0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATA02A18-L

ATA02A18-L

  • 厂商:

    ARTESYN(雅特生)

  • 封装:

    -

  • 描述:

    ATA02A18-L

  • 数据手册
  • 价格&库存
ATA02A18-L 数据手册
Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 1 ATA 8W Series 8 Watts DC/DC Converter Total Power: 8 Watts Input Voltage: 9 to 36Vdc 18 to 75Vdc # of Outputs: Single, dual Special Features • Smallest Encapsulated 8W Converter • Industrial Standard DIP-16 Package • Ultra-wide 4:1 Input Voltage Range • Fully Regulated Output Voltage • I/O Isolation 1500Vdc • Operating Ambient Temp. Range -40 OC to +80OC (With derating) • Low No Load Power Consumption • No Minimum Load Requirement • Overload and Short Circuit Protection • Shielded Metal Case with Insulated Baseplate • Designed-in Conducted EMI meets EN55032/22 Class A & FCC Level A Safety UL/cUL/IEC/EN 60950-1 CE Mark Product Descriptions The ATA 8W series is the latest generation of high performance DC-DC converter modules setting a new standard concerning power density. The product offers a full 8W isolated DC-DC converter within an encapsulated DIP16 package which occupies only 0.5 in2 of PCB space. There are 14 models available for 24, 48Vdc with ultra-wide 4:1 input voltage range. Further features include overload protection, short circuit protection, low no load power consumption and no minimum load requirement as well. An high efficiency allows operating temperatures range of -40 OC to +80OC. These converters offer an economical solution for many cost critical applications in battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and many other critical applications where PCB space is limited. Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 2 Model Numbers Model Input Voltage Output Voltage Maximum Load Efficiency ATA02F18-L 9-36Vdc 3.3Vdc 2A 78% ATA02A18-L 9-36Vdc 5Vdc 1.6A 82% ATA02B18-L 9-36Vdc 12Vdc 0.665A 85% ATA02C18-L 9-36Vdc 15Vdc 0.535A 85% ATA02H18-L 9-36Vdc 24Vdc 0.335A 86% ATA02BB18-L 9-36Vdc ±12Vdc ±0.335A 85% ATA02CC18-L 9-36Vdc ±15Vdc ±0.265A 86% ATA02F36-L 18-75Vdc 3.3Vdc 2A 78% ATA02A36-L 18-75Vdc 5Vdc 1.6A 81% ATA02B36-L 18-75Vdc 12Vdc 0.665A 85% ATA02C36-L 18-75Vdc 15Vdc 0.535A 85% ATA02H36-L 18-75Vdc 24Vdc 0.335A 86% ATA02BB36-L 18-75Vdc ±12Vdc ±0.335A 86% ATA02CC36-L 18-75Vdc ±15Vdc ±0.265A 86% Options None Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 3 Electrical Specifications Absolute Maximum Ratings Stress in excess of those listed in the “Absolute Maximum Ratings” may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply’s reliability. Table 1. Absolute Maximum Ratings: Parameter Model Symbol Min Typ Max Unit 24V Input Models 48V Input Models VIN,DC -0.7 -0.7 - 50 100 Vdc Vdc Maximum Output Power All models PO,max - - 8 W Isolation Voltage Input to output (60 seconds) (1 seconds) All models All models 1500 1800 - - Vdc Vdc Isolation Resistance All models 1000 - - Mohm Isolation Capacitance All models - 500 - pF Operating Ambient Temperature Range All models -40 +801 OC Operating Case Temperature All models TCASE - +105 OC Storage Temperature All models TSTG -50 +125 OC Input Surge Voltage 1 Sec.max - Humidity (non-condensing) Operating Non-operating All models All models - - 95 95 % % MTBF (MIL-HDBK-217F@25OC, Ground Benign) All models 2358263 - - Hours Note 1 - With Derating and under Natural Convection Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 4 Input Specifications Table 2. Input Specifications: Parameter Condition Symbol Min Typ Max Unit Operating Input Voltage, DC 24V Input Models 48V Input Models All VIN,DC 9 18 24 48 36 75 Vdc Vdc Start-Up Threshold Voltage 24V Input Models 48V Input Models All VIN,ON - 9 18 - Vdc Vdc Under Voltage Shutdown 24V Input Models 48V Input Models All VIN,OFF - 8 16 - Vdc Vdc Input Current ATA02F18-L ATA02A18-L ATA02B18-L ATA02C18-L ATA02H18-L ATA02BB18-L ATA02CC18-L ATA02F36-L ATA02A36-L ATA02B36-L ATA02C36-L ATA02H36-L ATA02BB36-L ATA02CC36-L VIN,DC=VIN,nom IIN,full load - 353 407 391 393 390 394 385 176 206 196 197 195 195 193 - mA mA mA mA mA mA mA mA mA mA mA mA mA mA No Load Input Current (VO On, IO = 0A) 24V Input Models 48V Input Models VIN,DC=VIN,nom IIN,no_load - 10 8 - mA mA Efficiency @Max. Load ATA02F18-L ATA02A18-L ATA02B18-L ATA02C18-L ATA02H18-L ATA02BB18-L ATA02CC18-L ATA02F36-L ATA02A36-L ATA02B36-L ATA02C36-L ATA02H36-L ATA02BB36-L ATA02CC36-L η - 78 82 85 85 86 85 86 78 81 85 85 86 86 86 - % % % % % % % % % % % % % % Input Filter VIN,DC=VIN,nom IO=IO,max TA =25 OC All Internal Pi Type Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 5 Output Specifications Table 3: Output Specifications Parameter Condition Symbol Min Typ Max Unit VIN,DC=VIN,nom IO=IO,max TA =25 OC ±VO - - 2 % IO - - 2 1.6 0.665 0.535 0.335 ±0.335 ±0.265 2 1.6 0.665 0.535 0.335 ±0.335 ±0.265 A A A A A A A A A A A A A A All CO - - 680 680 330 330 150 150 150 680 680 330 330 150 150 150 uF uF uF uF uF uF uF uF uF uF uF uF uF uF Line Regulation VIN,DC=VIN,min to VIN,max ±%VO - 0.2 0.8 % Load Regulation IO=IO,min to IO,max ±%VO - 0.5 1.0 % Switching Frequency All fSW - 370 - KHz Temperature Coefficient All ±%/OC - 0.01 0.02 % Output Over Current Protection1 All %IO,max - 150 - % Output Short Circuit Protection All Output Voltage Set -Point Output Current ATA02F18-L ATA02A18-L ATA02B18-L ATA02C18-L ATA02H18-L ATA02BB18-L ATA02CC18-L ATA02F36-L ATA02A36-L ATA02B36-L ATA02C36-L ATA02H36-L ATA02BB36-L ATA02CC36-L Load Capacitance ATA02F18-L ATA02A18-L ATA02B18-L ATA02C18-L ATA02H18-L ATA02BB18-L ATA02CC18-L ATA02F36-L ATA02A36-L ATA02B36-L ATA02C36-L ATA02H36-L ATA02BB36-L ATA02CC36-L Note 1 – Hiccup mode. Convection Cooling Hiccup Mode 0.3Hz type, Automatic Recovery Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 6 Output Specifications Table 3: Output Specifications con’t Parameter Output Ripple, pk-pk Condition Symbol Min Typ Max Unit Measure with a 4.7uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth VO - - 55 mV 25% load change ±%VO ±%VSB - 3 - 5 500 % uSec VO Dynamic Response Peak Deviation Recovery Time Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 7 ATA02F18-L Performance Curves Figure 1: ATA02F18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to 2A Figure 2: ATA02F18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = 2A Figure 3 ATA02F18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = 2A Figure 4: ATA02F18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo Ch 1: Vo 100 Natural Convection 20LFM 80 60 40 20 0 ~ -40 0 20 40 60 80 100 110 Ambient Temperature C Figure 5: Ch1: Vo ATA02F18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = 2A Ch3: Vin Figure 6: ATA02F18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = 2A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 8 ATA02A18-L Performance Curves Figure 7: ATA02A18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to 1.6A Figure 8: Figure 9: ATA02A18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = 1.6A Figure 10: ATA02A18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo Ch 1: Vo Figure 11: ATA02A18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = 1.6A Ch1: Vo Ch3: Vin ATA02A18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = 1.6A Figure 12: ATA02A18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = 1.6A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 9 ATA02B18-L Performance Curves Figure 13: ATA02B18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to 0.665A Figure 14: ATA02B18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = 0.665A Figure 15: ATA02B18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = 0.665A Ch 1: Vo Figure 16: ATA02B18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo Figure 17: ATA02B18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = 0.665A Ch1: Vo Ch3: Vin Figure 18: ATA02B18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = 0.665A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 10 ATA02C18-L Performance Curves Figure 19: ATA02C18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to 0.535A Figure 20: ATA02C18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = 0.535A Figure 21: ATA02C18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = 0.535A Ch 1: Vo Figure 22: ATA02C18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo Figure 23: ATA02C18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = 0.535A Ch1: Vo Ch3: Vin Figure 24: ATA02C18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = 0.535A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 11 ATA02H18-L Performance Curves Figure 25: ATA02H18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to 0.335A Figure 26: ATA02H18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = 0.335A Figure 27: ATA02H18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = 0.335A Ch 1: Vo Figure 28: ATA02H18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo Figure 29: ATA02H18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = 0.335A Ch1: Vo Ch3: Vin Figure 30: ATA02H18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = 0.335A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 12 ATA02BB18-L Performance Curves Figure 31: ATA02BB18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to ±0.335A Figure 32: ATA02BB18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = ±0.335A Figure 33: ATA02BB18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = ±0.335A Ch 1: Vo1 Ch 2: Vo2 Figure 34: ATA02BB18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo1 Ch 2: Vo2 Figure 35: ATA02BB18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = ±0.335A Ch1: Vo1 Ch2:Vo2 Ch3: Vin Figure 36: ATA02BB18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = ± 0.335A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 13 ATA02CC18-L Performance Curves Figure 37: ATA02CC18-L Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to ±0.265A Figure 38: ATA02CC18-L Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = ±0.265A Figure 39: ATA02CC18-L Ripple and Noise Measurement Vin = 24Vdc Load: Io = ±0.265A Ch 1: Vo1 Ch 2: Vo2 Figure 40: ATA02CC18-L Transient Response Vin = 24Vdc Load: Io = 100% to 75% load change Ch 1: Vo1 Ch 2: Vo2 Figure 41: ATA02CC18-L Output Voltage Startup Characteristic by Vin Vin = 24Vdc Load: Io = ±0.265A Ch1: Vo1 Ch2:Vo2 Ch3: Vin Figure 42: ATA02CC18-L Derating Output Current vs Ambient Temperature Vin = 24Vdc Load: Io = ± 0.265A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 14 ATA02F36-L Performance Curves Figure 43: ATA02F36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 2A Figure 44: ATA02F36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = 2A Figure 45: ATA02F36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = 2A Figure 46: ATA02F36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo Ch 1: Vo Figure 47: ATA02F36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = 2A Ch1: Vo Ch3: Vin Figure 48: ATA02F36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = 2A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 15 ATA02A36-L Performance Curves Figure 49: ATA02A36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 1.6A Figure 50: ATA02A36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = 1.6A Figure 51: ATA02A36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = 1.6A Figure 52: ATA02A36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo Ch 1: Vo Figure 53: ATA02A36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = 1.6A Ch1: Vo Ch3: Vin Figure 54: ATA02A36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = 1.6A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 16 ATA02B36-L Performance Curves Figure 55: ATA02B36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 0.665A Figure 56: ATA02B36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = 0.665A Figure 57: ATA02B36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = 0.665A Ch 1: Vo Figure 58: ATA02B36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo Figure 59: ATA02B36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = 0.665A Ch1: Vo Ch3: Vin Figure 60: ATA02B36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = 0.665A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 17 ATA02C36-L Performance Curves Figure 61: ATA02C36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 0.535A Figure 62: ATA02C36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = 0.535A Figure 63: ATA02C36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = 0.535A Ch 1: Vo Figure 64: ATA02C36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo Figure 65: ATA02C36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = 0.535A Ch1: Vo Ch3: Vin Figure 66: ATA02C36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = 0.535A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 18 ATA02H36-L Performance Curves Figure 67: ATA02H36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 0.335A Figure 68: ATA02H36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = 0.335A Figure 69: ATA02H36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = 0.335A Ch 1: Vo Figure 70: ATA02H36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo Figure 71: ATA02H36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = 0.335A Ch1: Vo Ch3: Vin Figure 72: ATA02H36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = 0.335A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 19 ATA02BB36-L Performance Curves Figure 73: ATA02BB36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to ±0.335A Figure 74: ATA02BB36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = ±0.335A Figure 75: ATA02BB36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = ±0.335A Ch 1: Vo1 Ch 2: Vo2 Figure 76: ATA02BB36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo1 Ch 2: Vo2 Figure 77: ATA02BB36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = ±0.335A Ch1: Vo1 Ch2:Vo2 Ch3: Vin Figure 78: ATA02BB36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = ± 0.335A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 20 ATA02CC36-L Performance Curves Figure 79: ATA02CC36-L Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to ±0.265A Figure 80: ATA02CC36-L Efficiency Versus Input Voltage Curve Vin = 18 to 75Vdc Load: Io = ±0.265A Figure 81: ATA02CC36-L Ripple and Noise Measurement Vin = 48Vdc Load: Io = ±0.265A Ch 1: Vo1 Ch 2: Vo2 Figure 82: ATA02CC36-L Transient Response Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo1 Ch 2: Vo2 Figure 83: ATA02CC36-L Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = ±0.265A Ch1: Vo1 Ch2:Vo2 Ch3: Vin Figure 84: ATA02CC36-L Derating Output Current vs Ambient Temperature Vin = 48Vdc Load: Io = ± 0.265A Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 21 Mechanical Specifications Mechanical Outlines Single output [0.15] 3.8 8.0 [0.31] Pin Connections Pin 1 – -Vin Pin 7 – NC4 Pin 8 – No Pin Pin 9 – +Vout Pin 10 – -Vout Pin 16 – +Vin 0.5 [0.02] Bottom View 16 3.0 [0.12] 10 15.24 [0.60] 13.7 [0.54] 8 10.16 [0.40] 7 9 2.54 [0.10] 23.8 [0.94] 1.77 [0.07] 1 Note: 1.All dimensions in mm (inches) 2.Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 ( X.XXX±0.01) 3.Pin diameter 0.5 ±0.05 (0.02±0.002) 4. No Connection Physical Characteristics Case Size 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches) Case Material Aluminium Alloy, Black Anodized Coating Pin Material Tinned Copper Weight 6.1g Dual Output Pin 1 – -Vin Pin 7 – No Pin Pin 8 – Common Pin 9 – +Vout Pin 10 – -Vout Pin 16 – +Vin Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 22 9 7 8 TOP VIEW 1 15.24 [0.60] 23.8 [0.94] 2.54 [0.10] 13.70 [0.54] 10 1.77 [0.07] 16 10.16 [0.40] Recommended Pad Layout 4X 4X 1.30 0.1(PAD)[4X 0.05 0.004] 0.80 0.1(HOLE)[4X 0.03 0.004] Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 23 Environmental Specifications EMC Immunity ATA 8W series power supply is designed to meet the following EMC immunity specifications. Table 4. EMC Specifications: Parameter EMI Standards & Level Conduction EN55032, EN55022, FCC part15 Performance Class A EN55024 ESD EN61000-4-2 Air ±8kV, Contact ±6kV Radiated immunity EN61000-4-3 20V/m Fast transient1 EN61000-4-4 ±2KV Perf. Criteria A Surge1 EN61000-4-5 ±1KV Perf. Criteria A Conducted immunity EN61000-4-6 10Vrms Perf. Criteria A PFMF EN61000-4-8 100A/M, 1000A/m(1sec.) Perf. Criteria A Perf. Criteria A EMS Note 1: To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required. Suggested capacitor: 220µF/100V. Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 24 Safety Certifications The ATA 8W series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product. Table 5. Safety Certifications for ATA 8W series power supply system Document Description cUL/UL 60950-1 (UL certificate) US Requirements IEC/EN 60950-1 (CB-scheme) European Requirements (All CENELEC Countries) CE mark Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 25 Operating Temperature Table 6. Operating Temperature: Parameter Model / Condition Min Max Unit Operating Temperature Range (Natural Convection1, See Derating) All -40 +80 OC Operating Case Temperature All - +105 OC -50 +125 OC 260 OC Storage Temperature Range Cooling Natural Convection Lead Temperature (1.5mm from case for 10Sec.) Note1 - The “natural convection” is about 20LFM but is not equal to still air (0 LFM). - Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 26 MTBF and Reliability The MTBF of ATA 8W series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2, Operating Temperature 25 OC, Ground Benign. Model MTBF ATA02F18-L 2,358,263 ATA02A18-L 2,484,618 ATA02B18-L 3,500,129 ATA02C18-L 3,522,739 ATA02H18-L 3,496,433 ATA02BB18-L 3,619,712 ATA02CC18-L 3,508,652 ATA02F36-L 2,413,507 ATA02A36-L 2,464,316 ATA02B36-L 3,772,726 ATA02C36-L 3,703,353 ATA02H36-L 3,747,978 ATA02BB36-L 3,661,783 ATA02CC36-L 3,571,139 Unit Hours Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 27 Application Notes Peak-to-Peak Output Noise Measurement Test Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter. Output Over Current Protection To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range. Input Source Impedance The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2µF for the 24V and 48V devices. + DC Power Source - +Vin + +Out DC / DC Converter Load Cin -Vin -Out Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 28 Output Ripple Reduction A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output. + +Vin +Out Single Output DC / DC Converter DC Power Source Cout - -Vin -Out + +Vin +Out Dual Output Com. DC / DC Converter DC Power Source - -Vin -Out Load Cout Load Load Cout Maximum Capacitive Load The ATA 8W series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet. Thermal Considerations Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105℃. The derating curves are determined from measurements obtained in a test setup. Position of air velocity probe and thermocouple 15mm / 0.6in 50mm / 2in Air Flow DUT Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 29 Packaging Information Soldering and Reflow Considerations Lead free wave solder profile for ATA 8W Series. Zone Reference Parameter Rise temp speed: 3OC/sec max. Preheat zone Actual heating Preheat temp: 100~130OC Peak temp: 250~260OC Peak Time Peak time(T1+T2): 4~6 sec Reference Solder: Sn-Ag-Cu: Sn-Cu: Sn-Ag Hand Welding: Soldering iron: Power 60W Welding Time: 2~4 sec Temp.: 380~400 OC Technical Reference Note Rev.03.07.17_#1.0 ATA 8W Series Page 30 Record of Revision and Changes Issue Date Description Originators 1.0 03.07.2017 First Issue A. Zhang For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com
ATA02A18-L 价格&库存

很抱歉,暂时无法提供与“ATA02A18-L”相匹配的价格&库存,您可以联系我们找货

免费人工找货