0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
APL5330KE-TR

APL5330KE-TR

  • 厂商:

    ANPEC(茂达电子)

  • 封装:

  • 描述:

    APL5330KE-TR - Dual Input 2A Low Dropout Regulator - Anpec Electronics Coropration

  • 数据手册
  • 价格&库存
APL5330KE-TR 数据手册
APL5330 Dual Input 2A Low Dropout Regulator Features • • Fast Transient Response High Output Accuracy - ±20mV over Load, Output Voltage Offset and Temperature General Description The APL5330 integrates a power transistor to provide regulated voltage with maximum output current of 2A. It also incorporates current-limit, thermal shutdown and shutdown control functions into a single chip. The current-limit circuit limits the maximum output current in overload or short-circuit conditions. The on-chip thermal shutdown provides protection against any combination of overload that would create excessive junction temperature. The output voltage of the APL5330 tracks the reference voltage on VREF pin. A resistor divider connected to VREF pin is usually used to provide reference voltage to the IC. In addition, an external ceramic capacitor and an open-drain transistor connected to VREF pin provides soft-start and shutdown control. Applying and holding a voltage below 0.35V (typ.) to VREF shuts off the output. • • • • • • Adjustable Output Voltage by External Resistors Current-Limit Protection On-Chip Thermal Shutdown Shutdown for Standby or Suspend Mode Simple SOP-8 and SOP-8 with Thermal Pad Packages Lead Free Available (RoHS Compliant) Applications • • VGA Card Power Chip Set Power Pin Configuration VIN GND VREF VOUT 1 2 3 4 8 7 6 5 VCNTL VCNTL VCNTL VCNTL VIN GND VREF VOUT 1 2 3 4 8 7 6 5 NC NC VCNTL NC SOP-8 (Top View) NC = No internal connection = Thermal Pad SOP-8-P (Top View) (connected to GND plane for better heat dissipation) ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 1 www.anpec.com.tw APL5330 Ordering and Marking Information APL5330 Lead Free Code Handling Code Temp. Range Package Code APL5330KE-TR : APL5330KAE-TR : APL5330 XXXXX Package Code K : SOP-8 KA : SOP-8-P Operating Ambient Temp. Range E : -20 to 70 °C Handling Code TR : Tape & Reel Lead Free Code L : Lead Free Device Blank : Original Device XXXXX - Date Code Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature. Pin Description PIN NAME VIN GND VCNTL I/O I O I DESCRIPTION Main power input pin. Connect this pin to a voltage source and an input capacitor. The APL5330 provides current from VIN pin to VOUT pin by controlling the NPN pass transistor. Signal ground. Power input pin for internal control circuitry. Connect this pin to a voltage source to provide a bias for the internal control circuitry. A bypass capacitor is usually connected near this pin. Reference voltage input and active-low shutdown control pin. Connect this pin to a resistor divider and a capacitor for soft-start and filtering noise purposes. Pulling and holding the voltage on this pin low by an open-drain transistor shuts down the output. Output pin of the regulator. Connect this pin to load. Output capacitors connected to this pin improves stability and transient response. The output voltage tracks the reference voltage, and the output pin provides the maximum current up to 2A. VREF I VOUT O Block Diagram VCNTL VIN VREF Voltage Regulation Thermal Limit Current Limit VOUT Shutdown GND C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 2 www.anpec.com.tw APL5330 Absolute Maximum Ratings Symbol VCNTL VIN PD TJ TSTG TSDR VESD Parameter VCNTL Supply Voltage, VCNTL to GND VIN Supply Voltage, VIN to GND Power Dissipation Junction Temperature Storage Temperature Soldering Temperature, 10 Seconds Minimum ESD Rating (Human Body Mode) Rating -0.2 ~ 7 -0.2 ~ 3.9 Internally Limited 150 -65 ~ 150 300 ±3 Unit V V W o o o C C C kV Thermal Characteristics Symbol θJA θJC Parameter Junction-to-Ambient Thermal Resistance in Free Air SOP-8 SOP-8-P Junction-to-Case Thermal Resistance SOP-8 SOP-8-P Value 75 55 28 20 Unit o C/W o C/W Note : θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of SOP-8-P is soldered directly on the PCB. Recommended Operating Conditions Symbol VCNTL VIN VREF VOUT IOUT TJ Parameter VCNTL Supply Voltage (Note 1) VIN Supply Voltage (Note 2) VREF Input Voltage VOUT Output Voltage (Note 3) VOUT Output Current (Note 4) Junction Temperature Range 3.1 ~ 6 1.2 ~ 3.5 0.8 ~ 3 VREF ± 0.02 2 -20 ~ 125 Unit V V V V A o C Notes : 1. Please refer to the VCNTL-to-Vin Dropout Voltage in the “Typical Characteristics” section for the minimun supply voltage on VCNTL. 2. Please supply enough voltage to VIN for providing desired maximum output current. Please refer to the VIN. Dropout Voltage vs Output Current in the Typical Characteristics. 3. The VOUT is regulated to the VREF with additional voltage offset and load regulation except over-load conditions. 4. The maximum IOUT varies with the TJ and the voltages of VIN-VOUT and VOUT. C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 3 www.anpec.com.tw APL5330 Electrical Characteristics Refer to the typical application circuit. These specifications apply over VCNTL = 3.3V, VIN = 2V, VREF = 1.2V and TA = -20 to 70°C, unless otherwise specified. Typical values are at TA = 25°C. Symbol Parameter Test Conditions APL5330 Min Typ VREF -20 -8 -3 0.47 0.7 20 Max Unit OUTPUT VOLTAGE VOUT VOUT Output Voltage System Accuracy Load Regulation VIN Dropout Voltage PROTECTION ILIM TSD Current Limit Thermal Shutdown Rising TJ Temperature Thermal Shutdown Hysteresis IOUT = 0A ICNTL VCNTL Supply Current IOUT = 2A (Normal Operation) VREF = GND (Shutdown) IVREF Normal operation VREF Bias Current (The current flows out of VREF) VREF = GND (Shutdown) Shutdown Voltage Threshold 0.2 0.5 TJ = 25°C TJ = 125°C 2.4 2.7 2.6 170 30 2 25 0.3 150 300 0.35 500 5000 0.65 nA 4 50 mA A o o IOUT = 0A Over temperature, VOUT offset, and load regulation IOUT = 10mA to 2A IOUT = 2A V mV mV V C C INPUT CURRENT SHUTDOWN CONTROL V Typical Application Circuit VCNTL +3.3V VIN +2V VIN VCNTL R1 3.5k VREF VREF GND VOUT VOUT 1.2V/2A COUT 330uF Shutdown R2 2k GND CSS 0.1uF CIN 47uF CCNTL 1uF GND VOUT = VREFIN ⋅ R2 (V) R1 + R2 www.anpec.com.tw C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 4 APL5330 Typical Characteristics Current-Limit vs. Junction Temperature 3.5 VIN = 2V 2500 Quiescent VCNTL Current vs. Junction Temperature Quiescent VCNTL Current, ICNTL (µA) IOUT= 0A 2000 3 VOUT=1.2V Current-Limit, ILIM (A) 2.5 2 1.5 1 0.5 0 -50 VCNTL = 5V VCNTL = 3.3V 1500 VCNTL = 5V VCNTL = 3.3V 1000 500 -25 0 25 50 75 100 125 0 -50 -25 0 25 50 75 100 125 Junction Temperature (°C) Junction Temperature (°C) VREF Threshold Voltage vs. Junction Temperature 0.6 VCNTL = 5V VREF Bias Current vs. VREF Supply Voltage 500 VREF Bias Current, IVREF (nA) VREF Threshold Voltage (V) 450 400 350 300 250 200 150 100 50 0 0 0.5 1 1.5 2 2.5 3 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 VCNTL = 3.3V VCNTL= 3.3V VCNTL= 5V Junction Temperature (°C) VREF Supply Voltage (V) C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 5 www.anpec.com.tw APL5330 Typical Characteristics (Cont.) VIN Dropout Voltage vs. Output Current 0.6 VIN Dropout Voltage vs. Output Current 0.6 VCNTL = 5V VCNTL = 3.3V 0.5 VREF = 1.2V TJ = 125oC 0.5 VREF = 1.2V TJ = 125oC VIN Dropout Voltage (V) VIN Dropout Voltage (V) 0.4 TJ = 75oC 0.4 TJ = 75oC 0.3 0.3 TJ = -25oC TJ = 25oC 0.2 0.2 0.1 0 TJ = 25oC TJ = -25oC 0.1 0 0 0.5 1 1.5 2 0 P.6 右上角的圖 0.5 1 1.5 Output Current (A) 2 Output Current (A) VCNTL Input Current vs. VIN - VOUT Voltage at IOUT=1A Minimum VCNTL - VOUT Voltage (V) 140 3.8 VCNTL-to-VOUT Dropout Voltage vs. VCNTL Input Current IOUT = 1A VCNTL Input Current, ICNTL (mA) IOUT = 1A 120 100 80 60 40 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 TJ = 25oC TJ = -25oC TJ = 125oC TJ = 75oC 3.4 3 2.6 2.2 1.8 1.4 1 0 20 TJ = 75oC TJ = 25oC TJ = -25oC TJ = 125oC 40 60 80 100 120 VIN - VOUT Voltage (V) VCNTL Input Current, ICNTL (mA) C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 6 www.anpec.com.tw APL5330 Typical Characteristics (Cont.) VCNTL Input Current vs. VIN - VOUT Voltage at IOUT=1.5A VCNTL Input Current, ICNTL (mA) IOUT = 1.5A VCNTL-to-VOUT Dropout Voltage vs. VCNTL Input Current Minimum VCNTL - VOUT Voltage (V) 3.8 IOUT = 1.5A 140 120 100 80 60 TJ = 25oC 3.4 3 2.6 2.2 1.8 1.4 TJ = 75oC TJ = -25oC TJ = 125oC TJ = 25oC TJ = 125oC TJ = 75oC 40 20 0 0.3 0.4 0.5 0.6 0.7 0.8 TJ = -25oC 1 0 20 40 60 80 100 120 0.9 1 1.1 VIN - VOUT Voltage (V) VCNTL Input Current, ICNTL (mA) VCNTL Input Current vs. VIN - VOUT Voltage at IOUT=2A VCNTL Input Current, ICNTL (mA) IOUT = 2A VCNTL-to-VOUT Dropout Voltage vs. VCNTL Input Current Minimum VCNTL - VOUT Voltage (V) 3.8 IOUT = 2A 140 120 100 80 TJ = 125oC TJ = 25oC TJ = 75oC 3.4 3 2.6 2.2 1.8 1.4 1 0 20 40 60 80 100 120 TJ = 125oC TJ = 75oC TJ = 25oC TJ = -25oC 60 40 20 0 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 TJ = -25oC VIN - VOUT Voltage (V) VCNTL Input Current, ICNTL (mA) C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 7 www.anpec.com.tw APL5330 Operating Waveforms 1. Load Transient Response : IOUT = 10mA -> 2A -> 10mA - VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V - VREF is 1.2V supplied by a regulator - COUT = 330µF, ESR = 14mΩ - IOUT slew rate = 2A/µs Load Regulation = -2.8mV V OUT 1 V OUT V OUT 1 1 IOUT IOUT 2A IOUT 2 10mA 2 2 Ch1 : VOUT, 20mV/Div, AC Ch2 : IOUT, 1A/Div Time : 1µs/Div Ch1 : VOUT, 20mV/Div, AC Ch2 : IOUT, 1A/Div Time : 10µs/Div Ch1 : VOUT, 20mV/Div, AC Ch2 : IOUT, 1A/Div Time : 1µs/Div 2. Short-Circuit Test - VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V VOUT is Shorted to GND VOUT is Shorted to GND V OUT 1 V OUT 1 IOUT IOUT 2 2 Ch1 : VOUT, 1V/Div, DC Ch2 : IOUT, 2A/Div Time : 50µs/Div Ch1 : VOUT, 1V/Div, DC Ch2 : IOUT, 2A/Div Time : 50ms/Div C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 8 www.anpec.com.tw APL5330 Operating Waveforms (Cont.) 3. Power on/off - VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V V IN V IN 1 1 V OUT 2 V OUT 2 IOUT IOUT 3 3 Ch1 : VIN, 1V/Div, DC Ch2 : VOUT, 1V/Div, DC Ch3 : IOUT, 1A/Div Time : 1ms/Div Ch1 : VIN, 1V/Div, DC Ch2 : VOUT, 1V/Div, DC Ch3 : IOUT, 1A/Div Time : 10ms/Div 4. Enable/Shutdown - VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V VREF 1 VREF 1 V OUT 2 V OUT 2 IOUT 3 IOUT 3 Ch1 : VREF, 1V/Div, DC Ch2 : VOUT, 1V/Div, DC Ch3 : IOUT, 1A/Div Time : 2ms/Div Ch1 : VREF, 1V/Div, DC Ch2 : VOUT, 1V/Div, DC Ch3 : IOUT, 1A/Div Time : 2ms/Div C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 9 www.anpec.com.tw APL5330 Application Information General The APL5330 is a linear regulator and is capable of providing output current up to 2A. The APL5330 is designed with the fast transient response, accurate output voltage, active-low shutdown control and fault protections (current-limit, thermal shutdown). The APL5330 is available in two packages to meet wide range of power dissipation requirements in various applications. Output Voltage Regulation The output voltage on VOUT pin tracks the reference voltage on VREF pin. A bypass NPN transistor controlled by a high bandwidth error amplifier regulates the output voltage by providing output current from VIN pin to the output. The base current of the pass transistor is provided by the VCNTL pin. An internal kelvin sensing scheme is used at the VOUT pin for perfect load regulation. Since the APL5330 exhibits very fast load transient response, lesser amount of capacitors can be used. Current Limit The APL5330 monitors the output current, and limits the maximum output current to prevent damages during overload or short-circuit conditions. To increase the input voltage on VIN or VCNTL will get higher current-limit points. Shutdown and Soft-Start The VREF pin is a dual-function input pin, acting as reference input and shutdown control input. Applying and holding a voltage below 0.35V(typ.) to VREF pin shuts down the output of the regulator. An NPN transistor or N-channel MOSFET is normaly used to pull down the VREF voltage while applying a “high” signal to turn on the transistor. When release the VREF pin, the current through the resistor divider charges the soft-start capacitor to initiate a soft-start process. The output voltage tracks the VREF voltage rises. The soft start function limits the input current. Thermal Shutdown A thermal shutdown circuit limits the junction temperature of the APL5330. When the junction temperature exceeds TJ= +170oC, a thermal sensor turns off the bypass transistor, allowing the device to cool down. The regulator starts to regulate again after the junction temperature reduces by 30oC, resulting in a pulsed output during continuous thermal overload conditions. The thermal limit designed with a 30oC hysteresis lowers the average TJ during continuous thermal overload conditions to extend life time of the APL5330. Power Inputs Input power sequencing is not necessary for VIN and VCNTL voltage supplies. However, do not apply a voltage to VOUT when there is no VCNTL voltage. This is because the internal parasitic diodes connected from VOUT to VIN or VCNTL is forward bias. The APL5330 can supply few current to load when the input voltage on VIN is not present. Reference Voltage The reference voltage is applied to the VREF pin connected with a resistor divider. Normally the bias current of the VREF pin flows out of the IC and is about 150nA (typ.), creating a voltage offset to the resistor divider and affecting the output voltage accuracy. The recommended resistors are 0.1µF) and the resistor divider form a low-pass filter to reduce the inherent reference noise. Connect the capacitor as close to VREF as possible for optimal effect. More capacitance and large resistor divider will increase the soft-start interval. Do not place any additional loading on this reference input pin. C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 10 www.anpec.com.tw APL5330 Application Information (Cont.) Output Capacitor The APL5330 requires a proper output capacitor to maintain stability and improve transient response. The APL5330 can work stably with wide range of capacitance and ESR (equivalent series resistance). A low-ESR solid tantalum, aluminum electrolytic or ceramic output capacitor works extremely well and provides good transient response and stability over temperature. The output capacitors also reduce the slew rate of load current and help the APL5330 to minimize variations of the output voltage. For this purpose, the low-ESR capacitors which depend on the step size and slew rate of load current are recommended. 25 For VCNTL pin, a capacitor of 1µF (ceramic chip capacitor) or greater (aluminum electrolytic capacitor) is recommended. For VIN pin, an aluminum electrolytic capacitor (>47µF) is recommended. It is not necessary to use low-ESR capacitors. Layout and Thermal Consideration The input capacitors for VIN and VCNTL pins are normally placed near each pin for good performances. Ceramic decoupling capacitors of output must be placed as close to the load to reduce the parasitic inductance of traces. It is also recommended to place the APL5330 and output capacitors near the load for good load regulation and load transient response. Please connect the negative pins of the input and output capacitors and the GND pin of the APL5330 to the power ground plane of the load. 20 See figure 1. The SOP-8-P utilizes a bottom thermal pad to minimize the thermal resistance of the package Stable Region ESR (m Ω) 15 and make the package suitable for high current applications. The thermal pad is soldered to the top ground pad connected to the internal or bottom ground plane by several vias. The printed circuit board (PCB) forms a heat sink and dissipates most of the heat into ambient air. It is recommended that the vias have proper size to retain solder and help heat conduction. Thermal resistance consists of two main elements, θJC (junction-to-case thermal resistance) and θCA (case-to-ambient thermal resistance). θJC is specified from the IC junction to the bottom of the thermal pad directly below the die. θCA is the resistance from the bottom of thermal pad to the ambient air and it includes θCS (case-to-sink thermal resistance) and θSA (sink-toambient thermal resistance). The specified path for heat flow is the lowest resistance path and it dissipates majority of the heat to the ambient air. Typically, θCA is the dominant thermal resistance. Therefore, enlarging 10 5 0 10 100 1000 Capacitance (uF) Input Capacitor The input capacitors of VCNTL and VIN pins are not required for stability but for supplying surge current during large load transients. This will prevent the input rail from dropping and improve the performance of the APL5330. The parasitic inductors between voltage sources or bulk capacitors and the power input pins will limit the slew rate of the surge currents during large load transients, resulting in voltage drop at VIN and VCNTL pins. C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 11 www.anpec.com.tw APL5330 Application Information (Cont.) Layout and Thermal Consideration (Cont.) the internal or bottom ground plane reduces the resistance θ CA . T he relationship between power di s s ipa tio n and temperatures is the following equation: PD = (TJ - TA) / ≤ θJA where, PD : Power dissipation TJ : Junction Temperature TA : Ambient Temperature θJA : Junction-to-Ambient Thermal Resistance 102 mil 118 mil SOP-8-P Die Thermal pad Top ground pad Ambient Air Vias Internal Printed g r o u n d circuit plane board Figure 1 Top and side view of layout around the APL5330 C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 12 www.anpec.com.tw APL5330 Packaging Information SOP-8 pin (Reference JEDEC Registration MS-012) E H e1 e2 D A1 A 1 0.015X45 L 0.004max. Dim A A1 D E H L e1 e2 φ1 Millimeters Min. 1.35 0.10 4.80 3.80 5.80 0.40 0.33 1.27BSC 0° 8° 0° Max. 1.75 0.25 5.00 4.00 6.20 1.27 0.51 Min. 0.053 0.004 0.189 0.150 0.228 0.016 0.013 Inches Max. 0.069 0.010 0.197 0.157 0.244 0.050 0.020 0.50BSC 8° C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 13 www.anpec.com.tw APL5330 Packaging Information SOP-8-P pin ( Reference JEDEC Registration MS-012) E1 D1 E H e1 D e2 A1 A 1 L 0.004max. Dim A A1 D D1 E E1 H L e1 e2 φ1 Millimeters Min. 1.35 0 4.80 3.00REF 3.80 2.60REF 5.80 0.40 0.33 1.27BSC 8° 6.20 1.27 0.51 0.228 0.016 0.013 4.00 0.150 Max. 1.75 0.15 5.00 Min. 0.053 0 0.189 0.015X45 Inches Max. 0.069 0.006 0.197 0.118REF 0.157 0.102REF 0.244 0.050 0.020 0.50BSC 8° C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 14 www.anpec.com.tw APL5330 Physical Specifications Terminal Material Lead Solderability Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3. Reflow Condition TP (IR/Convection or VPR Reflow) tp Critical Zone T L to T P Ramp-up Temperature TL Tsmax tL Tsmin Ramp-down ts Preheat 25 t 2 5 °C to Peak Tim e Classification Reflow Profiles Profile Feature Average ramp-up rate (TL to TP) Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts) Time maintained above: - Temperature (TL) - Time (tL) Peak/Classificatioon Temperature (Tp) Time within 5°C of actual Peak Temperature (tp) Ramp-down Rate Sn-Pb Eutectic Assembly 3°C/second max. 100°C 150°C 60-120 seconds 183°C 60-150 seconds See table 1 10-30 seconds Pb-Free Assembly 3°C/second max. 150°C 200°C 60-180 seconds 217°C 60-150 seconds See table 2 20-40 seconds 6°C/second max. 6°C/second max. 6 minutes max. 8 minutes max. Time 25°C to Peak Temperature Notes: All temperatures refer to topside of the package .Measured on the body surface. C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 15 www.anpec.com.tw APL5330 Classification Reflow Profiles(Cont.) Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures 3 3 P ackage Thickness Volum e m m Volume mm < 350 ≥ 350 < 2.5 m m 240 +0/-5 ° C 225 +0/-5 ° C ≥ 2.5 m m 225 +0/-5 ° C 225 +0/-5 ° C T able 2. Pb-free Process – Package Classification Reflow Temperatures 3 3 3 P ackage Thickness Volume mm Volume mm Volume mm < 350 3 50-2000 > 2000 < 1.6 m m 260 +0 ° C* 260 +0 ° C* 260 +0 ° C* 1 .6 m m – 2.5 m m 260 +0 ° C* 250 +0 ° C* 245 +0 ° C* ≥ 2.5 m m 250 +0 ° C* 245 +0 ° C* 245 +0 ° C* * Tolerance: The device manufacturer/supplier s hall a ssure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0 ° C. For example 260 ° C+0 ° C) at the rated MSL level. Reliability Test Program Test item S OLDERABILITY H OLT P CT T ST ESD Latch-Up Method MIL-STD-883D-2003 MIL-STD-883D-1005.7 JESD-22-B,A102 MIL-STD-883D-1011.9 MIL-STD-883D-3015.7 JESD 78 Description 245 °C, 5 SEC 1000 Hrs Bias @125°C 168 Hrs, 100% RH, 121°C -65°C~150°C, 200 Cycles VHBM > 2KV, VMM > 200V 10ms, 1 tr > 1 00mA Carrier Tape t P P1 D Po E F W Bo Ao Ko D1 C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 16 www.anpec.com.tw APL5330 Carrier Tape(Cont.) T2 J C A B T1 Application SOP- 8/ SOP-8-P A 330 ± 1 F 5.5± 1 B 62 +1.5 D C 12.75+ 0.15 D1 J 2 ± 0.5 Po 4.0 ± 0.1 T1 12.4 ± 0.2 P1 2.0 ± 0.1 T2 2 ± 0.2 Ao 6.4 ± 0.1 W 12± 0. 3 Bo 5.2± 0. 1 P 8± 0.1 Ko E 1.75±0.1 t 1.55 +0.1 1.55+ 0.25 2.1± 0.1 0.3±0.013 (mm) Cover Tape Dimensions Application SOP- 8 / SOP-8-P Carrier Width 12 Cover Tape Width 9.3 Devices Per Reel 2500 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 7F, No. 137, Lane 235, Pac Chiao Rd., Hsin Tien City, Taipei Hsien, Taiwan, R. O. C. Tel : 886-2-89191368 Fax : 886-2-89191369 C opyright © A NPEC Electronics Corp. Rev. A.1 - Jun., 2006 17 www.anpec.com.tw
APL5330KE-TR 价格&库存

很抱歉,暂时无法提供与“APL5330KE-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货