9 E8, F5–F8, E8, F5–F8, G5, G6, H5, G5, G6, H5, H6, J11, H6, J11, K11, K12, K11, K12, L9–L11, M9, L9–L11, M9, M10 M10 IVDD PLL_VDD SD_VDD — — — — — — — — — E5, K5, K10 E5, G12, M5, E5, G12, M5, M11, M12 M11, M12 H10 J12 J12 E8, E9, E9, F9–F11, E9, F9–F11, F8–F10, J6, G11, H11, G11, H11, K6, J7, K7 J5, J6, K5, J5, J6, K5, K6, L5–L8, K6, L5–L8, M6, M7 M6, M7 K12 G6–G9, H6–H8, P9 L14 G7–G10, H7–H10, J7–10, K7–K10, L12, L13 K13 M14 L14 G7–G10, H7–H10, J7–10, K7–K10, L12, L13 K13 M14 USBOTG_VDD VSS — — — — — — PLL_VSS USBHOST_VSS — — — — — — H11 L13 NOTES: 1 Refers to pin’s primary function. 2 Pull-up enabled internally on this signal for this mode. 3 Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins. 4 GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions. 5 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins. 6 Pull-down enabled internally on this signal for this mode. 7 Must be left floating for proper operation of the PLL. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 9 Mechanicals and Pinouts 4 Mechanicals and Pinouts NOTE The mechanical drawings are the latest revisions at the time of publication of this document. The most up-to-date mechanical drawings can be found at the product summary page located at http://www.freescale.com/coldfire. This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 10 Preliminary Freescale Semiconductor Mechanicals and Pinouts 4.1 Pinout—256 MAPBGA NOTE The pin at location N13 (PLL_TEST) must be left floating, else improper operation of the PLL module will occur. Figure 1 shows a pinout of the MCF5328CVM240 and MCF5329CVM240 devices. 1 A NC FEC_ TXER FEC_ MDC FEC_ TXD1 DT2IN 2 FEC_ TXCLK FEC_ TXEN FEC_ MDIO FEC_ TXD2 DT1IN I2C_ SDA SSI_ RXD SD_CKE 3 LCD_ D4 LCD_ D1 LCD_ D0 FEC_ TXD3 DT0IN I2C_ SCL SSI_FS 4 LCD_ D5 LCD_ D3 LCD_ D2 FEC_ RXER FEC_ TXD0 SSI_ BCLK SSI_ MCLK TS 5 LCD_ D9 LCD_ D8 LCD_ D7 LCD_ D6 IVDD 6 FEC_ RXD2 FEC_ RXD1 FEC_ RXD0 LCD_ D11 LCD_ D10 EVDD 7 LCD_ D15 LCD_ D14 LCD_ D13 LCD_ D12 FEC_ RXD3 EVDD 8 FEC_ COL FEC_ CRS FEC_ RXCLK FEC_ RXDV EVDD 9 LCD_ CLS LCD_ ACD/OE LCD_ D17 LCD_ D16 SD_VDD 10 LCD_ LSCLK LCD_LP/ HSYNC 11 LCD_ PS LCD_ REV 12 13 14 A20 15 A17 16 TEST A FB_CS3 FB_CS4 B FB_CS2 FB_CS5 A19 A16 A14 B C LCD_FLM/ LCD_ FB_CS1 VSYNC SPL_SPR LCD_CON TRAST U1RTS U1CTS FB_CS0 A23 A18 A13 A12 C D A22 A15 A11 A10 D E U1TXD U1RXD A21 A9 A8 A7 E F DT3IN SSI_ TXD SD_ CS0 D13 EVDD EVDD SD_VDD SD_VDD SD_VDD NC A6 A5 A4 A3 F G EVDD EVDD VSS VSS VSS VSS SD_VDD IVDD DRAM SEL PLL_ VDD EVDD TA A0 A1 A2 G H SD_WE EVDD EVDD VSS VSS VSS VSS SD_VDD PWM7 PWM5 PWM3 PWM1 H J D14 D15 SD_CS1 SD_VDD SD_VDD VSS VSS VSS VSS EVDD IRQ7 PLL_ VSS USB_ VSS JTAG_ EN PLL_ TEST EXTAL 32K XTAL 32K QSPI_ CS1 13 IRQ6 IRQ5 IRQ4 J K D9 SD_ DQS3 D31 D10 D11 BE/ BWE1 D29 D12 BE/ BWE3 D28 SD_VDD SD_VDD VSS VSS VSS VSS EVDD IRQ3 USBOTG _VDD IRQ2 USB OTG_M IRQ1 USB OTG_P K L D8 SD_VDD SD_VDD SD_VDD SD_VDD EVDD EVDD EVDD VSS L M D30 IVDD SD_VDD SD_VDD BE/ BWE0 BE/ BWE2 D7 SD_ DQS2 6 RCON EVDD EVDD IVDD TDO/ DSO QSPI_ CS0 PST1 IVDD QSPI_ DIN QSPI_ DOUT QSPI_ CLK QSPI_ CS2 12 USBHOST USB USB M _VSS HOST_M HOST_P TDI/DSI RESET TRST/ DSCLK U0CTS XTAL N N D27 SD_DR _DQS D26 D25 D24 D19 D6 R/W DDATA3 DDATA1 P SD_A10 SD_CAS D22 D18 D5 D2 DDATA2 DDATA0 RSTOUT EXTAL TMS/ BKPT NC 16 P R SD_CLK SD_CLK SD_RAS D21 D17 D4 D1 OE TCLK/ PSTCLK 9 PST3 U0RXD R T NC 1 FB_CLK 2 D23 3 D20 4 D16 5 D3 7 D0 8 PST2 10 PST0 11 U0TXD 14 U0RTS 15 T Figure 1. MCF5328CVM240 and MCF5329CVM240 Pinout Top View (256 MAPBGA) MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 11 Mechanicals and Pinouts 4.2 Package Dimensions—256 MAPBGA X Y D Laser mark for pin A1 identification in this area Figure 2 shows MCF5328CVM240 and MCF5329CVM240 package dimensions. M K A A2 A1 Z 4 256X 5 0.30 Z E 0.15 Z Detail K Rotated 90° Clockwise Notes: 1. 2. 3. 4. A B C D E F G H J K L M N P R T Top View 0.20 15 13 11 16 14 12 10 15X M e Metalized mark for pin A1 identification in this area S 7654321 15X e S 5. 256X b 0.25 0.10 3 M M Dimensions are in millimeters. Interpret dimensions and tolerances per ASME Y14.5M, 1994. Dimension b is measured at the maximum solder ball diameter, parallel to datum plane Z. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. Parallelism measurement shall exclude any effect of mark on top surface of package. Millimeters Min Max 1.25 1.60 0.27 0.47 1.16 REF 0.40 0.60 17.00 BSC 17.00 BSC 1.00 BSC 0.50 BSC ZXY Z Dim Bottom View View M-M A A1 A2 b D E e S Figure 2. 256 MAPBGA Package Outline MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 12 Preliminary Freescale Semiconductor Mechanicals and Pinouts 4.3 1 A DT1IN Pinout—196 MAPBGA 2 LCD_ D4 LCD_ D0 3 LCD_ D5 LCD_ D6 LCD_ D2 LCD_ D1 4 LCD_ D9 LCD_ D8 LCD_ D7 LCD_ D3 5 LCD_ D13 LCD_ D12 LCD_ D11 LCD_ D10 6 LCD_ D17 LCD_ D16 LCD_ D15 LCD_ D14 7 8 9 U1TXD 10 U1RXD 11 FB_CS3 12 A20 13 A16 14 A15 A The pinout for the MCF5327CVM240 package is shown below. LCD_FLM/ LCD_LP/ VSYNC HSYNC LCD_CON TRAST LCD_ CLS LCD_ ACD/OE LCD_ LSCLK LCD_ PS LCD_ REV B D2TIN LCD_ FB_CS0 SPL_SPR A23 A21 A17 A14 B C DT3IN DT0IN U1CTS FB_CS1 A22 A18 A13 A12 C D SD_WE TS U1RTS FB_CS2 A19 A11 A10 A9 D E SD_CKE SD_CS0 I2C_SCL I2C_SDA IVDD EVDD EVDD SD_VDD SD_VDD TEST A8 A7 A6 A5 E F D12 D13 D14 D15 EVDD EVDD EVDD SD_VDD SD_VDD SD_VDD A4 A3 A2 A1 F G BE/ BWE1 D8 D9 D10 D11 VSS VSS VSS VSS DRAM SEL PLL_ VDD PWM1 PWM3 TA A0 G H D29 D30 D31 BE/ BWE3 SD_ DQS3 VSS VSS VSS EVDD PLL_ VSS JTAG_ EN IRQ3 IRQ4 IRQ7 H J D25 D26 D27 D28 SD_VDD SD_VDD SD_VDD EVDD EVDD IVDD USB OTG_M USBHOST _VDD IRQ1 IRQ2 J K D24 SD_CLK SD_CLK SD_DR_ DQS IVDD SD_ DQS2 SD_VDD EVDD EVDD IVDD EVDD USB OTG_P XTAL K L FB_CLK SD_A10 SD_CAS D23 D7 D1 TCLK/ PSTCLK DDATA1 PST1 QSPI_ DIN QSPI_ DOUT QSPI_ CLK QSPI_ CS2 10 QSPI_ CS1 EXTAL 32K XTAL 32K USB USBHOST HOST_M _VSS USB HOST_P TMS/ BKPT EXTAL L M SD_RAS D22 D21 BE/ BWE0 D4 D0 RCON DDATA0 PST0 RESET TDI/DSI M N D20 D19 D16 D6 D3 R/W DDATA3 PST3 TDO/ DSO U0RTS TRST/ DSCLK N P D18 1 D17 2 BE/ BWE2 3 D5 4 D2 5 OE 6 DDATA2 7 PST2 8 VSS 9 U0RXD 11 U0TXD 12 U0CTS 13 RSTOUT P 14 Figure 3. MCF5327CVM240 Pinout Top View (196 MAPBGA) MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 13 Mechanicals and Pinouts 4.4 X Y Package Dimensions—196 MAPBGA D Laser mark for pin 1 identification in this area NOTES: 1. Dimensions are in millimeters. 2. Interpret dimensions and tolerances per ASME Y14.5M, 1994. 3. Dimension B is measured at the maximum solder ball diameter, parallel to datum plane Z. 4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls. 5. Parallelism measurement shall exclude any effect of mark on top surface of package. Millimeters DIM Min Max Figure 4 shows the MCF5327CVM240 package dimensions. M K E A A1 A2 b D E e S 1.32 1.75 0.27 0.47 1.18 REF 0.35 0.65 15.00 BSC 15.00 BSC 1.00 BSC 0.50 BSC Top View 0.20 13X M e Metalized mark for pin 1 identification in this area A B C S 14 13 12 11 10 9 6 5 4 3 2 1 S 13X D E F G H J K L M N 5 A A2 0.30 Z e A1 Z 4 0.15 Z Detail K Rotated 90 ° Clockwise 3 196X P b 0.30 Z X Y 0.10 Z Bottom View View M-M Figure 4. 196 MAPBGA Package Dimensions (Case No. 1128A-01) MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 14 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics 5 Preliminary Electrical Characteristics This document contains electrical specification tables and reference timing diagrams for the MCF5329 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5329. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this MCU document supersede any values found in the module specifications. 5.1 Maximum Ratings Table 4. Absolute Maximum Ratings1, 2 Rating Core Supply Voltage CMOS Pad Supply Voltage DDR/Memory Pad Supply Voltage PLL Supply Voltage Digital Input Voltage 3 Instantaneous Maximum Current Single pin limit (applies to all pins) 3, 4, 5 Operating Temperature Range (Packaged) Storage Temperature Range Symbol IVDD EVDD SDVDD PLLVDD VIN ID TA (TL - TH) Tstg Value – 0.5 to +2.0 – 0.3 to +4.0 – 0.3 to +4.0 – 0.3 to +2.0 – 0.3 to +3.6 25 – 40 to +85 – 55 to +150 Unit V V V V V mA °C °C NOTES: 1 Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.” Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device. 2 This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or EVDD). 3 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 4 All functional non-supply pins are internally clamped to VSS and EVDD. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 15 Preliminary Electrical Characteristics 5 Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than IDD, the injection current may flow out of EVDD and could result in external power supply going out of regulation. Insure external EVDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. 5.2 Thermal Characteristics Table 5. Thermal Characteristics Characteristic Junction to ambient, natural convection Junction to ambient (@200 ft/min) Junction to board Junction to case Junction to top of package Maximum operating junction temperature Four layer board (2s2p) Four layer board (2s2p) Symbol θJMA θJMA θJB θJC Ψjt Tj 256MBGA 261,2 231,2 153 104 21,5 105 196MBGA 321,2 291,2 203 104 21,5 105 Unit °C/W °C/W °C/W °C/W °C/W oC NOTES: 1θ JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2. 2 Per JEDEC JESD51-6 with the board horizontal. 3 Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D × Θ JMA ) Eqn. 1 Where: TA QJMA PD PINT PI/O = Ambient Temperature, °C = Package Thermal Resistance, Junction-to-Ambient, °C/W = PINT + PI/O = IDD × IVDD, Watts - Chip Internal Power = Power Dissipation on Input and Output Pins — User Determined MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 16 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is: K P D = -------------------------------( T J + 273 ° C ) Eqn. 2 Solving equations 1 and 2 for K gives: K = P D × ( T A × 273 ° C ) + Q JMA × P D 2 Eqn. 3 where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA. 5.3 ESD Protection Table 6. ESD Protection Characteristics1, 2 Characteristics ESD Target for Human Body Model Symbol HBM Value 2000 Units V NOTES: 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 5.4 DC Electrical Specifications Table 7. DC Electrical Specifications Characteristic Symbol IVDD PLLVDD EVDD SDVDD SDVDD SDVDD USBVDD EVIH EVIL SDVIH SDVIL SDVIH SDVIL Min 1.4 1.4 3.0 1.65 2.25 3.0 3.0 2 -0.05 TBD -0.05 2 -0.05 Max 1.6 1.6 3.6 1.95 2.75 3.6 3.6 EVDD + 0.05 0.8 SDVDD + 0.05 TBD SDVDD + 0.05 0.8 Unit V V V V V V V V V V V V V Core Supply Voltage PLL Supply Voltage CMOS Pad Supply Voltage Mobile DDR/Bus Pad Supply Voltage DDR/Bus Pad Supply Voltage SDR/Bus Pad Supply Voltage USB Supply Voltage CMOS Input High Voltage CMOS Input Low Voltage Mobile DDR/Bus Input High Voltage Mobile DDR/Bus Input Low Voltage DDR/Bus Input High Voltage DDR/Bus Input Low Voltage MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 17 Preliminary Electrical Characteristics Table 7. DC Electrical Specifications (continued) Characteristic Input Leakage Current Vin = VDD or VSS, Input-only pins CMOS Output High Voltage IOH = –5.0 mA CMOS Output Low Voltage IOL = 5.0 mA DDR/Bus Output High Voltage IOH = –5.0 mA DDR/Bus Output Low Voltage IOL = 5.0 mA Weak Internal Pull-Up Device Current, tested at VIL Max.1 Input Capacitance All input-only pins All input/output (three-state) pins 2 Symbol Iin EVOH EVOL SDVOH SDVOL IAPU Cin Min -1.0 EVDD - 0.4 — SDVDD - 0.4 — -10 — — Max 1.0 — 0.4 — 0.4 -130 7 7 Unit µA V V V V µA pF NOTES: 1 Refer to the signals section for pins having weak internal pull-up devices. 2 This parameter is characterized before qualification rather than 100% tested. 5.4.1 PLL Power Filtering To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in Figure 5 should be connected between the board VDD and the PLLVDD pins. The resistor and capacitors should be placed as close to the dedicated PLLVDD pin as possible. 10 Ω Board VDD 10 µF 0.1 µF PLL VDD Pin GND Figure 5. System PLL VDD Power Filter 5.4.2 USB Power Filtering To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 6 should be connected between the board EVDD or IVDD and each of the USBVDD pins. The resistor and capacitors should be placed as close to the dedicated USBVDD pin as possible. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 18 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics 0Ω Board EVDD/IVDD 10 µF 0.1 µF USB VDD Pin GND Figure 6. USB VDD Power Filter NOTE In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown. 5.4.3 Supply Voltage Sequencing and Separation Cautions Figure 7 shows situations in sequencing the I/O VDD (EVDD), SDRAM VDD (SDVDD), PLL VDD (PLLVDD), and Core VDD (IVDD). EVDD, SDVDD, USBVDD Supplies Stable 2.5V SDVDD (2.5V/1.8V) DC Power Supply Voltage 3.3V 1.5V 1 IVDD, PLLVDD 2 0 Time Notes: 1. IVDD should not exceed EVDD, SDVDD or PLLVDD by more than 0.4 V at any time, including power-up. 2. Recommended that IVDD/PLLVDD should track EVDD/SDVDD up to 0.9 V, then separate for completion of ramps. 3. Input voltage must not be greater than the supply voltage (EVDD, SDVDD, IVDD, or PLLVDD) by more than 0.5 V at any time, including during power-up. 4. Use 1 ms or slower rise time for all supplies. Figure 7. Supply Voltage Sequencing and Separation Cautions The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. Both SDVDD (2.5V or 3.3V) and EVDD are specified relative to IVDD. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 19 Preliminary Electrical Characteristics 5.4.3.1 Power Up Sequence If EVDD/SDVDD are powered up with IVDD at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD must powered up. IVDD should not lead the EVDD, SDVDD or PLLVDD by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes. The recommended power up sequence is as follows: 1. Use 1 µs or slower rise time for all supplies. 2. IVDD/PLLVDD and EVDD/SDVDD should track up to 0.9 V, then separate for the completion of ramps with EVDD/SD VDD going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator. 5.4.3.2 Power Down Sequence If IVDD/PLLVDD are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after IVDD and PLLVDD power down before EVDD or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PLLVDD going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. Drop IVDD/PLLVDD to 0 V. 2. Drop EVDD/SDVDD supplies. 5.5 Power Consumption Specifications Estimated maximum RUN mode power consumption measurements are shown in the below figure. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 20 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics Estimated Power Consumption vs. Core Frequency 300 250 200 150 100 50 0 0 40 80 120 160 200 240 Core Frequency (MHz) Figure 8. Estimated Maximum RUN Mode Power Consumption Table 8 lists estimated maximum power and current consumption for the device in various operating modes. Table 8. Estimated Maximum Power Consumption Specifications Characteristic Run Mode - Total Power Dissipation Static Dynamic Core Operating Supply Current 1 Run Mode Pad Operating Supply Current Run Mode (application dependent) Wait Mode Stop Mode IDD — EIDD — — — 144 96 1 mA mA mA TBD mA Symbol Typical — — — Max 250 5.74 244 Unit mW mW mW Power Consumption (mW) NOTES: 1 Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 21 Preliminary Electrical Characteristics 5.6 Num 1 Oscillator and PLL Electrical Characteristics Table 9. PLL Electrical Characteristics Characteristic PLL Reference Frequency Range Crystal reference External reference Core frequency CLKOUT Frequency1 Crystal Start-up Time2, 3 EXTAL Input High Voltage Crystal Mode4 All other modes (External, Limp) EXTAL Input Low Voltage Crystal Mode4 All other modes (External, Limp) XTAL Load Capacitance2 PLL Lock Time Duty Cycle of 2, 5 Symbol Min. Value TBD TBD TBD TBD — TBD TBD TBD TBD 5 Max. Value 16 16 240 80 10 TBD TBD TBD TBD 30 1 60 Unit fref_crystal fref_ext fsys fsys/3 tcst VIHEXT VIHEXT VILEXT VILEXT MHz MHz MHz MHz ms V V V V pF ms % 2 3 4 5 6 7 8 tlpll tdc — 40 reference 2 NOTES: 1 All internal registers retain data at 0 Hz. 2 This parameter is guaranteed by characterization before qualification rather than 100% tested. 3 Proper PC board layout procedures must be followed to achieve specifications. 4 This parameter is guaranteed by design rather than 100% tested. 5 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 5.7 External Interface Timing Characteristics NOTE All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output. All other timing relationships can be derived from these values. Timings listed in Table 10 are shown in Figure 10 and Figure 11. Table 10 lists processor bus input timings. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 22 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics * The timings are also valid for inputs sampled on the negative clock edge. FB_CLK (80MHz) TSETUP THOLD 1.5V Input Setup And Hold Invalid 1.5V Valid 1.5V Invalid trise Input Rise Time Vh = VIH Vl = VIL tfall Input Fall Time Vh = VIH Vl = VIL FB_CLK B4 B5 Inputs Figure 9. General Input Timing Requirements 5.7.1 FlexBus A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories. 5.7.1.1 FlexBus AC Timing Characteristics The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the system clock. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 23 Preliminary Electrical Characteristics Table 10. FlexBus AC Timing Specifications Num Frequency of Operation FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 Clock Period (FB_CLK) Address, Data, and Control Output Valid (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE) Address, Data, and Control Output Hold (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE) Data Input Setup Data Input Hold Transfer Acknowledge (TA) Input Setup Transfer Acknowledge (TA) Input Hold Address Output Valid (A[23:0]) Address Output Hold (A[23:0]) tFBCK tFBCHDCV tFBCHDCI tDVFBCH tDIFBCH tCVFBCH tCIFBCH tFBCHAV tFBCHAI Characteristic Symbol Min — — — 1 3.5 0 4 0 — 1 Max 80 12.5 7.0 — — — — — 6.0 — Unit Mhz ns ns ns ns ns ns ns ns ns 3 Notes fsys/3 tcyc 1 1, 2 NOTES: 1 Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.8.2, “DDR SDRAM AC Timing Characteristics” for SD_CS[3:0] timing. 2 The FlexBus supports programming an extension of the address hold. Please consult the MCF5329 Reference Manual for more information. 3 These specs are used when the A[23:0] signals are configured as 23-bit, non-muxed FlexBus address signals. FB_CLK FB1 FB3 A[23:0] FB2 A[23:0] FB5 D[31:0] DATA R/W FB4 TS FB_CSn BE/BWEn FB7 OE FB6 TA Figure 10. FlexBus Read Timing. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 24 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics FB_CLK FB1 FB3 A[23:0] FB2 FB3 D[31:0] R/W TS FB_CSn BE/BWEn FB7 OE FB6 TA Figure 11. Flexbus Write Timing 5.8 SDRAM Bus The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time. 5.8.1 SDR SDRAM AC Timing Characteristics The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must still be supplied to device for each data beat of an SDR read. Te processor accomplishes this by asserting a signal named SD_DQS during read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal and its usage. Table 11. SDR Timing Specifications Symbol Characteristic Frequency of Operation SD1 SD2 SD3 Clock Period Clock Skew Pulse Width High tSDCK tSDSK tSDCKH Symbol Min TBD 12.5 — 0.45 Max 80 TBD TBD 0.55 SD_CLK 3 Unit Mhz ns Notes 1 2 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 25 Preliminary Electrical Characteristics Table 11. SDR Timing Specifications (continued) Symbol SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11 SD12 SD13 Pulse Width Low Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] - Output Valid Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] - Output Hold SD_SDR_DQS Output Valid SD_DQS[3:0] input setup relative to SD_CLK SD_DQS[3:2] input hold relative to SD_CLK Data (D[31:0]) Input Setup relative to SD_CLK (reference only) Data Input Hold relative to SD_CLK (reference only) Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold Characteristic Symbol tSDCKH tSDCHACV tSDCHACI tDQSOV tDQVSDCH tDQISDCH tDVSDCH tDISDCH tSDCHDMV tSDCHDMI Min 0.45 — 2.0 — 0.25 × SD_CLK Max 0.55 0.5 × SD_CLK + 1.0 — Self timed 0.40 × SD_CLK Unit SD_CLK ns ns ns ns 5 6 Notes 4 Does not apply. 0.5×SD_CLK fixed width. 0.25 × SD_CLK 1.0 — 1.5 — — 0.75 × SD_CLK + 0.5 — ns ns ns ns 7 8 NOTES: 1 The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock. Please see the PLL chapter of the MCF5329 Reference Manual for more information on setting the SDRAM clock rate. 2 SD_CLK is one SDRAM clock in (ns). 3 Pulse width high plus pulse width low cannot exceed min and max clock period. 4 Pulse width high plus pulse width low cannot exceed min and max clock period. 5 SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat. 6 SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data beat. 7 The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller. 8 Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup spec is just provided as guidance. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 26 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics SD2 SD_CLK0 SD2 SD_CLK1 SD1 SD3 SD4 SD6 SD_CSn SD_RAS SD_CAS SD_WE A[23:0] SD_BA[1:0] CMD SD5 ROW COL SD12 SDDM SD13 D[31:0] WD1 WD2 WD3 WD4 Figure 12. SDR Write Timing SD2 SD_CLK0 SD2 SD_CLK1 SD_CSn, SD_RAS, SD_CAS, SD_WE A[23:0], SD_BA[1:0] SD6 SD1 CMD SD5 3/4 MCLK Reference ROW COL tDQS SDDM SD7 SD_DQS (Measured at Output Pin) Board Delay SD9 SD_DDQS (Measured at Input Pin) Board Delay SD8 Delayed SD_CLK SD10 D[31:0] from Memories WD1 WD2 WD3 WD4 NOTE: Data driven from memories relative to delayed memory clock. SD11 Figure 13. SDR Read Timing MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 27 Preliminary Electrical Characteristics 5.8.2 DDR SDRAM AC Timing Characteristics When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early board design. Please contact your local Freescale representative if questions develop. Table 12. DDR Timing Specifications Num Characteristic Frequency of Operation DD1 DD2 DD3 DD4 DD5 DD6 DD7 DD8 DD9 Clock Period Pulse Width High Pulse Width Low Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Valid Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Hold Write Command to first DQS Latching Transition Data and Data Mask Output Setup (DQ-->DQS) Relative to DQS (DDR Write Mode) Data and Data Mask Output Hold (DQS-->DQ) Relative to DQS (DDR Write Mode) Input Data Skew Relative to DQS (Input Setup) Symbol tDDCK tDDSK tDDCKH tDDCKL tSDCHACV tSDCHACI tCMDVDQ tDQDMV tDQDMI tDVDQ tDIDQ Min 80 TBD 0.45 0.45 — 2.0 — 1.5 1.0 — 0.25 × SD_CLK + 0.5ns 0.5 0.9 0.4 0.25 0.4 0.6 Max TBD 12.5 0.55 0.55 0.5 × SD_CLK + 1.0 — 1.25 — — 1 — — 1.1 0.6 Unit Mhz ns SD_CLK SD_CLK ns ns SD_CLK ns ns ns ns ns SD_CLK SD_CLK SD_CLK SD_CLK 5 6 7 Notes 1 2 3 3 4 8 9 DD10 Input Data Hold Relative to DQS. DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH DD12 DQS input read preamble width DD13 DQS input read postamble width DD14 DQS output write preamble width DD15 DQS output write postamble width tDQRPRE tDQRPST tDQWPRE tDQWPST NOTES: 1 The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the same frequency as the internal bus clock. 2 SD_CLK is one SDRAM clock in (ns). 3 Pulse width high plus pulse width low cannot exceed min and max clock period. 4 Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and voltage variations. 5 This specification relates to the required input setup time of today’s DDR memories. Rigoletto’s output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0]. 6 The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats will be valid for each subsequent DQS edge. 7 This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0]. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 28 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics 8 Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). 9 Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid. SD_CLK VIX VMP VIX SD_CLK VID Figure 14. SD_CLK and SD_CLK crossover timing DD1 SD_CLK DD2 DD3 SD_CLK DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS DD4 A[13:0] CMD DD6 ROW COL DD7 DM3/DM2 DD8 SD_DQS3/SD_DQS2 DD7 D[31:24]/D[23:16] WD1 WD2 WD3 WD4 DD8 Figure 15. DDR Write Timing MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 29 Preliminary Electrical Characteristics DD1 SD_CLK DD2 DD3 SD_CLK DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS DD4 A[13:0] CL=2 CMD CL=2.5 ROW COL DQS Read Preamble DD10 DD9 SD_DQS3/SD_DQS2 CL = 2 DQS Read Postamble D[31:24]/D[23:16] SD_DQS3/SD_DQS2 CL = 2.5 WD1 WD2 WD3 WD4 DQS Read DQS Read Preamble Postamble D[31:24]/D[23:16] WD1 WD2 WD3 WD4 Figure 16. DDR Read Timing 5.9 Num G1 G2 G3 G4 General Purpose I/O Timing Table 13. GPIO Timing1 Characteristic FB_CLK High to GPIO Output Valid FB_CLK High to GPIO Output Invalid GPIO Input Valid to FB_CLK High FB_CLK High to GPIO Input Invalid Symbol tCHPOV tCHPOI tPVCH tCHPI Min — 1.5 9 1.5 Max 10 — — — Unit ns ns ns ns NOTES: 1 GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 30 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics FB_CLK G1 GPIO Outputs G2 G3 GPIO Inputs G4 Figure 17. GPIO Timing 5.10 Reset and Configuration Override Timing Table 14. Reset and Configuration Override Timing Num R1 R2 R3 R4 R5 R6 R7 R8 Characteristic RESET Input valid to FB_CLK High FB_CLK High to RESET Input invalid RESET Input valid Time 1 FB_CLK High to RSTOUT Valid RSTOUT valid to Config. Overrides valid Configuration Override Setup Time to RSTOUT invalid Configuration Override Hold Time after RSTOUT invalid RSTOUT invalid to Configuration Override High Impedance Symbol tRVCH tCHRI tRIVT tCHROV tROVCV tCOS tCOH tROICZ Min 9 1.5 5 — 0 20 0 — Max — — — 10 — — — 1 Unit ns ns tCYC ns ns tCYC ns tCYC NOTES: 1 During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns. FB_CLK R1 R3 RESET R2 R4 RSTOUT R4 R8 R5 R6 R7 Configuration Overrides*: (RCON, Override pins]) Figure 18. RESET and Configuration Override Timing MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 31 Preliminary Electrical Characteristics NOTE Refer to the CCM chapter of the MCF5329 Reference Manual for more information. 5.11 LCD Controller Timing Specifications This sections lists the timing specifications for the LCD Controller. Table 15. LCD_LSCLK Timing Num T1 T2 T3 LCD_LSCLK Period Pixel data setup time Pixel data up time Parameter Minimum 25 11 11 Maximum 2000 — — Unit ns ns ns Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode with bus width = 1,LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus width settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK and LCD_LD signals can also be programmed. T1 LCD_LSCLK LCD_LD[17:0] T2 T3 Figure 19. LCD_LSCLK to LCD_LD[17:0] timing diagram MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 32 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics Non-display region T1 T3 Display region T4 LCD_VSYNC LCD_HSYNC LCD_OE LCD_LD[17:0] T2 Line Y Line 1 Line Y T5 LCD_HSYNC LCD_LSCLK LCD_OE LCD_LD[15:0] T6 XMAX T7 (1,1) (1,2) (1,X) Figure 20. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing Table 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing Number T1 T2 T3 T4 T5 T6 T7 Description End of LCD_OE to beginning of LCD_VSYNC LCD_HSYNC period LCD_VSYNC pulse width End of LCD_VSYNC to beginning of LCD_OE LCD_HSYNC pulse width End of LCD_HSYNC to beginning to LCD_OE End of LCD_OE to beginning of LCD_HSYNC Minimum T5+T6+T7-1 — T2 1 1 3 1 Value (VWAIT1·T2)+T5+T6+T7-1 XMAX+T5+T6+T7 VWIDTH·T2 (VWAIT2·T2)+1 HWIDTH+1 HWAIT2+3 HWAIT1+1 Unit Ts Ts Ts Ts Ts Ts Ts Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC and LCD_OE can be programmed as active high or active low. In Figure 20, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 20, LCD_LSCLK is always active. Note: XMAX is defined in number of pixels in one line. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 33 Preliminary Electrical Characteristics XMAX LCD_LSCLK LCD_LD D320 D1 D2 D320 LCD_SPL_SPR T1 LCD_HSYNC T2 T3 T2 LCD_CLS LCD_PS T7 LCD_REV T4 T5 T6 T4 T7 Figure 21. Sharp TFT Panel Timing Table 17. Sharp TFT Panel Timing Num T1 T2 T3 T4 T5 T6 T7 Description LCD_SPL/LCD_SPR pulse width End of LCD_LD of line to beginning of LCD_HSYNC End of LCD_HSYNC to beginning of LCD_LD of line LCD_CLS rise delay from end of LCD_LD of line LCD_CLS pulse width LCD_PS rise delay from LCD_CLS negation LCD_REV toggle delay from last LCD_LD of line Minimum — 1 4 3 1 0 1 Value 1 HWAIT1+1 HWAIT2 + 4 CLS_RISE_DELAY+1 CLS_HI_WIDTH+1 PS_RISE_DELAY REV_TOGGLE_DELAY+1 Unit Ts Ts Ts Ts Ts Ts Ts Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_LD of line. Note: Falling of LCD_PS aligns with rising edge of LCD_CLS. Note: LCD_REV toggles in every LCD_HSYN period. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 34 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics T1 T1 LCD_VSYNC T2 LCD_HSYNC LCD_LSCLK T3 XMAX T4 T2 Ts LCD_LD[15:0] Figure 22. Non-TFT Mode Panel Timing Table 18. Non-TFT Mode Panel Timing Num T1 T2 T3 T4 Description LCD_HSYNC to LCD_VSYNC delay LCD_HSYNC pulse width LCD_VSYNC to LCD_LSCLK LCD_LSCLK to LCD_HSYNC Minimum 2 1 — 1 Value HWAIT2 + 2 HWIDTH + 1 0 ≤ T3 ≤ T s HWAIT1 + 1 Unit Tpix Tpix — Tpix Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC and LCD_LSCLK can be programmed as active high or active low. In Figure 22, all these 3 signals are active high. When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width = 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively. 5.12 USB On-The-Go The MCF5329 device is compliant with industry standard USB 2.0 specification. 5.13 ULPI Timing Specification Control and data timing requirements for the ULPI pins are given in Table 19. These timings apply in synchronous mode only. All timings are measured with either a 60 MHz input clock from the USB_CLKIN pin or a 60MHz output clock at the ULPI_CLK pin. Both clocks need to maintain a 50% duty cycle. Control signals and 8-bit data are always clocked on the rising edge, while the optional double-edge 4-bit data signals are clocked on rising and falling edges. The ULPI interface on the MCF5329 processor is compliant with the industry standard definition. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 35 Preliminary Electrical Characteristics THD TSD THC TDDD TDD THDD TDC TDDD TDC TSC THDD ULPI_CLK ULPI_STP (Input) ULPI_DATA (Input-8bit) ULPI_DATA (Input-4bit) ULPI_DIR/ULPI_NXT (Output) ULPI_DATA (Output-8bit) ULPI_DATA (Output-4bit) TSDD TSDD Figure 23. ULPI Timing Diagram Table 19. ULPI Interface Timing Parameter Timing with reference to ULPI_CLK Setup time (control in, 8-bit data in) Setup time (control in, 8-bit data in) Output delay (control out, 8-bit data out) Timing with reference to USB_CLKIN Setup time (control in, 8-bit data in) Hold time (control in, 8-bit data in) Output delay (control out, 8-bit data out) TSC, TSD THC, THD TDC, TDD — -1.5 — 3.0 — 6.0 ns ns ns TSC, TSD THC, THD TDC, TDD — 0.0 — 6.0 — 9.0 ns ns ns Symbol Min Max Units 5.14 SSI Timing Specifications The following figure and table lists the specifications for the SSI module. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 36 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics S1 S2 S3 SSI_BCLK S4 S5 SSI_MCLK STFS S6 S7 SSI_TXD (Output) STFS S6 SSI_RXD (Input) Note: SSI External. Continous clock Synchronous mode only Figure 24. SSI External Continous Clock Timing Diagram Table 20. SSI Timing 1.8 +/- 0.10V Num S1 S2 S3 S4 S5 S6 S7 SSI_BCLK clock period SSI_BCK high-level time SSI_BCK low-level time SSI_BCK rising edge to SSI_MCLK edge SSI_MCLK edge to SSI_BCLK rising edge SSI_TXD/SSI_RXD data set-up time SSI_TXD/SSI_RXD data hold time Description Minimum 1/(64fs)1 35 35 10 10 10 10 Maximum 49 — — — — — — ns ns ns ns ns ns ns Unit NOTES: 1 fs is the sampling frequency. SSI_BCLK can be operated upto 512 times the sampling frequency to a max frequency of 49.152MHz 5.15 I2C Input/Output Timing Specifications Table 21 lists specifications for the I2C input timing parameters shown in Figure 25. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 37 Preliminary Electrical Characteristics Table 21. I2C Input Timing Specifications between SCL and SDA Num I1 I2 I3 I4 I5 I6 I7 I8 I9 Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Min 2 8 — 0 — 4 0 2 2 Max — — 1 — 1 — — — — Units tcyc tcyc ms ns ms tcyc ns tcyc tcyc Table 22 lists specifications for the I2C output timing parameters shown in Figure 25. Table 22. I2C Output Timing Specifications between SCL and SDA Num I11 I2 1 I3 2 Characteristic Start condition hold time Clock low period I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) Data hold time I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) Clock high time Data setup time Start condition setup time (for repeated start condition only) Stop condition setup time Min 6 10 — 7 — 10 2 20 10 Max — — — — 3 — — — — Units tcyc tcyc µs tcyc ns tcyc tcyc tcyc tcyc I4 1 I5 I6 3 1 I7 1 I8 1 I9 1 NOTES: 1 Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 22. The I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 22 are minimum values. 2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load. Figure 25 shows timing for the values in Table 22 and Table 21. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 38 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics I5 I2 I2C_SCL I1 I2C_SDA I4 I7 I8 I9 I6 I3 Figure 25. I2C Input/Output Timings 5.16 Fast Ethernet AC Timing Specifications MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V. 5.16.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV, FEC_RXER, and FEC_RXCLK) The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_RXCLK frequency. Table 23 lists MII receive channel timings. Table 23. MII Receive Signal Timing Num M1 M2 M3 M4 Characteristic FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold FEC_RXCLK pulse width high FEC_RXCLK pulse width low Min 5 5 35% 35% Max — — 65% 65% Unit ns ns FEC_RXCLK period FEC_RXCLK period Figure 26 shows MII receive signal timings listed in Table 23. M3 FEC_RXCLK (input) M4 FEC_RXD[3:0] (inputs) FEC_RXDV FEC_RXER M1 M2 Figure 26. MII Receive Signal Timing Diagram MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 39 Preliminary Electrical Characteristics 5.16.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK) Table 24 lists MII transmit channel timings. The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_TXCLK frequency. The transmit outputs (FEC_TXD[3:0], FEC_TXEN, FEC_TXER) can be programmed to transition from either the rising or falling edge of FEC_TXCLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs. Refer to the Ethernet chapter for details of this option and how to enable it. Table 24. MII Transmit Signal Timing Num M5 M6 M7 M8 Characteristic FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid FEC_TXCLK pulse width high FEC_TXCLK pulse width low Min 5 — 35% 35% Max — 25 65% 65% Unit ns ns FEC_TXCLK period FEC_TXCLK period Figure 27 shows MII transmit signal timings listed in Table 24. M7 FEC_TXCLK (input) M5 FEC_TXD[3:0] (outputs) FEC_TXEN FEC_TXER M6 M8 Figure 27. MII Transmit Signal Timing Diagram 5.16.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL) Table 25 lists MII asynchronous inputs signal timing. Table 25. MII Async Inputs Signal Timing Num M9 Characteristic FEC_CRS, FEC_COL minimum pulse width Min 1.5 Max — Unit FEC_TXCLK period Figure 28 shows MII asynchronous input timings listed in Table 25. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 40 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics FEC_CRS FEC_COL M9 Figure 28. MII Async Inputs Timing Diagram 5.16.4 MII Serial Management Channel Timing (FEC_MDIO and FEC_MDC) Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 26. MII Serial Management Channel Timing Num M10 M11 M12 M13 M14 M15 Characteristic FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay) FEC_MDC falling edge to FEC_MDIO output valid (max prop delay) FEC_MDIO (input) to FEC_MDC rising edge setup FEC_MDIO (input) to FEC_MDC rising edge hold FEC_MDC pulse width high FEC_MDC pulse width low Min 0 — 10 0 Max — 25 — — Unit ns ns ns ns 40% 60% FEC_MDC period 40% 60% FEC_MDC period Figure 29 shows MII serial management channel timings listed in Table 26. M14 M15 FEC_MDC (output) M10 FEC_MDIO (output) M11 FEC_MDIO (input) M12 M13 Figure 29. MII Serial Management Channel Timing Diagram MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 41 Preliminary Electrical Characteristics 5.17 32-Bit Timer Module Timing Specifications Table 27 lists timer module AC timings. Table 27. Timer Module AC Timing Specifications Name T1 T2 Characteristic Min DT0IN / DT1IN / DT2IN / DT3IN cycle time DT0IN / DT1IN / DT2IN / DT3IN pulse width 3 1 Max — — tCYC tCYC Unit 5.18 QSPI Electrical Specifications Table 28 lists QSPI timings. Table 28. QSPI Modules AC Timing Specifications Name QS1 QS2 QS3 QS4 QS5 QSPI_CS[3:0] to QSPI_CLK QSPI_CLK high to QSPI_DOUT valid. QSPI_CLK high to QSPI_DOUT invalid. (Output hold) QSPI_DIN to QSPI_CLK (Input setup) QSPI_DIN to QSPI_CLK (Input hold) Characteristic Min 1 — 2 9 9 Max 510 10 — — — Unit tCYC ns ns ns ns The values in Table 28 correspond to Figure 30. QS1 QSPI_CS[3:0] QSPI_CLK QS2 QSPI_DOUT QS3 QSPI_DIN QS4 QS5 Figure 30. QSPI Timing MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 42 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics 5.19 JTAG and Boundary Scan Timing Table 29. JTAG and Boundary Scan Timing Num J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 Characteristics1 TCLK Frequency of Operation TCLK Cycle Period TCLK Clock Pulse Width TCLK Rise and Fall Times Boundary Scan Input Data Setup Time to TCLK Rise Boundary Scan Input Data Hold Time after TCLK Rise TCLK Low to Boundary Scan Output Data Valid TCLK Low to Boundary Scan Output High Z TMS, TDI Input Data Setup Time to TCLK Rise TMS, TDI Input Data Hold Time after TCLK Rise TCLK Low to TDO Data Valid TCLK Low to TDO High Z TRST Assert Time TRST Setup Time (Negation) to TCLK High Symbol fJCYC tJCYC tJCW tJCRF tBSDST tBSDHT tBSDV tBSDZ tTAPBST tTAPBHT tTDODV tTDODZ tTRSTAT tTRSTST Min DC 4 26 0 4 26 0 0 4 10 0 0 100 10 Max 1/4 — — 3 — — 33 33 — — 26 8 — — Unit fsys/3 tCYC ns ns ns ns ns ns ns ns ns ns ns ns NOTES: 1 JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it. J2 J3 VIH J3 TCLK (input) J4 VIL J4 Figure 31. Test Clock Input Timing MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 43 Preliminary Electrical Characteristics TCLK VIL J5 VIH J6 Data Inputs J7 Input Data Valid Data Outputs J8 Output Data Valid Data Outputs J7 Data Outputs Output Data Valid Figure 32. Boundary Scan (JTAG) Timing TCLK VIL J9 VIH J10 TDI TMS J11 Input Data Valid TDO J12 Output Data Valid TDO J11 TDO Output Data Valid Figure 33. Test Access Port Timing TCLK J14 TRST J13 Figure 34. TRST Timing 5.20 Debug AC Timing Specifications Table 30 lists specifications for the debug AC timing parameters shown in Figure 36. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 44 Preliminary Freescale Semiconductor Preliminary Electrical Characteristics Table 30. Debug AC Timing Specification Num DE0 DE1 DE2 DE3 DE4 DE5 1 Characteristic Min PSTCLK cycle time PST valid to PSTCLK high PSTCLK high to PST invalid DSCLK cycle time DSI valid to DSCLK high DSCLK high to DSO invalid BKPT input data setup time to FB_CLK high FB_CLK high to BKPT invalid — 4 1.5 5 1 4 4 0 Max 0.3 — — — — — — — Units tcyc ns ns tcyc tcyc tcyc ns ns DE6 DE7 NOTES: 1 DSCLK and DSI are synchronized internally. DE4 is measured from the synchronized DSCLK input relative to the rising edge of FB_CLK. Figure 35 shows real-time trace timing for the values in Table 30. PSTCLK DE0 DE1 PST[3:0] DDATA[3:0] DE2 Figure 35. Real-Time Trace AC Timing Figure 36 shows BDM serial port AC timing and BKPT pin timing for the values in Table 30. MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 45 Revision History FB_CLK DE6 BKPT DE7 DE5 DSCLK DE3 DSI Current DE4 Next DSO Past Current Figure 36. BDM Serial Port AC Timing 6 Revision History Table 31. MCF5329DS Document Revision History Rev. No. 0 0.1 • Initial release. • Added not to Section 4, “Mechanicals and Pinouts.” • Added “top view” and “bottom view” where appropriate in mechanical drawings and pinout figures. • Figure 9: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)” Substantive Changes Date of Release 11/2005 3/2006 MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 46 Preliminary Freescale Semiconductor THIS PAGE INTENTIONALLY LEFT BLANK MCF5329 ColdFire® Microprocessor Data Sheet, Rev. 0.1 Freescale Semiconductor Preliminary 47 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2006. All rights reserved. MCF5329DS Rev. 0.1 03/2006
MCF5329DS 价格&库存

很抱歉,暂时无法提供与“MCF5329DS”相匹配的价格&库存,您可以联系我们找货

免费人工找货