APW7079
Low-Supply-Current Synchronous Step-up DC-DC Converter
Features
• • • • • • • • •
0.9V Typical Start-up Input Voltage 11µA Typical No Load Quiescent Current PFM Operation High Efficiency up to 92% Fixed 1.8V, 2.6V, 2.8V, 3V, 3.3V, 3.8V, 4.5V or 5V Output Voltage 600mA Internal Switch Current Internal Synchronous Rectifier SOT-89 Package Lead Free and Green Devices Available (RoHS Compliant)
General Description
The APW7079 is a compact, PFM mode, and step-up DC-DC converter with low quiescent current. The internal synchronous rectifier reduces cost and PCB space by eliminating the need for an external Schottky diode. Low on-resistance of the internal switches improves the efficiency up to 92%. The start-up voltage is guaranteed below 1V. After start-up, the device can operate with input voltage down to 0.7V. The APW7079 is suitable for portable battery-powered applications. Consuming only 11µA quiescent current and an optimized control scheme allows the device to operate at very high efficiency over the entire load current range.
Efficiency vs. Output Current
100
Applications
Efficiency (%)
90 80
• • •
Toy Wireless Mouse Portable Instrument
70 60 50 40 30 VIN=1.2V VIN=1.5V APW7079-30 0.1 1 10 100 1000 VIN=0.9V VIN=1.0V VIN=2.4V
Pin Configuration
SOT-89
20 10 0
Output Current, I OUT (mA)
Simplified Application Circuit
VOUT 2 (TAB) LX 3 GND 1
VIN IIN L1 22µH C1 22µF
APW7079
LX VOUT GND
IOUT
VOUT
Top View
C2 47µF
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright © ANPEC Electronics Corp. Rev. A.4 - Jun., 2009 1 www.anpec.com.tw
APW7079
Ordering and Marking Information
APW7079 Assembly Material Handling Code Temperature Range Package Code Voltage Code APW7079 XXXXX18 APW7079 XXXXX28 APW7079 XXXXX33
79
Package Code D : SOT-89 Operating Ambient Temperature Range I : -40 to 85oC Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device Voltage Code 18: 1.8V 26: 2.6V 28: 2.8V 33: 3.3V 38: 3.8V 45: 4.5V APW7079-26D: APW7079-30D: APW7079-33D: APW7079-50D: APW7079 XXXXX26 APW7079 XXXXX30 APW7079 XXXXX38 APW7079 XXXXX50
30: 3.0V 50: 5.0V
APW7079-18D: APW7079-28D: APW7079-33D:
XXXXX - Date Code, 18: 1.8V XXXXX - Date Code, 28: 2.8V XXXXX - Date Code, 33: 3.3V XXXXX - Date Code, 45: 4.5V
XXXXX - Date Code, 26: 2.6V XXXXX - Date Code, 30: 3.0V XXXXX - Date Code, 38: 3.8V XXXXX - Date Code, 50: 5.0V
APW7079-45D: APW7079 XXXXX45
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).
Absolute Maximum Ratings (Note 1)
Symbol VOUT VLX TSTG TSDR LX to GND Voltage Storage Temperature Maximum Lead Soldering Temperature, 10 Seconds Parameter Output Voltage (VOUT to GND) Rating -0.3 ~ 6 -0.3 ~ VOUT+1 -65 ~ 150 260 Unit V V ° C ° C
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Thermal Characteristics
Symbol θJA Parameter Thermal Resistance -Junction to Ambient
(Note 2)
Typical Value SOT-89 180
Unit
o
C/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Recommended Operating Conditions (Note 3, 4)
Symbol VOUT VIN VLX IOUT TA TJ Converter Supply Voltage LX to GND Voltage Converter Output Current Ambient Temperature Junction Temperature Parameter Output Voltage (VOUT to GND) Range 0.7 ~ 5.5 0.3 ~ VOUT+1 -0.3 ~ VOUT+0.3 0 ~ 0.9 x IOUT(MAX) -40 ~ 85 -40 ~ 125 Unit V V V A °C °C
Note 3: Refer to the typical application circuit Note 4: Refer to “Application Information” for detail value. C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009 2 www.anpec.com.tw
APW7079
Electrical Characteristics
Refer to Typical Application Circuits. VIN=1.5V, RLOAD = ∞, and TA= -40 ~ 85oC, unless otherwise noted. Typical values are at TA=25oC.
Symbol VIN
Parameter Converter Supply Voltage Start-up Voltage RLOAD=3kΩ
Test Conditions
Min. 0.7 -
APW7079 Typ. 0.9 1.8 2.6 2.8 3.0 3.3 3.8 4.5 5.0 11 0.9 4 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 1 0.8 0.8 0.7 0.6 0.5 0.4 0.4 600 150 40
Max. 5.5 1 1.836 2.652 2.856 3.06 3.366 3.876 4.59 5.1 15 1.2 5 85 700 1 1 -
Unit V V
APW7079-18 APW7079-26 APW7079-28 VOUT Output Voltage APW7079-30 APW7079-33 APW7079-38 APW7079-45 APW7079-50 IDD TOFF(MIN) TON(MAX) Supply Current Main Switch Min. Off-time Main Switch Max. On-time Main Switch Max. Duty APW7079-18 APW7079-26 APW7079-28 RN-FET Main Switch on Resistance ILX=100mA APW7079-30 APW7079-33 APW7079-38 APW7079-45 APW7079-50 APW7079-18 APW7079-26 APW7079-28 RP-FET Synchronous Switch on Resistance ILX=100mA APW7079-30 APW7079-33 APW7079-38 APW7079-45 APW7079-50 ILIM Main Switch Current Limit Main Switch Leakage Current Synchronous Switch Leakage Current Over-Temperature Shutdown Over-Temperature Hysteresis VOUT = VOUT(Typ.)+0.5V Measured at VOUT No Inductor Connected
1.764 2.548 2.744 2.94 3.234 3.724 4.41 4.9 7 0.6 3 75 500 -
V
µA µs µs %
Ω
Ω
mA µA µA °C °C
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
3
www.anpec.com.tw
APW7079
Typical Operating Characteristics
(Refer to the application circuit in the section “Typical Application Circuit”, VIN=1.5V, L1=22µH, TA=25oC unless otherwise noted.)
Efficiency vs. Output Current
100 90 1.84 1.82
Output Voltage vs. Output Current
Output Voltage, VOUT (V)
80 70
1.80 1.78 1.76 1.74 1.72 1.70 1.68 1.66 VIN=0.9V VIN=1.0V VIN=1.2V VIN=1.5V APW7079-18 0 50 100 150 200 250 300
Efficiency (%)
60 50 40 30 20 10 0 0.1
VIN=0.9V VIN=1.0V VIN=1.2V VIN=1.5V APW7079-18
1.64 1 10 100 1000
Output Current, IOUT (mA)
Output Current, IOUT (mA)
Efficiency vs. Output Current
100 90
Output Voltage vs. Output Current
3.1
70
Output Voltage, VOUT (V)
80
3.0
Efficiency (%)
60 50 40 30 20 10 0 0.1
VIN=0.9V VIN=1.0V VIN=1.2V VIN=1.5V APW7079-30 VIN=2.4V
2.9
VIN=2.4V VIN=1.5V
2.8
VIN=1.2V VIN=1.0V VIN=0.9V APW7079-30 150 200 250 300 350 400
2.7
2.6
1 10 100 1000
0
50
100
Output Current, IOUT (mA)
Output Current, IOUT (mA)
Output Voltage vs. Output Current
100 90
6 5
Output Voltage vs. Output Current
70
Output Voltage, VOUT (V)
80
Efficiency (%)
4 3 2 1 0
60 50 40 30 20 10 0 0.1 1 10 100 1000 VIN=1.5V APW7079-50 VIN=0.9V VIN=1.0V VIN=1.2V VIN=2.4V VIN=3.6V
VIN=3.6V VIN=0.9V VIN=1.0V VIN=1.2V APW7079-50 0 50 100 150 200 250 300 350 VIN=2.4V VIN=1.5V
Output Current, IOUT (mA) C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009 4
Output Current, IOUT (mA)
www.anpec.com.tw
APW7079
Typical Operating Characteristics (Cont.)
(Refer to the application circuit in the section “Typical Application Circuit”, VIN=1.5V, L1=22µH, TA=25oC unless otherwise noted.)
1.4
Start-up/Hold-on Voltage vs. Output Current
Start-up/Hold-on Voltage, VST /VHOLD (V)
Start-up
Start-up/Hold-on Voltage vs. Output Current
1.4 1.2 1 0.8 0.6 Hold-on 0.4 0.2 APW7079-30 0 0 10 20 30 40 50 Start-up
Start-up/Hold-on Voltage, VST /VHOLD (V)
1.2 1 0.8
Hold-on 0.6 0.4 0.2 APW7079-18 0 0 10 20 30 40 50
Output Current, IOUT (mA)
Output Current, IOUT (mA)
1.4
Start-up/Hold-on Voltage vs. Output Current
No Load Battery Current, IIN (µA)
Start-up
Start-up/Hold-on Voltage, VST /VHOLD (V)
70 60 50 40 30 20 10 0
No Load Battery Current vs. Input Voltage
1.2 1 0.8 0.6 0.4 0.2
Hold-on
APW7079-50
APW7079-50 0 0 10 20 30 40 50
APW7079-18
APW7079-30
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Output Current, IOUT (mA)
Input Voltage, VIN (V)
0.8
Main Switch ON Resistance vs. Junction Temperature
Synchronous Switch ON Resistance, RP-FET (Ω )
1.6 1.4 1.2 1.0 0.8 0.6
Synchronous Switch ON Resistance vs. Junction Temperature
Main Switch ON Resistance, RN-FET (Ω )
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 APW7079-18 APW7079-30 APW7079-50
APW7079-18 0.4 APW7079-30 0.2 0.0 -50 -25 0 25 50 75 100 125 APW7079-50
Junction Temperature, TJ (oC) C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009 5
Junction Temperature, TJ (oC) www.anpec.com.tw
APW7079
Operating Waveforms
Load Transient Response Line Transient Response
IOUT=10mA -> 110mA -> 10mA IOUT rise/fall time = 1µs VIN=1.5V
IOUT 110mA
VIN 1.5V
2V
2 10mA 3
VOUT
1 3
VOUT
CH2: IOUT, 100mA/Div, DC CH3: VOUT, 50mV/Div, AC Time: 0.1ms/Div
CH1: VIN, 0.5V/Div, DC CH3: VOUT, 50mV/Div, AC Time: 0.1ms/Div
Heavy Load Switching Waveform
IOUT=100mA, VIN=1.5V
ILX
2 3
VOUT
VLX
4
CH2: ILX, 200mA/Div, DC CH3: VOUT, 50mV/Div, AC CH4: VLX, 2V/Div, DC Time: 5µs/Div
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
6
www.anpec.com.tw
APW7079
Pin Description
PIN NO. 1 2 3 NAME LX VOUT GND Junction of N-FET and P-FET Drains. Connect the inductor here and minimize the trace area for lowest EMI. Converter output and control circuitry bias supply pin. Ground. FUNCTION
Block Diagram
VOUT
2
Zero Crossing Comparator + 0.9µs Min. off-time Error Comparator + VREF Control Logic Gate Driver Main Switch Thermal Shutdown Synchronous Switch LX
3
4µs Max. on-time
Current Limit Comparator + Soft start
1
RSENSE
GND
Typical Application Circuit
VIN
IIN
L1 22µH C1 22µF
APW7079
LX VOUT GND
IOUT
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
7
www.anpec.com.tw
APW7079
Function Description
Control Scheme The converter monitors the output voltage. When the internal feedback voltage falls below the reference voltage, the main switch turns on and the inductor current ramps up. The main switch turns off when the current reaches the peak current limit of typical 600mA. The second criterion that turns off the switch is the maximum on-time of 4µs (typical). As the main switch is turned off, the synchronous switch is turned on and delivers the current to the output. The main switch remains off for a minimum of 900ns (typical), or until the internal feedback voltage drops below the reference voltage. By the control scheme with low quiescent current of 11µA (typical), the converter gets high efficiency over a wide load range. Start-Up A startup oscillator circuit is integrated in the APW7079. When the power is applied to the device, the circuit pumps the output voltage high. Once the output voltage reaches 1.4V (typ), the main DC-DC circuitry turns on and boosts the output voltage to the final regulation point. Synchronous Rectification The internal synchronous rectifier eliminates the need for an external Schottky diode, thus, reducing cost and board space. During the cycle off-time, the P-channel MOSFET turns on and shunts the MOSFET body diode. As a result, the synchronous rectifier significantly improves efficiency without the addition of an external component. Conversion efficiency can be as high as 92%. Over-Temperature Protection The over-temperature circuit limits the junction temperature of the APW7079. When the junction temperature exceeds 150 ° C, a thermal sensor turns off the power MOSFETs, allowing the devices to cool. The thermal sensor allows the converter to start a start-up process and regulate the output voltage again after the junction temperature cools by 40°C. The OTP is designed with a 40°C hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of the device.
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
8
www.anpec.com.tw
APW7079
Application Information
Input Capacitor Selection The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, it is recommended to select the capacitor voltage rating at least 1.3 times higher than the maximum input voltage. The maximum RMS current rating of the input capacitor is calculated as the following equation: IRMS = where 1 VIN ⋅ TON L 3 ⋅ Since the output ripple is the product of the peak inductor current and the output capacitor ESR, using low-ESR tantalum capacitors for the best performance or connecting two or more filter capacitors in parallel is recommended. Inductor Selection The inductor value determines the inductor ripple current and affects the load transient response. It is recommended to select the boost inductor in order to keep the maximum peak inductor current below the current limit threshold of the power switch. For example, the current limit threshold of the APW7079’ switch is 600mA. For s choosing an inductor which has peak current passed, firstly, it is necessary to consider the output load (IOUT), input (VIN), and output voltage (VOUT). Secondly, the desired current ripple in the inductor also needed to be taken into account. The current was calculated in “Output Capacitor Selection”. Since the output ripple is the product of the peak inductor current and the output capacitor ESR, the larger inductor value reduces the inductor current ripple and output voltage ripple but typically offers a larger physical size. The inductor value also slightly affects the maximum output current. The maximum output current can be calculated as below:
VIN VOUT − VIN ILIM − TOFF VOUT 2×L ⋅ η
TON = main switch max. on-time (4µs typical) VIN = input voltage L = inductor value in µ H The capacitors should be placed close to the inductor and the GND. Output Capacitor Selection An output capacitor is required to filter the output and supply the load transient current. The output ripple is the sum of the voltages across the ESR and the ideal output capacitor. The peak-to-peak voltage of the ESR is calculated as the following equations: ∆VESR = IPEAK x ESR
IPEAK = VOUT ⋅ IOUT VIN ⋅ TON + ≤ ILIM VIN ⋅ η 2 ⋅L
Where IPEAK = peak current of inductor in amp where
IOUT (MAX ) =
η = efficiency (0.85 typical)
The peak-to-peak voltage of the ideal output capacitor is calculated as the following equation:
∆VCOUT = IOUT × TON COUT
TOFF = main switch min. off-time (0.9µs typical) Therefore, to consider the balance of the efficiency and component size, an inductor value of 22µH to 47 µH is recommended in most applications.
VIN IIN ILX LX ISWP CIN N-FET ISWN P-FET ESR COUT IOUT VOUT
For the applications using tantalum capacitors, the ∆VCOUT is much smaller than the V ESR and can be ignored. Therefore, the AC peak-to-peak output voltage (∆VOUT) is shown as below: ∆VOUT = IPEAK x ESR
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
9
www.anpec.com.tw
APW7079
Application Information (Cont.)
ILX ILIM IPEAK IIN
T J = TA + TR where TA = the ambient temperature. The power dissipation can be calculated as below: PD = POUT x (1-η)/η where POUT = Output power (VOUT x IOUT) η = Efficiency As an example, the APW7079-18 converts an input voltage 1.2V to provide a load current of 175mA at ambient temperature of 85°C. Assume the efficiency (η) is 0.75. Therefore, the power dissipated on the converter is:
ISWN
ISWP
PD = 1.8 x 0.175 x (1-0.75)/0.75= 0.105 Watt
IOUT
VOUT VOUT
IPEAK x ESR
Since the power dissipation includes the loss of external components, the actual value is slightly lower. For the SOT-89 package, the θJA is 180°C/W. Thus, the junction temperature of the regulator is as below: TJ = 85°C + (PD)(180) = 104 °C The maximum junction temperature should be less than 125°C. Note that, the junction temperature is lower at higher output voltages due to reduced switch resistance. Layout Consideration For all switching power supplies especially with high peak currents and switching frequency, the layout is an important step in the design. If the layout is not carefully done, the regulator may show noise problems and duty cycle jitter. 1. The input capacitor should be placed close to the device, which can reduce copper trace resistance and effect input ripple of the IC. 2.The inductor should be placed as close as possible to the switch pin to minimize the switching noise. 3.The output capacitor should be placed closed to the VOUT and the GND.
Thermal Consideration In most applications, the APW7079 does not dissipate much heat due to its high efficiency. However, in applications where the APW7079 is running at high ambient temperature with low output voltage, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately 150°C, both power switches will be turned off and the LX node will become high impedance. To avoid the APW7079 from exceeding the maximum junction temperature, the user will need to do some thermal analysis. The goal of the thermal analysis is to determine whether the power dissipated exceeds the maximum junction temperature of the part. The temperature rise is given by: TR = (PD)(θJA) where PD is the power dissipated by the regulator and θJA is the thermal resistance from the junction of the die to the ambient temperature. The junction temperature, TJ, is given by:
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
10
www.anpec.com.tw
APW7079
Application Information (Cont.)
Layout Consideration (Cont.)
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
11
www.anpec.com.tw
APW7079
Package Information
SOT-89
D D1
A C
E
e e1
B1 S Y M B O L A B B1 C D D1 E E1 e e1 H L 3.94 0.89
B SOT-89 MILLIMETERS INCHES MIN. 0.055 0.017 0.014 0.014 0.173 0.064 0.090 0.084 0.059 BSC 0.118 BSC 4.25 1.20 0.155 0.035 0.167 0.047 MAX. 0.063 0.022 0.019 0.017 0.181 0.072 0.102 0.090
MIN. 1.40 0.44 0.36 0.35 4.40 1.62 2.29 2.13 1.50 BSC 3.00 BSC
MAX. 1.60 0.56 0.48 0.44 4.60 1.83 2.60 2.29
Note : Follow JEDEC TO-243 AA.
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
L
12
H
E1
www.anpec.com.tw
APW7079
Carrier Tape & Reel Dimensions
OD0 P0 P2 P1 A E1 F K0 B SECTION A-A T B0 A0 OD1 B A SECTION B-B
d
Application
A 178.0± 2.00
H 50 MIN. P1 8.0± 0.10
H A
T1
T1 12.4+2.00 -0.00 P2 2.0± 0.05
C 13.0+0.50 -0.20 D0 1.5+0.10 -0.00
d 1.5 MIN. D1 1.5 MIN.
D 20.2 MIN. T 0.6+0.00 -0.40
W 12.0± 0.30 A0 4.80± 0.20
W
E1 1.75± 0.10 B0 4.50± 0.20
F 5.50± 0.05 K0 1.80± 0.20
SOT-89
P0 4.0± 0.10
(mm)
Devices Per Unit
Package Type SOT-89 Unit Tape & Reel Quantity 1000
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
13
www.anpec.com.tw
APW7079
Taping Direction Information
SOT-89
USER DIRECTION OF FEED
Classification Profile
C opyright © A NPEC Electronics Corp. Rev. A.4 - Jun., 2009
14
www.anpec.com.tw
APW7079
Classification Reflow Profiles
Profile Feature Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time (tP)** within 5°C of the specified classification temperature (Tc) Average ramp-down rate (Tp to Tsmax) Time 25°C to peak temperature Sn-Pb Eutectic Assembly 100 °C 150 °C 60-120 seconds 3 °C/second max. 183 °C 60-150 seconds See Classification Temp in table 1 20** seconds 6 °C/second max. 6 minutes max. Pb-Free Assembly 150 °C 200 °C 60-120 seconds 3°C/second max. 217 °C 60-150 seconds See Classification Temp in table 2 30** seconds 6 °C/second max. 8 minutes max.
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) Package Thickness