AO4630
30V Complementary MOSFET
General Description
Product Summary
AO4630 uses advanced trench technology to provide
excellent RDS(ON) and low gate charge. This
complementary N and P channel MOSFET
configuration is ideal for low Input Voltage inverter
applications.
N-Channel
VDS= 30V
P-Channel
-30V
ID= 7A (VGS=10V)
-5A (VGS=-10V)
RDS(ON)
RDS(ON)
< 23mΩ (VGS=10V)
< 48mΩ (VGS=-10V)
< 28mΩ (VGS=4.5V)
< 57mΩ (VGS=-4.5V)
< 36mΩ (VGS=2.5V)
< 78mΩ (VGS=-2.5V)
100% UIS Tested
100% Rg Tested
100% UIS Tested
100% Rg Tested
SOIC-8
Top View
D1
D2
Bottom View
Top View
S1
G1
S2
G2
1
2
3
4
D1
D1
D2
D2
8
7
6
5
G1
G2
S1
N-channel
Pin1
S2
P-channel
Orderable Part Number
Package Type
Form
Minimum Order Quantity
AO4630
SO-8
Tape & Reel
3000
Absolute Maximum Ratings TA=25°C unless otherwise noted
Symbol
Max N-channel
Parameter
Drain-Source Voltage
VDS
30
Gate-Source Voltage
VGS
TA=25°C
Continuous Drain
Current
Pulsed Drain Current
ID
TA=70°C
C
Avalanche Current C
Avalanche energy
L=0.1mH
VDS Spike
10µs
TA=25°C
Power Dissipation B
C
Junction and Storage Temperature Range
Rev.1.0: Nov 2015
Units
V
±12
±12
V
7
-5
-4
30
-25
IAS
14
18
A
EAS
10
16
mJ
VSPIKE
36
-36
V
2
Steady-State
Steady-State
W
1.3
TJ, TSTG
Symbol
t ≤ 10s
A
5.6
IDM
PD
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Lead
Max P-channel
-30
RθJA
RθJL
-55 to 150
Typ
48
74
32
www.aosmd.com
°C
Max
62.5
90
40
Units
°C/W
°C/W
°C/W
Page 1 of 9
AO4630
N-Channel Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
Zero Gate Voltage Drain Current
IGSS
VGS(th)
Gate-Body leakage current
VDS=0V, VGS=±12V
Gate Threshold Voltage
VDS=VGS, ID=250µA
V
TJ=55°C
±100
nA
1.05
1.45
V
17.8
23
28
40
VGS=4.5V, ID=6A
19
28
mΩ
VGS=2.5V, ID=5A
24
36
mΩ
1
V
2.5
A
0.65
TJ=125°C
gFS
Forward Transconductance
VDS=5V, ID=7A
35
Diode Forward Voltage
IS=1A, VGS=0V
0.7
IS
Maximum Body-Diode Continuous Current
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
µA
5
VSD
Coss
Units
1
VGS=10V, ID=7A
Static Drain-Source On-Resistance
Max
30
VDS=30V, VGS=0V
IDSS
RDS(ON)
Typ
VGS=0V, VDS=15V, f=1MHz
mΩ
S
670
pF
75
pF
45
pF
3
4.5
Ω
SWITCHING PARAMETERS
Qg(10V)
Total Gate Charge
13
20
nC
Qg(4.5V)
Total Gate Charge
6
12
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
f=1MHz
VGS=10V, VDS=15V, ID=7A
1.5
nC
1.8
nC
3
ns
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
IF=7A, di/dt=500A/µs
Qrr
Body Diode Reverse Recovery Charge IF=7A, di/dt=500A/µs
7.5
Body Diode Reverse Recovery Time
VGS=10V, VDS=15V, RL=2.2Ω,
RGEN=3Ω
nC
1.3
2.5
ns
25
ns
4
ns
6.5
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
value in any given application depends on the user's specific board design.
B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initialTJ=25°C.
D. The RθJA is the sum of the thermal impedance from junction to lead RθJL and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using or equal to 2.5V
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
1
1E-05
100
0.001
0.1
10
1000
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note F)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJA=90°C/W
0.1
PDM
0.01
Single Pulse
Ton
T
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev.1.0: Nov 2015
www.aosmd.com
Page 4 of 9
AO4630
Figure
A: Charge
Gate Charge
Circuit
& Waveforms
Gate
Test Test
Circuit
& Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Figure B:Resistive
ResistiveSwitching
Switching Test
Test Circuit
Circuit&&Waveforms
Waveforms
RL
Vds
Vds
Vgs
90%
+ Vdd
DUT
VDC
-
Rg
10%
Vgs
Vgs
td(on)
tr
td(off)
ton
tf
toff
Figure C:
UnclampedInductive
InductiveSwitching
Switching (UIS) Test
Unclamped
TestCircuit
Circuit&&Waveforms
Waveforms
L
2
EAR= 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Figure
D: Recovery
Diode Recovery
Test Circuit
& Waveforms
Diode
Test Circuit
& Waveforms
Q rr = - Idt
Vds +
DUT
Vgs
Vds Isd
Vgs
Ig
Rev.1.0: Nov 2015
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 5 of 9
AO4630
P-Channel Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=-250µA, VGS=0V
-30
Zero Gate Voltage Drain Current
IGSS
VGS(th)
Gate-Body leakage current
VDS=0V, VGS=±12V
Gate Threshold Voltage
VDS=VGS, ID=-250µA
TJ=55°C
±100
nA
-0.9
-1.3
V
40
48
48
60
VGS=-4.5V, ID=-3.5A
45
57
mΩ
VGS=-2.5V, ID=-2.5A
60
78
mΩ
-0.5
TJ=125°C
gFS
Forward Transconductance
VDS=-5V, ID=-5A
18
Diode Forward Voltage
IS=-1A, VGS=0V
-0.7
IS
Maximum Body-Diode Continuous Current
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
µA
-5
VSD
Coss
Units
-1
VGS=-10V, ID=-5A
Static Drain-Source On-Resistance
Max
V
VDS=-30V, VGS=0V
IDSS
RDS(ON)
Typ
VGS=0V, VDS=-15V, f=1MHz
mΩ
S
-1
V
-2.5
A
700
pF
80
pF
60
pF
8
12
Ω
SWITCHING PARAMETERS
Qg(10V)
Total Gate Charge
14
25
nC
Qg(4.5V)
Total Gate Charge
7
15
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
IF=-5A, di/dt=500A/µs
Qrr
Body Diode Reverse Recovery Charge IF=-5A, di/dt=500A/µs
40
Body Diode Reverse Recovery Time
f=1MHz
VGS=-10V, VDS=-15V, ID=-5A
VGS=-10V, VDS=-15V, RL=3Ω,
RGEN=3Ω
4
nC
1.5
nC
2.5
nC
6.5
ns
3.5
ns
41
ns
9
ns
15
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
value in any given application depends on the user's specific board design.
B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initialTJ=25°C.
D. The RθJA is the sum of the thermal impedance from junction to lead RθJL and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using