0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AX58400

AX58400

  • 厂商:

    ASIX(亚信)

  • 封装:

    LFBGA225

  • 描述:

    AX58400是一款2/3端口EtherCAT从站双核微控制器,可支持FPU与DSP指令的双核心微控制器。

  • 数据手册
  • 价格&库存
AX58400 数据手册
AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Features Document No: AX58400/V1.02/03/17/23 ⚫ Voltage scaling in Run and Stop mode (6 configurable ranges) ⚫ Backup regulator (~0.9 V) ⚫ Voltage reference for analog peripheral/VREF+ ⚫ 1.2 to 3.6 V VBAT supply ⚫ Low-power modes: Sleep, Stop, Standby and VBAT supporting battery charging A System-in-Package (SiP) product based on STSTM32H755 microcontroller and ASIX EtherCAT slave controller STM32H755 Dual-Core ARM® Cortex® -M7 & Cortex® -M4 microcontroller ⚫ 32-bit Arm® Cortex® -M7 core with doubleprecision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache; frequency up to 480 MHz, MPU, 1027 DMIPS/ 2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions ⚫ 32-bit Arm® 32-bit Cortex® -M4 core with FPU, Adaptive real-time accelerator (ST ART Accelerator™) for internal Flash memory and external memories, frequency up to 240 MHz, MPU, 300 DMIPS/1.25 DMIPS /MHz (Dhrystone 2.1), and DSP instructions Low-power consumption ⚫ VBAT battery operating mode with charging capability ⚫ CPU and domain power state monitoring pins ⚫ 2.95 μA in Standby mode (Backup SRAM OFF, RTC/LSE ON) Clock management ⚫ Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 KHz LSI ⚫ External oscillators: 4-48 MHz HSE, 32.768 KHz LSE ⚫ 3× PLLs (1 for the system clock, 2 for kernel clocks) with Fractional mode Memories ⚫ 2 Mbytes of dual bank Flash memory with read-while-write support ⚫ 1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines), 864 Kbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain ⚫ Dual mode Quad-SPI memory interface running up to 133 MHz ⚫ Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND Flash memory clocked up to 125 MHz in Synchronous mode ⚫ CRC calculation unit Interconnect matrix ⚫ 3 bus matrices (1 AXI and 2 AHB) ⚫ Bridges (5× AHB2-APB, 2× AXI2-AHB) 4 DMA controllers to unload the CPU ⚫ 1× high-speed master direct memory access controller (MDMA) with linked list support ⚫ 2× dual-port DMAs with FIFO ⚫ 1× basic DMA with request router capabilities Up to 35 communication peripherals ⚫ 4× I2Cs FM+ interfaces (SMBus/PMBus) ⚫ 4× USARTs/4x UARTs (ISO7816 interface, LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART ⚫ 6× SPIs, 3 with muxed duplex I2S audio class accuracy via internal audio PLL or external clock, 1x I2S in LP domain (up to 150 MHz) ⚫ 4x SAIs (serial audio interface) ⚫ SPDIFRX interface ⚫ SWPMI single-wire protocol master I/F ⚫ MDIO Slave interface ⚫ 2× SD/SDIO/MMC interfaces (up to 125 MHz) ⚫ 2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN) ⚫ 2× USB OTG interfaces (1FS, 1HS/FS) crystalless solution with LPM and BCD ⚫ Ethernet MAC interface with DMA controller ⚫ HDMI-CEC ⚫ 8- to 14-bit camera interface (up to 80 MHz) Security ⚫ ROP, PC-ROP, active tamper, secure firmware upgrade support, Secure access mode General-purpose input/outputs (GPIO) ⚫ Up to 97 I/O ports with interrupt capability Reset and power management ⚫ 3 separate power domains which can be independently clock-gated or switched off: ⚫ D1: high-performance capabilities ⚫ D2: communication peripherals and timers ⚫ D3: reset/clock control/power management ⚫ 1.62 to 3.6 V application supply and I/Os ⚫ POR, PDR, PVD and BOR ⚫ Dedicated USB power embedding a 3.3 V internal regulator to supply the internal PHYs ⚫ Embedded regulator (LDO) to supply the digital circuitry ⚫ High power-efficiency SMPS step-down converter regulator to directly supply VCORE and/or external circuitry ASIX Electronics Corporation 4F, No.8, Hsin Ann Rd., Hsinchu Science Park, Hsinchu, Taiwan 30078 11 analog peripherals ⚫ 3× ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS) ⚫ 1× temperature sensor 1 Released Date: 03/17/2023 TEL: +886-3-579-9500 FAX: +886-3-579-9558 https://www.asix.com.tw/ AX58400 EtherCAT Slave Controller w/ Dual-Core MCU ⚫ ⚫ ⚫ ⚫ ⚫ HASH (MD5, SHA-1, SHA-2), HMAC ⚫ True random number generators 2× 12-bit D/A converters (1 MHz) 2× ultra-low-power comparators 2× operational amplifiers (7.3 MHz bandwidth) 1× digital filters for sigma delta modulator (DFSDM) with 8 channels/4 filters Debug mode ⚫ SWD & JTAG interfaces ⚫ 4 Kbytes Embedded Trace Buffer Graphics ⚫ LCD-TFT controller up to XGA resolution ⚫ ST Chrom-ART graphical hardware Accelerator™ (DMA2D) to reduce CPU load ⚫ Hardware JPEG Codec 96-bit Unique Identifier (UID) EtherCAT Slave Controller (ESC) Sub-system 2 Integrated Fast Ethernet PHYs 3rd Ethernet MII Port for flexible EtherCAT network configuration 8 Fieldbus Memory Management Units (FMMUs) 8 Sync Managers 64-bit distributed clock support allows synchronization with other EtherCAT devices 9K bytes RAM Step & Direction Controller Incremental and Hall Encoder Interface SPI Master Controller Emergency Stop Input Configurable Watchdog for Outputs and Inputs Monitoring 20 GPIOs controled by EtherCAT direclty Up to 22 timers and watchdogs ⚫ 1× high-resolution timer (2.1 ns max resolution) ⚫ 2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 240 MHz) ⚫ 2× 16-bit advanced motor control timers (up to 240 MHz) ⚫ 10× 16-bit general-purpose timers (up to 240 MHz) ⚫ 5× 16-bit low-power timers (up to 240 MHz) ⚫ 4× watchdogs (independent and window) ⚫ 2× SysTick timers ⚫ RTC with sub-second accuracy and hardware calendar 225LD EHS-TFBGA 13x13 mm, 0.8-mm pitch, RoHS Compliant Package Cryptographic acceleration ⚫ AES 128, 192, 256, TDES, Operating Temperature Range: -40 to +85°C Target Applications EtherCAT IO-Link Master EtherCAT Junction Slave Module Communication Module Operator HMI Interfaces Motion/Motor Control Digital I/O Control Robotics Sensors Data Acquisition Typical Applications Diagram ASIX Electronics Corporation 4F, No.8, Hsin Ann Rd., Hsinchu Science Park, Hsinchu, Taiwan 30078 2 Released Date: 03/17/2023 TEL: +886-3-579-9500 FAX: +886-3-579-9558 https://www.asix.com.tw/ AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Functional Block Diagram 3 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Copyright © 2021 ASIX Electronics Corporation. All rights reserved. Copyright © 2019 STMicroelectronics – All rights reserved for STM32H755 microcontroller. DISCLAIMER No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice. ASIX provides this document “as is” without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement. Designers must not rely on the absence or characteristics of any features or registers marked “reserved”, “undefined” or “NC”. ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products. TRADEMARKS ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners. EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. STM32, ART Accelerator™, Chrom-ART graphical hardware Accelerator™ are registered trademarks and patented technologies, licensed by STMicroelectronics International N.V. Arm® and Cortex® are registered trademarks and patented technologies, licensed by Arm Limited (or its subsidiaries). 4 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Table of Contents 1 INTRODUCTION ............................................................................................................................................... 13 GENERAL DESCRIPTION .................................................................................................................................. 13 BLOCK DIAGRAM............................................................................................................................................ 17 PINOUT DIAGRAM ........................................................................................................................................... 18 SIGNAL DESCRIPTION ..................................................................................................................................... 19 1.4.1 Main System Pin Description ................................................................................................................. 19 1.4.2 ESC Sub-system Pin Description ........................................................................................................... 53 1.4.3 Power/Ground Pin Description ............................................................................................................. 57 2 FUNCTION DESCRIPTION.............................................................................................................................. 58 DUAL STM32 ARM® CORTEX® CORES ........................................................................................................... 58 2.1.1 Arm® Cortex® -M7 with FPU .................................................................................................................. 58 2.1.2 Arm® Cortex® -M4 with FPU .................................................................................................................. 59 MEMORY PROTECTION UNIT (MPU) ............................................................................................................... 59 MEMORIES ...................................................................................................................................................... 60 2.3.1 Embedded Flash memory ....................................................................................................................... 60 2.3.2 Secure access mode ................................................................................................................................ 60 2.3.3 Embedded SRAM.................................................................................................................................... 60 ™ 2.3.4 ST ART accelerator ............................................................................................................................ 61 BOOT MODES .................................................................................................................................................. 63 POWER SUPPLY MANAGEMENT ....................................................................................................................... 63 2.5.1 Power supply scheme ............................................................................................................................. 63 2.5.2 Power supply supervisor ........................................................................................................................ 64 2.5.3 Voltage regulator (SMPS step-down converter and LDO) .................................................................... 65 2.5.4 SMPS step-down converter .................................................................................................................... 65 LOW-POWER STRATEGY .................................................................................................................................. 66 RESET AND CLOCK CONTROLLER (RCC) ......................................................................................................... 67 2.7.1 Clock management ................................................................................................................................. 67 2.7.2 System reset sources............................................................................................................................... 67 GENERAL-PURPOSE INPUT/OUTPUTS (GPIOS) ................................................................................................. 68 BUS-INTERCONNECT MATRIX .......................................................................................................................... 68 DMA CONTROLLERS....................................................................................................................................... 69 ST CHROM-ART ACCELERATOR™ (DMA2D)............................................................................................... 69 NESTED VECTORED INTERRUPT CONTROLLER (NVIC) .................................................................................... 70 EXTENDED INTERRUPT AND EVENT CONTROLLER (EXTI)............................................................................... 70 CYCLIC REDUNDANCY CHECK CALCULATION UNIT (CRC) ............................................................................. 70 FLEXIBLE MEMORY CONTROLLER (FMC) ....................................................................................................... 71 QUAD-SPI MEMORY INTERFACE (QUADSPI)................................................................................................. 71 ANALOG-TO-DIGITAL CONVERTERS (ADCS) .................................................................................................. 71 TEMPERATURE SENSOR ................................................................................................................................... 72 VBAT OPERATION .......................................................................................................................................... 72 DIGITAL-TO-ANALOG CONVERTERS (DAC) .................................................................................................... 73 ULTRA-LOW-POWER COMPARATORS (COMP) ................................................................................................ 73 OPERATIONAL AMPLIFIERS (OPAMP) ............................................................................................................ 73 DIGITAL FILTER FOR SIGMA-DELTA MODULATORS (DFSDM) ......................................................................... 74 DIGITAL CAMERA INTERFACE (DCMI) ........................................................................................................... 75 LCD-TFT CONTROLLER ................................................................................................................................. 76 JPEG CODEC (JPEG) ...................................................................................................................................... 76 RANDOM NUMBER GENERATOR (RNG) .......................................................................................................... 77 CRYPTOGRAPHIC ACCELERATION (CRYP AND HASH) .................................................................................. 77 TIMERS AND WATCHDOGS .............................................................................................................................. 77 2.29.1 High-resolution timer (HRTIM1) ........................................................................................................... 79 5 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.29.2 Advanced-control timers (TIM1, TIM8) ................................................................................................. 79 2.29.3 General-purpose timers (TIMx) ............................................................................................................. 80 2.29.4 Basic timers TIM6 and TIM7 ................................................................................................................. 80 2.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5).................................................... 80 2.29.6 Independent watchdogs .......................................................................................................................... 81 2.29.7 Window watchdogs ................................................................................................................................ 81 2.29.8 SysTick timer .......................................................................................................................................... 81 REAL-TIME CLOCK (RTC), BACKUP SRAM AND BACKUP REGISTERS ............................................................. 82 INTER-INTEGRATED CIRCUIT INTERFACE (I2C) ............................................................................................... 83 UNIVERSAL SYNCHRONOUS/ASYNCHRONOUS RECEIVER TRANSMITTER (USART) ......................................... 84 LOW-POWER UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (LPUART) ........................................... 85 SERIAL PERIPHERAL INTERFACE (SPI)/INTER-INTEGRATED SOUND INTERFACES (I2S) .................................... 85 SERIAL AUDIO INTERFACES (SAI) ................................................................................................................... 85 SPDIFRX RECEIVER INTERFACE (SPDIFRX) ................................................................................................ 86 SINGLE WIRE PROTOCOL MASTER INTERFACE (SWPMI) ................................................................................. 86 MANAGEMENT DATA INPUT/OUTPUT (MDIO) SLAVES .................................................................................. 87 SD/SDIO/MMC CARD HOST INTERFACES (SDMMC) .................................................................................... 87 CONTROLLER AREA NETWORK (FDCAN1, FDCAN2) .................................................................................... 87 UNIVERSAL SERIAL BUS ON-THE-GO HIGH-SPEED (OTG_HS) ......................................................................... 88 ETHERNET MAC INTERFACE WITH DEDICATED DMA CONTROLLER (ETH) ................................................... 88 HIGH-DEFINITION MULTIMEDIA INTERFACE (HDMI)-CONSUMER ELECTRONICS CONTROL (CEC) .................. 89 DEBUG INFRASTRUCTURE ............................................................................................................................... 89 ESC (ETHERCAT) SUB-SYSTEM ..................................................................................................................... 90 2.45.1 Overview ................................................................................................................................................ 90 2.45.2 Features ................................................................................................................................................. 91 2.45.4 ESC Configuration ................................................................................................................................. 93 2.45.5 Memory Map ........................................................................................................................................ 102 3 ELECTRICAL SPECIFICATIONS ................................................................................................................ 112 PARAMETER CONDITIONS ............................................................................................................................. 112 3.1.1 Minimum and maximum values ............................................................................................................ 112 3.1.2 Typical values ...................................................................................................................................... 112 3.1.3 Typical curves ...................................................................................................................................... 112 3.1.4 Loading capacitor ................................................................................................................................ 112 3.1.5 Pin input voltage .................................................................................................................................. 112 3.1.6 Power supply scheme ........................................................................................................................... 114 3.1.7 Current consumption measurement ..................................................................................................... 115 ABSOLUTE MAXIMUM RATINGS ................................................................................................................... 116 RECOMMENDED OPERATING CONDITIONS FOR MAIN SYSTEM ..................................................................... 118 3.3.1 General operating conditions .............................................................................................................. 118 3.3.2 VCAP external capacitor ..................................................................................................................... 121 3.3.3 SMPS step-down converter .................................................................................................................. 121 3.3.4 Operating conditions at power-up / power-down ................................................................................ 123 3.3.5 Embedded reset and power control block characteristics ................................................................... 123 3.3.6 Embedded reference voltage ................................................................................................................ 125 3.3.7 Supply current characteristics ............................................................................................................. 125 3.3.8 Wakeup time from low-power modes ................................................................................................... 145 3.3.9 External clock source characteristics .................................................................................................. 146 3.3.10 Internet clock source characteristics ................................................................................................... 150 3.3.11 PLL characteristics .............................................................................................................................. 153 3.3.12 Memory characteristics........................................................................................................................ 155 3.3.13 EMC characteristics ............................................................................................................................ 156 3.3.14 Absolute maximum ratings (electrical sensitivity) ............................................................................... 157 3.3.15 I/O current injection characteristics .................................................................................................... 158 3.3.16 I/O port characteristics ........................................................................................................................ 159 3.3.17 NRST pin characteristics ..................................................................................................................... 166 3.3.18 FMC characteristics ............................................................................................................................ 167 3.3.19 Quad-SPI interface characteristics ...................................................................................................... 189 6 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 3.3.20 Delay block (DLYB) characteristics .................................................................................................... 191 3.3.21 16-bit ADC characteristics .................................................................................................................. 191 3.3.22 DAC characteristics ............................................................................................................................. 200 3.3.23 Voltage reference buffer characteristics .............................................................................................. 203 3.3.24 Temperature sensor characteristics ..................................................................................................... 204 3.3.25 Temperature and VBAT monitoring ....................................................................................................... 205 3.3.26 Voltage booster for analog switch ....................................................................................................... 205 3.3.27 Comparator characteristics ................................................................................................................. 206 3.3.28 Operational amplifier characteristics .................................................................................................. 207 3.3.29 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics .................................................. 209 3.3.30 Camera interface (DCMI) timing specifications .................................................................................. 211 3.3.31 LCD-TFT controller (LTDC) characteristics....................................................................................... 212 3.3.32 Timer characteristics ........................................................................................................................... 214 3.3.33 Communication interfaces ................................................................................................................... 214 ESC SUB-SYSTEM DC ELECTRICAL CHARACTERISTICS................................................................................ 232 3.4.1 Leakage Current and Capacitance ...................................................................................................... 232 3.4.2 DC Characteristics of 3.3V (with 5V Tolerant) I/O Pins ..................................................................... 232 ESC SUB-SYSTEM AC ELECTRICAL CHARACTERISTICS................................................................................ 233 3.5.1 Power-on Reset for VCCK ................................................................................................................... 233 3.5.2 Ethernet PHY Electrical Characteristics ............................................................................................. 234 POWER CONSUMPTION.................................................................................................................................. 235 3.6.1 Main System ......................................................................................................................................... 235 3.6.2 ESC Sub-system ................................................................................................................................... 235 3.6.3 Package Thermal Characteristics ........................................................................................................ 235 ESC SUB-SYSTEM POWER–UP SEQUENCE..................................................................................................... 236 ESC SUB-SYSTEM AC TIMING CHARACTERISTICS ....................................................................................... 237 3.8.1 ESC I2C Timing ................................................................................................................................... 237 3.8.2 ESC Port 2 MII Timing ........................................................................................................................ 239 3.8.3 Distributed Clocks SYNC/LATCH ........................................................................................................ 242 3.8.4 ESC Digital I/O Timing ........................................................................................................................ 243 3.8.5 ESC PDI SPI Slave Timing .................................................................................................................. 245 3.8.6 Function SPI Slave Timing................................................................................................................... 250 3.8.7 PWM Motor Controller Timing ........................................................................................................... 251 3.8.8 Incremental and Hall Encoder Interface Timing ................................................................................. 254 3.8.9 ESC SPI Master Timing ....................................................................................................................... 256 4 PACKAGE INFORMATION ........................................................................................................................... 259 5 ORDERING INFORMATION ......................................................................................................................... 260 6 REVISION HISTORY ...................................................................................................................................... 260 7 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU List of Figures FIGURE 1.2-1: AX58400 BLOCK DIAGRAM .................................................................................................................... 17 FIGURE 1.3-1: AX58400 PINOUT DIAGRAM ................................................................................................................... 18 FIGURE 2.3-1: ST ART™ ACCELERATOR SCHEMATIC AND ENVIRONMENT .................................................................... 62 FIGURE 2.5-1: POWER-UP/POWER-DOWN SEQUENCE....................................................................................................... 64 FIGURE 2.9-1: AX58400 BUS MATRIX ............................................................................................................................ 68 FIGURE 2.45-1: ESC SUB-SYSTEM BLOCK DIAGRAM ..................................................................................................... 92 FIGURE 3.1-1: PIN LOADING CONDITIONS ..................................................................................................................... 112 FIGURE 3.1-2: PIN INPUT VOLTAGE ............................................................................................................................... 113 FIGURE 3.1-3: POWER SUPPLY SCHEME......................................................................................................................... 114 FIGURE 3.1-4: CURRENT CONSUMPTION MEASUREMENT SCHEME................................................................................. 115 FIGURE 3.3-1: EXTERNAL CAPACITOR CEXT .................................................................................................................. 121 FIGURE 3.3-2: EXTERNAL COMPONENTS FOR SMPS STEP-DOWN CONVERTER.............................................................. 121 FIGURE 3.3-3: TYPICAL SMPS EFFICIENCY (%) VS LOAD CURRENT (A) IN RUN MODE AT TJ = 30 °C ........................... 137 FIGURE 3.3-4: TYPICAL SMPS EFFICIENCY (%) VS LOAD CURRENT (A) IN RUN MODE AT TJ = TJMAX ............................ 137 FIGURE 3.3-5: TYPICAL SMPS EFFICIENCY (%) VS LOAD CURRENT (A) IN LOW-POWER MODE AT TJ = 30 °C .............. 138 FIGURE 3.3-6: TYPICAL SMPS EFFICIENCY (%) VS LOAD CURRENT (A) IN LOW-POWER MODE AT TJ = TJMAX ............... 138 FIGURE 3.3-7: HIGH-SPEED EXTERNAL CLOCK SOURCE AC TIMING DIAGRAM .............................................................. 146 FIGURE 3.3-8: LOW-SPEED EXTERNAL CLOCK SOURCE AC TIMING DIAGRAM ............................................................... 147 FIGURE 3.3-9: TYPICAL APPLICATION WITH AN 8 MHZ CRYSTAL ................................................................................. 149 FIGURE 3.3-10: TYPICAL APPLICATION WITH A 32.768 KHZ CRYSTAL ......................................................................... 150 FIGURE 3.3-11: VIL/VIH FOR ALL I/OS EXCEPT BOOT0 ................................................................................................ 160 FIGURE 3.3-12: RECOMMENDED NRST PIN PROTECTION.............................................................................................. 166 FIGURE 3.3-13: ASYNCHRONOUS NON-MULTIPLEXED SRAM/PSRAM/NOR READ WAVEFORMS ................................ 168 FIGURE 3.3-14: ASYNCHRONOUS NON-MULTIPLEXED SRAM/PSRAM/NOR WRITE WAVEFORMS .............................. 170 FIGURE 3.3-15: ASYNCHRONOUS MULTIPLEXED PSRAM/NOR READ WAVEFORMS .................................................... 172 FIGURE 3.3-16: SYNCHRONOUS MULTIPLEXED NOR/PSRAM READ TIMINGS .............................................................. 175 FIGURE 3.3-17: SYNCHRONOUS MULTIPLEXED PSRAM WRITE TIMINGS ...................................................................... 177 FIGURE 3.3-18: SYNCHRONOUS NON-MULTIPLEXED NOR/PSRAM READ TIMINGS ...................................................... 179 FIGURE 3.3-19: SYNCHRONOUS NON-MULTIPLEXED PSRAM WRITE TIMINGS .............................................................. 181 FIGURE 3.3-20: NAND CONTROLLER WAVEFORMS FOR READ ACCESS ......................................................................... 183 FIGURE 3.3-21: NAND CONTROLLER WAVEFORMS FOR WRITE ACCESS ....................................................................... 183 FIGURE 3.3-22: NAND CONTROLLER WAVEFORMS FOR COMMON MEMORY READ ACCESS .......................................... 184 FIGURE 3.3-23: NAND CONTROLLER WAVEFORMS FOR COMMON MEMORY WRITE ACCESS ......................................... 184 FIGURE 3.3-24: SDRAM READ ACCESS WAVEFORMS (CL = 1)..................................................................................... 186 FIGURE 3.3-25: SDRAM WRITE ACCESS WAVEFORMS.................................................................................................. 187 FIGURE 3.3-26: QUAD-SPI TIMING DIAGRAM - SDR MODE........................................................................................... 190 FIGURE 3.3-27: QUAD-SPI TIMING DIAGRAM - DDR MODE .......................................................................................... 191 FIGURE 3.3-28: ADC ACCURACY CHARACTERISTICS (12-BITRESOLUTION) .................................................................. 198 FIGURE 3.3-29: TYPICAL CONNECTION DIAGRAM USING THE ADC .............................................................................. 198 FIGURE 3.3-30: POWER SUPPLY AND REFERENCE DECOUPLING (VREF+ NOT CONNECTED TO VDDA) .............................. 199 FIGURE 3.3-31: POWER SUPPLY AND REFERENCE DECOUPLING (VREF+ CONNECTED TO VDDA) ...................................... 199 FIGURE 3.3-32: 12-BIT BUFFERED /NON-BUFFERED DAC ............................................................................................. 203 FIGURE 3.3-33: CHANNEL TRANSCEIVER TIMING DIAGRAMS ........................................................................................ 210 FIGURE 3.3-34: DCMI TIMING DIAGRAM ...................................................................................................................... 211 FIGURE 3.3-35: LCD-TFT HORIZONTAL TIMING DIAGRAM........................................................................................... 213 FIGURE 3.3-36: LCD-TFT VERTICAL TIMING DIAGRAM ............................................................................................... 213 FIGURE 3.3-37: USART TIMING DIAGRAM IN MASTER MODE ...................................................................................... 216 FIGURE 3.3-38: USART TIMING DIAGRAM IN SLAVE MODE ......................................................................................... 217 FIGURE 3.3-39: SPI TIMING DIAGRAM - SLAVE MODE AND CPHA = 0 .......................................................................... 218 FIGURE 3.3-40: SPI TIMING DIAGRAM - SLAVE MODE AND CPHA = 1(1) ....................................................................... 219 FIGURE 3.3-41: SPI TIMING DIAGRAM - MASTER MODE(1) ............................................................................................. 219 FIGURE 3.3-42: I2S SLAVE TIMING DIAGRAM (PHILIPS PROTOCOL)(1) ............................................................................ 221 FIGURE 3.3-43: I2S MASTER TIMING DIAGRAM (PHILIPS PROTOCOL)(1).......................................................................... 221 FIGURE 3.3-44: SAI MASTER TIMING WAVEFORMS ....................................................................................................... 223 8 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU FIGURE 3.3-45: SAI SLAVE TIMING WAVEFORMS.......................................................................................................... 223 FIGURE 3.3-46: MDIO SLAVE TIMING DIAGRAM .......................................................................................................... 224 FIGURE 3.3-47: SDIO HIGH-SPEED MODE ..................................................................................................................... 226 FIGURE 3.3-48: SD DEFAULT MODE .............................................................................................................................. 226 FIGURE 3.3-49: DDR MODE .......................................................................................................................................... 226 FIGURE 3.3-50: ULPI TIMING DIAGRAM ....................................................................................................................... 227 FIGURE 3.3-51: ETHERNET SMI TIMING DIAGRAM ....................................................................................................... 228 FIGURE 3.3-52: ETHERNET RMII TIMING DIAGRAM ...................................................................................................... 229 FIGURE 3.3-53: ETHERNET MII TIMING DIAGRAM ........................................................................................................ 230 FIGURE 3.3-54: JTAG TIMING DIAGRAM ...................................................................................................................... 231 FIGURE 3.3-55: SWD TIMING DIAGRAM ....................................................................................................................... 231 FIGURE 3.5-1: POWER ON RESET (POR) TIMING DIAGRAM ......................................................................................... 233 FIGURE 3.7-1: POWER-UP SEQUENCE TIMING DIAGRAM .............................................................................................. 236 FIGURE 3.8-1: WRITE ACCESS (1 ADDRESS BYTE, UP TO 16 KBIT EEPROMS) .............................................................. 237 FIGURE 3.8-2: WRITE ACCESS (2 ADDRESS BYTES, 32 KBIT - 4 MBIT EEPROMS) ........................................................ 237 FIGURE 3.8-3: READ ACCESS (1 ADDRESS BYTE, UP TO 16 KBIT EEPROMS)................................................................ 238 FIGURE 3.8-4: PORT 2 MII TX TIMING DIAGRAM ......................................................................................................... 239 FIGURE 3.8-5: PORT 2 MII RX TIMING DIAGRAM ........................................................................................................ 240 FIGURE 3.8-6: MDC/MDIO WRITE ACCESS ................................................................................................................. 241 FIGURE 3.8-7: MDC/MDIO READ ACCESS ................................................................................................................... 241 FIGURE 3.8-8: LATCH TIMING ..................................................................................................................................... 242 FIGURE 3.8-9: SYNC TIMING ....................................................................................................................................... 242 FIGURE 3.8-10: DIGITAL INPUT: INPUT DATA SAMPLED AT SOF, IO CAN BE READ IN THE SAME FRAME ...................... 243 FIGURE 3.8-11: DIGITAL INPUT: INPUT DATA SAMPLED WITH LATCH_IN .................................................................. 243 FIGURE 3.8-12: DIGITAL OUTPUT TIMING ..................................................................................................................... 243 FIGURE 3.8-13: OE_EXT TIMING ................................................................................................................................. 243 FIGURE 3.8-14: BASIC MOSI/MISO TIMING ................................................................................................................ 245 FIGURE 3.8-15: PDI SPI SLAVE READ ACCESS (2 BYTE ADDRESSING, 1 BYTE READ DATA) WITH WAIT STATE BYTE ... 246 FIGURE 3.8-16: PDI SPI SLAVE READ ACCESS (2 BYTE ADDRESSING, 2 BYTE READ DATA) WITH WAIT STATE BYTE ... 247 FIGURE 3.8-17: PDI SPI SLAVE WRITE ACCESS (2 BYTE ADDRESSING, 1 BYTE WRITE DATA)........................................ 248 FIGURE 3.8-18: PDI SPI SLAVE WRITE ACCESS (3 BYTE ADDRESSING, 1 BYTE WRITE DATA)........................................ 249 FIGURE 3.8-19: FUNCTION SPI SLAVE WITH SHARE PIN TIMING DIAGRAM .................................................................. 250 FIGURE 3.8-20: FUNCTION SPI SLAVE WITH INDIVIDUAL PIN TIMING DIAGRAM .......................................................... 250 FIGURE 3.8-21: PWMX TIMING .................................................................................................................................... 251 FIGURE 3.8-22: ONLY PWM CHANNEL 2 SHIFT DIAGRAM ........................................................................................... 252 FIGURE 3.8-23: BBM (BREAK BEFORE MAKE) TIMING DIAGRAM ............................................................................... 253 FIGURE 3.8-24: ONE SHOT WITH MULTI STEP TIMING DIAGRAM .................................................................................. 253 FIGURE 3.8-25: ABZ TIMING DIAGRAM ....................................................................................................................... 254 FIGURE 3.8-26: CW/CCW TIMING DIAGRAM............................................................................................................... 254 FIGURE 3.8-27: CLK/DIR TIMING DIAGRAM ............................................................................................................... 254 FIGURE 3.8-28: HALL TIMING DIAGRAM ...................................................................................................................... 254 FIGURE 3.8-29: SPI MASTER TIMING ........................................................................................................................... 256 FIGURE 3.8-30: MMISO /MMOSIO TIMING ................................................................................................................ 256 FIGURE 3.8-31: SPI MDRLD READY TIMEOUT TIMING ............................................................................................... 257 FIGURE 3.8-32: SPI MTRG TRIGGER PULSE TIMEOUT ................................................................................................. 257 FIGURE 3.8-33: SPI MDRLD TRIGGER LDAC GAP AND WIDTH TIMING..................................................................... 257 9 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU List of Tables TABLE 1.1-1: AX58400 FEATURES AND PERIPHERAL COUNTS ...................................................................................... 15 TABLE 1.4-1: LEGEND/ABBREVIATIONS USED IN THE PINOUT TABLE .............................................................................. 19 TABLE 1.4-2: PORT A ALTERNATE FUNCTIONS ................................................................................................................ 36 TABLE 2.6-1: SYSTEM VS DOMAIN LOW-POWER MODE ................................................................................................... 66 TABLE 2.23-1: DFSDM IMPLEMENTATION ..................................................................................................................... 75 TABLE 2.29-1: TIMER FEATURE COMPARISON ................................................................................................................ 78 TABLE 2.32-1: USART FEATURES .................................................................................................................................. 84 TABLE 2.45-1: ESC BOOTSTRAP PINS CONFIGURATION ................................................................................................. 93 TABLE 2.45-2: ESC I2C EEPROM LAYOUT ................................................................................................................... 96 TABLE 2.45-3: ESC MEMORY MAP .............................................................................................................................. 107 TABLE 2.45-4: ESC FUNCTION REGISTER MAP ............................................................................................................ 109 TABLE 2.45-5: ESC MEMORY AND FUNCTION REGISTERS MIRROR MAPPING TABLE .................................................. 111 TABLE 3.2-1: VOLTAGE CHARACTERISTICS(1) ............................................................................................................... 116 TABLE 3.2-2: CURRENT CHARACTERISTICS .................................................................................................................. 117 TABLE 3.2-3: THERMAL CHARACTERISTICS .................................................................................................................. 117 TABLE 3.3-1: GENERAL OPERATING CONDITIONS ......................................................................................................... 119 TABLE 3.3-2: SUPPLY VOLTAGE AND MAXIMUM FREQUENCY CONFIGURATION ............................................................ 120 TABLE 3.3-3: VCAP OPERATING CONDITIONS(1) ........................................................................................................... 121 TABLE 3.3-4: CHARACTERISTICS OF SMPS STEP-DOWN CONVERTER EXTERNAL COMPONENTS ................................... 122 TABLE 3.3-5: SMPS STEP-DOWN CONVERTER CHARACTERISTICS FOR EXTERNAL USAGE ............................................ 122 TABLE 3.3-6: OPERATING CONDITIONS AT POWER-UP / POWER-DOWN (REGULATOR ON) ............................................ 123 TABLE 3.3-7: RESET AND POWER CONTROL BLOCK CHARACTERISTICS ......................................................................... 124 TABLE 3.3-8: EMBEDDED REFERENCE VOLTAGE ........................................................................................................... 125 TABLE 3.3-9: INTERNAL REFERENCE VOLTAGE CALIBRATION VALUES ......................................................................... 125 TABLE 3.3-10: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM ITCM FOR CORTEX-M7 CORE, AND FLASH MEMORY FOR CORTEX-M4(ART ACCELERATOR ON), LDO REGULATOR ON(1)(2)..................................................................................................................................... 126 TABLE 3.3-11: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM ITCM FOR ARM CORTEX-M7 AND FLASH MEMORY FOR ARM CORTEX-M4, ART ACCELERATOR ON, SMPS REGULATOR(1)..................................................................................................................................... 126 TABLE 3.3-12: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM FLASH MEMORY, BOTH CORES RUNNING, CACHE ON, ART ACCELERATOR ON, LDO REGULATOR ON(1) .................................................................................................................................................................... 127 TABLE 3.3-13: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM FLASH MEMORY, BOTH CORES RUNNING, CACHE OFF, ART ACCELERATOR OFF, LDO REGULATOR ON(1) .................................................................................................................................................................... 127 TABLE 3.3-14: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM ITCM, ONLY ARM CORTEX-M7 RUNNING, LDO REGULATOR ON(1)(2) ........................................ 128 TABLE 3.3-15: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM ITCM, ONLY ARM CORTEX-M7 RUNNING, SMPS REGULATOR(1)(2)............................................. 129 TABLE 3.3-16: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM FLASH MEMORY, ONLY ARM CORTEX-M7 RUNNING, CACHE ON, LDO REGULATOR ON(1) ........ 129 TABLE 3.3-17: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM FLASH MEMORY, ONLY ARM CORTEX-M7 RUNNING, CACHE OFF, LDO REGULATOR ON(1) ....... 130 TABLE 3.3-18: TYPICAL AND MAXIMUM CURRENT CONSUMPTION BATCH ACQUISITION MODE, LDO REGULATOR ON 130 TABLE 3.3-19: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM FLASH MEMORY, ONLY ARM CORTEX-M4 RUNNING, ART ACCELERATOR ON, LDO REGULATOR ON(1) .................................................................................................................................................................... 131 TABLE 3.3-20: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN RUN MODE, CODE WITH DATA PROCESSING RUNNING FROM FLASH BANK 2, ONLY ARM CORTEX-M4 RUNNING, ART ACCELERATOR ON, SMPS REGULATOR(1)(2) .................................................................................................................................................... 131 TABLE 3.3-21: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN STOP, LDO REGULATOR ON(1)(2) ........................ 132 TABLE 3.3-22: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN STOP, SMPS REGULATOR(1) ............................... 133 TABLE 3.3-23: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN SLEEP MODE, LDO REGULATOR ON(1)(2) ............ 134 10 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU TABLE 3.3-24: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN SLEEP MODE, SMPS REGULATOR(1)(2)(3).............. 135 TABLE 3.3-25: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN STANDBY ........................................................... 135 TABLE 3.3-26: TYPICAL AND MAXIMUM CURRENT CONSUMPTION IN VBAT MODE ........................................................ 136 TABLE 3.3-27: PERIPHERAL CURRENT CONSUMPTION IN RUN MODE ............................................................................ 140 TABLE 3.3-28: LOW-POWER MODE WAKEUP TIMINGS(1) ................................................................................................ 145 TABLE 3.3-29: HIGH-SPEED EXTERNAL USER CLOCK CHARACTERISTICS(1) ................................................................... 146 TABLE 3.3-30: LOW-SPEED EXTERNAL USER CLOCK CHARACTERISTICS(1) .................................................................... 147 TABLE 3.3-31: 4-48 MHZ HSE OSCILLATOR CHARACTERISTICS(1)................................................................................ 148 TABLE 3.3-32: LOW-SPEED EXTERNAL USER CLOCK CHARACTERISTICS(1) .................................................................... 149 TABLE 3.3-33: HSI48 OSCILLATOR CHARACTERISTICS ................................................................................................. 150 TABLE 3.3-34: HSI OSCILLATOR CHARACTERISTICS(1) .................................................................................................. 151 TABLE 3.3-35: CSI OSCILLATOR CHARACTERISTICS(1) .................................................................................................. 151 TABLE 3.3-36: LSI OSCILLATOR CHARACTERISTICS ..................................................................................................... 152 TABLE 3.3-37: PLL CHARACTERISTICS (WIDE VCO FREQUENCY RANGE)(1) ................................................................. 153 TABLE 3.3-38: PLL CHARACTERISTICS (MEDIUM VCO FREQUENCY RANGE)(1) ............................................................ 154 TABLE 3.3-39: FLASH MEMORY CHARACTERISTICS ...................................................................................................... 155 TABLE 3.3-40: FLASH MEMORY PROGRAMMING (SINGLE BANK CONFIGURATION NDBANK=1) .................................. 155 TABLE 3.3-41: FLASH MEMORY ENDURANCE AND DATA RETENTION ............................................................................ 155 TABLE 3.3-42: EMS CHARACTERISTICS ........................................................................................................................ 156 TABLE 3.3-43: EMI CHARACTERISTICS......................................................................................................................... 157 TABLE 3.3-44: ESD ABSOLUTE MAXIMUM RATINGS ..................................................................................................... 157 TABLE 3.3-45: ELECTRICAL SENSITIVITIES ................................................................................................................... 158 TABLE 3.3-46: I/O CURRENT INJECTION SUSCEPTIBILITY(1) ........................................................................................... 158 TABLE 3.3-47: I/O STATIC CHARACTERISTICS ............................................................................................................... 159 TABLE 3.3-48: OUTPUT VOLTAGE CHARACTERISTICS FOR ALL I/OS EXCEPT PC13, PC14, PC15 AND PI8(1)................. 161 TABLE 3.3-49: OUTPUT VOLTAGE CHARACTERISTICS FOR PC13, PC14, PC15 AND PI8(1) ............................................ 162 TABLE 3.3-50: OUTPUT TIMING CHARACTERISTICS (HSLV OFF)(1)(2)........................................................................... 164 TABLE 3.3-51: OUTPUT TIMING CHARACTERISTICS (HSLV ON)(1) ............................................................................... 165 TABLE 3.3-52: NRST PIN CHARACTERISTICS ................................................................................................................ 166 TABLE 3.3-53: ASYNCHRONOUS NON-MULTIPLEXED SRAM/PSRAM/NOR READ TIMINGS(1) ..................................... 169 TABLE 3.3-54: ASYNCHRONOUS NON-MULTIPLEXED SRAM/PSRAM/NOR READ-NWAIT TIMINGS(1)(2).................... 169 TABLE 3.3-55: ASYNCHRONOUS NON-MULTIPLEXED SRAM/PSRAM/NOR WRITE TIMINGS(1) .................................... 171 TABLE 3.3-56: ASYNCHRONOUS NON-MULTIPLEXED SRAM/PSRAM/NOR WRITE-NWAIT TIMINGS(1)(2) .................. 171 TABLE 3.3-57: ASYNCHRONOUS MULTIPLEXED PSRAM/NOR READ TIMINGS(1) .......................................................... 173 TABLE 3.3-58: ASYNCHRONOUS MULTIPLEXED PSRAM/NOR READ-NWAIT TIMINGS(1)(2) ........................................ 173 TABLE 3.3-59: ASYNCHRONOUS MULTIPLEXED PSRAM/NOR WRITE TIMINGS(1) ........................................................ 174 TABLE 3.3-60: ASYNCHRONOUS MULTIPLEXED PSRAM/NOR WRITE-NWAIT TIMINGS(1)(2) ....................................... 174 TABLE 3.3-61: SYNCHRONOUS MULTIPLEXED NOR/PSRAM READ TIMINGS(1) ............................................................ 176 TABLE 3.3-62: SYNCHRONOUS MULTIPLEXED PSRAM WRITE TIMINGS(1) .................................................................... 178 TABLE 3.3-63: SYNCHRONOUS NON-MULTIPLEXED NOR/PSRAM READ TIMINGS(1) .................................................... 180 TABLE 3.3-64: SYNCHRONOUS NON-MULTIPLEXED PSRAM WRITE TIMINGS(1) ............................................................ 182 TABLE 3.3-65: SWITCHING CHARACTERISTICS FOR NAND FLASH READ CYCLES(1)...................................................... 185 TABLE 3.3-66: SWITCHING CHARACTERISTICS FOR NAND FLASH WRITE CYCLES(1) .................................................... 185 TABLE 3.3-67: SDRAM READ TIMINGS(1) ..................................................................................................................... 186 TABLE 3.3-68: LPSDR SDRAM READ TIMINGS(1) ........................................................................................................ 187 TABLE 3.3-69: SDRAM WRITE TIMINGS(1) ................................................................................................................... 188 TABLE 3.3-70: LPSDR SDRAM WRITE TIMINGS(1) ...................................................................................................... 188 TABLE 3.3-71: QUADSPI CHARACTERISTICS IN SDR MODE(1) ..................................................................................... 189 TABLE 3.3-72: QUADSPI CHARACTERISTICS IN DDR MODE(1) .................................................................................... 190 TABLE 3.3-73: DELAY BLOCK CHARACTERISTICS ........................................................................................................ 191 TABLE 3.3-74: ADC CHARACTERISTICS(1)(2) ................................................................................................................. 191 TABLE 3.3-75: MINIMUM SAMPLING TIME VS RAIN(1)(2) ................................................................................................. 195 TABLE 3.3-76: ADC ACCURACY(1)(2) ............................................................................................................................. 197 TABLE 3.3-77: DAC CHARACTERISTICS(1)(2) ................................................................................................................. 201 TABLE 3.3-78: DAC ACCURACY(1) ................................................................................................................................ 202 TABLE 3.3-79: VREFBUF CHARACTERISTICS(1) ........................................................................................................... 204 TABLE 3.3-80: TEMPERATURE SENSOR CHARACTERISTICS ........................................................................................... 204 TABLE 3.3-81: TEMPERATURE SENSOR CALIBRATION VALUES ..................................................................................... 205 11 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU TABLE 3.3-82: VBAT MONITORING CHARACTERISTICS................................................................................................... 205 TABLE 3.3-83: VBAT CHARGING CHARACTERISTICS....................................................................................................... 205 TABLE 3.3-84: TEMPERATURE MONITORING CHARACTERISTICS ................................................................................... 205 TABLE 3.3-85: VOLTAGE BOOSTER FOR ANALOG SWITCH CHARACTERISTICS(1) ............................................................ 205 TABLE 3.3-86: COMP CHARACTERISTICS(1).................................................................................................................. 206 TABLE 3.3-87: OPERATIONAL AMPLIFIER CHARACTERISTICS ....................................................................................... 208 TABLE 3.3-88: DFSDM MEASURED TIMING 1.62-3.6 V................................................................................................ 210 TABLE 3.3-89: DCMI CHARACTERISTICS(1) .................................................................................................................. 211 TABLE 3.3-90: LTDC CHARACTERISTICS(1) .................................................................................................................. 212 TABLE 3.3-91: TIMX CHARACTERISTICS(1)(2) ................................................................................................................ 214 TABLE 3.3-92: MINIMUM I2C_KER_CK FREQUENCY IN ALL I2C MODES ........................................................................ 214 TABLE 3.3-93: I2C ANALOG FILTER CHARACTERISTICS(1) .............................................................................................. 215 TABLE 3.3-94: USART CHARACTERISTICS(1) ................................................................................................................ 216 TABLE 3.3-95: SPI CHARACTERISTICS(1) ....................................................................................................................... 218 TABLE 3.3-96: I2S DYNAMIC CHARACTERISTICS(1) ........................................................................................................ 220 TABLE 3.3-97: SAI CHARACTERISTICS(1) ...................................................................................................................... 222 TABLE 3.3-98: MDIO SLAVE TIMING PARAMETERS ..................................................................................................... 223 TABLE 3.3-99: DYNAMICS CHARACTERISTICS: SD / MMC CHARACTERISTICS, VDD=2.7 TO 3.6 V(1)(2) ......................... 225 TABLE 3.3-100: DYNAMICS CHARACTERISTICS: EMMC CHARACTERISTICS VDD=1.71V TO 1.9V(1)(2) ........................ 225 TABLE 3.3-101: DYNAMICS CHARACTERISTICS: USB ULPI(1) ...................................................................................... 227 TABLE 3.3-102: DYNAMICS CHARACTERISTICS: ETHERNET MAC SIGNALS FOR SMI (1) ............................................... 228 TABLE 3.3-103: DYNAMICS CHARACTERISTICS: ETHERNET MAC SIGNALS FOR RMII (1) ............................................. 228 TABLE 3.3-104: DYNAMICS CHARACTERISTICS: ETHERNET MAC SIGNALS FOR MII (1) ................................................ 229 TABLE 3.3-105: DYNAMICS JTAG CHARACTERISTICS .................................................................................................. 230 TABLE 3.3-106: DYNAMICS SWD CHARACTERISTICS: .................................................................................................. 231 TABLE 3.5-1: POWER ON RESET (POR) TIMING TABLE................................................................................................ 233 TABLE 3.6-1: POWER CONSUMPTION ............................................................................................................................ 235 TABLE 3.6-2: THERMAL CHARACTERISTICS ................................................................................................................. 235 TABLE 3.7-1: POWER-UP SEQUENCE TIMING TABLE..................................................................................................... 236 TABLE 3.8-1: I2C EEPROM TIMING TABLE ................................................................................................................. 238 TABLE 3.8-2: PORT 2 MII TX TIMING TABLE ............................................................................................................... 239 TABLE 3.8-3: PORT 2 MII RX TIMING TABLE ............................................................................................................... 240 TABLE 3.8-4: MDC/MDIO TIMING TABLE................................................................................................................... 241 TABLE 3.8-5: DC SYNC/LATCH TIMING CHARACTERISTICS ...................................................................................... 242 TABLE 3.8-6: DIGITAL I/O TIMING TABLE .................................................................................................................... 244 TABLE 3.8-7: PDI SPI SLAVE TIMING TABLE ............................................................................................................... 245 TABLE 3.8-8: FUNCTION SPI WITH SHARE PIN TIMING TABLE ...................................................................................... 250 TABLE 3.8-9: FUNCTION SPI WITH INDIVIDUAL PIN TIMING TABLE.............................................................................. 250 TABLE 3.8-10: PWMX TIMING TABLE ......................................................................................................................... 251 TABLE 3.8-11: PWMX SHIFT TIMING TABLE ............................................................................................................... 252 TABLE 3.8-12: PWMX BBM TIMING TABLE ................................................................................................................ 253 TABLE 3.8-13: STEP FUNCTION TIMING TABLE.............................................................................................................. 253 TABLE 3.8-14: INCREMENTAL AND HALL ENCODER TIMING TABLE ............................................................................ 255 TABLE 3.8-15: SPI MASTER TIMING TABLE ................................................................................................................. 258 12 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 1 Introduction General Description The AX58400 EtherCAT Slave Controller with Dual-Core MCU is a System-in-Package (SiP) product based on the STM32H755 microcontroller from STMicroelectronics. AX58400 is equipped with STM32 Dual-core Arm® Cortex® M7 and Cortex® - M4 32-bit RISC cores. The Cortex® -M7 core operates at up to 480 MHz and the Cortex® - M4 core at up to 240 MHz. Both cores feature a floating point unit (FPU) which supports Arm® single- and double-precision (Cortex® -M7 core) operations and conversions (IEEE 754 compliant), including a full set of DSP instructions and a memory protection unit (MPU) to enhance application security. The EtherCAT Slave Controller (ESC) with two integrated Fast Ethernet PHYs which support 100Mbps full-duplex operation and HP Auto-MDIX. The AX58400 supports the CANopen (CoE), TFTP (FoE), Vender specific application (VoE), etc. standard EtherCAT protocols and provides a cost-effective solution for industrial automation, motion/motor control, robotics, digital I/O control, sensors data acquisition, etc. industrial fieldbus applications. AX58400 incorporates high-speed embedded memories with a dual-bank Flash memory of 2 Mbytes, up to 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, up to 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi-layer AXI interconnect supporting internal and external memory access. AX58400 offers three ADCs, two DACs, two ultra-low power comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor control, five low-power timers, a true random number generator (RNG), and a cryptographic acceleration cell. The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces. • Standard peripherals – Four I2Cs – Four USARTs, four UARTs and one LPUART – Six SPIs, three I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization. – Four SAI serial audio interfaces – One SPDIFRX interface – One SWPMI (Single Wire Protocol Master Interface) – Management Data Input/Output (MDIO) slaves – Two SDMMC interfaces – A USB OTG full-speed and a USB OTG high-speed interface with full-speed capability (with the ULPI) – One FDCAN plus one TT-FDCAN interface – An Ethernet interface – ST Chrom-ART Accelerator™ – HDMI-CEC • Advanced peripherals including – A flexible memory control (FMC) interface – A Quad-SPI Flash memory interface – A camera interface for CMOS sensors – An LCD-TFT display controller – A JPEG hardware compressor/decompressor Refer to Table 1.1-1: AX58400 Features and Peripheral Counts for the list of peripherals available in detail. 13 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU The AX58400’s ESC circuit also provides a three-channel PWM controller or a one-channel Step/Direction controller, and an increment/hall encode interface for closed-loop motor control, a SPI master controller for data acquisition and output, and an I/O watchdog for functional safety. The AX58400, in 225LD EHS-TFBGA 13x13 mm, 0.8-mm pitch, supports the RoHS compliant package and industrial grade operating temperature range from -40 to 85°C. For VDD power domain, supply voltage can drop down to 1.62 V by using an external power supervisor (see Section 2.5.2: Power supply supervisor) and connecting the PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled. Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on AX58400 to allow a greater power supply choice. A comprehensive set of power-saving modes allows the design of low-power applications. These features make AX58400 microcontrollers suitable for a wide range of the EtherCAT applications: • Motor drive and application control • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances • Mobile applications, Internet of Things • Field-Bus to EtherCAT converter 14 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Table 1.1-1: AX58400 Features and Peripheral Counts Peripherals AX58400 Flash memory SRAM in Kbytes TCM RAM in Kbytes 2 Mbytes SRAM mapped onto AXI bus 512 SRAM1 (D2 domain) 128 SRAM2 (D2 domain) 128 SRAM3 (D2 domain) 32 SRAM4 (D3 domain) 64 ITCM RAM (instruction) 64 DTCM RAM (data) 128 Backup SRAM (Kbytes) 4 FMC Yes General-purpose input/outputs Timers 97 Quad-SPI Yes Ethernet High-resolution Yes 1 General-purpose 10 Advanced-control (PWM) 2 Basic 2 Low-power 5 Wakeup pins 4 2 Tamper pins Random number generator Yes Cryptographic accelerator Yes SPI / 6/3(1) I2S I2C 4 4/4/ 1 USART/ UART/ LPUART SAI 4 SPDIFRX 4 inputs SWPMI Yes MDIO Yes SDMMC 2 FDCAN/TT-FDCAN 1/1 USB OTG_FS Yes USB OTG_HS Yes Communication interfaces Camera interface Yes LCD-TFT Yes JPEG Codec Yes Chrom-ART Accelerator™ (DMA2D) Yes 15 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Peripherals AX58400 16-bit ADCs Number of Direct channels Number of Fast channels Number of Slow channels 3 2 15 12-bit DAC Yes Number of channels 2 6 Comparators 2 Operational amplifiers 2 Digital filters for sigma delta modulator (DFSDM) 1 480 MHz(2) 400 MHz(3) Maximum CPU frequency 300 MHz(4) 1.62 to 3.6 V(5) Operating voltage (VDD) Operating temperatures Ambient temperature –40 up to +85 °C(6) Junction temperature –40 to + 125 °C Package 225LD EHS-TFBGA 1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 2. The product junction temperature must be kept within the –40 to +105 °C range. 3. The product junction temperature must be kept within the –40 to +125 °C range. 4. Up to 300 MHz for STM32H755xxx3 sales types (extended industrial temperature range). 5. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 2.5.2: Power supply supervisor) and connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled. 6. Using appropriate cooling methods to guarantee that the maximum junction temperature (125 °C) is not exceeded, the maximum ambient temperature (85°C) can be exceeded. 16 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Block Diagram Figure 1.2-1: AX58400 Block Diagram 17 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pinout Diagram 1 A VDDLDO 2 3 4 5 6 7 8 9 10 11 12 13 14 15 PE13 PE11 PE10 PE8 PF15 PF11 SCLK PB1 SDA PA7 PA4 PA3 VREF+ VSSA A VDDA B B GND PB10 PE15 PE14 PE12 PE9 PE7 PF14 PB2 PB0 PC4 PA5 RSTO VREF- C VCAP SCS_ESC PB11 IO[24] MOSI VDD VCC3IO IO[23] GND VCCK PDI_EMU PA6 RSTn PA2 D PB12 PB13 PB14 SCS_FUNC SINT VDD VCC3IO IO[22] GND VCCK SCL PC5 PA1 PA0 E PB15 PD8 PD9 PD10 IO[26] VDD VCC3IO IO[21] GND VCCK IO[4] TEST PC1 PC3_C F PD11 PD12 PD13 SYNC_ LATCH[0] IO[25] VDD VCC3IO GND GND VCCK GND NC PC0 PF10 G PD14 PD15 PG6 SYNC_ LATCH[1] IO[2] VDD GND GND GND GND NRST IO[19] PF7 PF8 H VDD33US B PG8 PG7 MISO IO[27] VDD GND GND GND GND IO[17] IO[18] PF9 J VDD50US B PC8 PC6 PC7 IO[28] VDD GND GND GND VDD IO[0] IO[1] PF6 GND VLXSMPS J K PA10 PA8 PA9 PC9 IO[29] VDD VDD GND GND VDD IO[16] PE5 PC13 VBAT VSSSMPS K L PA12 PA11 PA13 IO[31] IO[30] PD6 PG11 PG12 P0_RSET_ BG PB4 IO[20] PE1 PE6 P0_ACT PC15-OSC L 32_OUT M LED_RUN LED_ERR DONE PA14 PA15 PG9 PG10 PG13 PG14 PB3 PB6 PE4 P1_ACT PDR_ON PC14-OSC M 32_IN N VCAP PC10 PC11 PD0 PD7 GND GND GND GND GND PB5 PB9 PE0 PE2 PE3 N P GND PC12 PD1 PD3 GND P0_SD P0_XSCI BOOT0 PB8 GND P PD2 PD4 PD5 PB7 VCAP 2 3 4 13 14 EEP_ R VDDLDO 1 P1_TXON P1_RXIN P1_SD P0_TXON P0_RXIN VCC33A P1_TXOP P1_RXIP VCC33A P0_TXOP P0_RXIP VCC33A P0_XSCO 5 6 7 8 9 10 Figure 1.3-1: AX58400 Pinout Diagram 18 11 12 GND_PLL C VCC12A_ D PLL PC2_C E PH1F OSC_OUT PH0OSC_IN G VFBSMPS VDDSMPS H VDDLDO R 15 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Signal Description 1.4.1 Main System Pin Description Name Abbreviation Pin name Pin type Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin ANA Analog-only Input FT 5 V tolerant I/O TT 3.3 V tolerant I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Option for TT and FT I/Os I/O structure I2C FM+ option _a analog option (supplied by VDDA) _u USB option (supplied by VDD33USB) _h High-speed low-voltage I/O Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Notes Pin functions _f Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 1.4-1: Legend/abbreviations used in the pinout table 19 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU By ball definitions Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions - N14 PE2 I/O FT_h - TRACECLK, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, SAI4_MCLK_A, QUADSPI_BK1_IO2, SAI4_CK1, ETH_MII_TXD3, FMC_A23, EVENTOUT N15 PE3 I/O FT_h - TRACED0, TIM15_BKIN, SAI1_SD_B,SAI4_SD_B, FMC_A19, EVENTOUT - - TRACED1, SAI1_D2, DFSDM1_DATIN3, TIM15_CH1N,SPI4_NSS, SAI1_FS_A, SAI4_FS_A, SAI4_D2, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT - - TRACED2, SAI1_CK2, DFSDM1_CKIN3, TIM15_CH1,SPI4_MISO, SAI1_SCK_A, SAI4_SCK_A,SAI4_CK2, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT - - M12 K12 PE4 PE5 I/O I/O FT_h FT_h L13 PE6 I/O FT_h - TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI4_SD_A, SAI4_D1, SAI2_MCLK_B, TIM1_BKIN2_COMP12, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT K13 PC13 I/O FT - EVENTOUT RTC_TAMP1/RTC_ TS/WKUP2 M15 PC14-OSC32_IN (OSC32_IN)(1) I/O FT - EVENTOUT OSC32_IN L15 PC15OSC32_OUT (OSC32_OUT) (1) I/O FT - EVENTOUT OSC32_OUT J13 PF6 I/O FT_ha - TIM16_CH1, SPI5_NSS, SAI1_SD_B, UART7_RX, SAI4_SD_B, ADC3_INN4, ADC3_INP8 20 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions QUADSPI_BK1_IO3, EVENTOUT G13 G14 H13 PF7 PF8 PF9 I/O I/O I/O FT_ha FT_ha FT_ha - TIM17_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_TX, SAI4_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT ADC3_INP3 - TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS/UART7_DE, SAI4_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT ADC3_INN3, ADC3_INP7 - TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, SAI4_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT ADC3_INP2 ADC3_INN2, ADC3_INP6 F14 PF10 I/O FT_ha - TIM16_BKIN, SAI1_D3, QUADSPI_CLK, SAI4_D3, DCMI_D11, LCD_DE, EVENTOUT G15 PH0-OSC_IN (PH0) I/O FT - EVENTOUT OSC_IN F15 PH1-OSC_OUT (PH1) I/O FT - EVENTOUT OSC_OUT G11 NRST I/O RST - - - - DFSDM1_CKIN0, DFSDM1_DATIN4, SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT ADC123_INP10 - TRACED0, SAI1_D1, DFSDM1_DATIN0, DFSDM1_CKIN4, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, SAI4_SD_A, SDMMC2_CK, SAI4_D1, ETH_MDC, ADC123_INN10, ADC123_INP11, RTC_TAMP3/WK UP5 F13 E13 PC0 PC1 I/O I/O FT_a FT_ha 21 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions MDIOS_MDC, EVENTOUT E15 E14 D14 D13 PC2_C PC3_C PA0 PA1 ANA ANA I/O I/O TT_a TT_a FT_a FT_ha - C1DSLEEP, DFSDM1_CKIN1, SPI2_MISO/I2S2_SDI, DFSDM1_CKOUT, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT ADC3_INN1, ADC3_INP0 - C1SLEEP, DFSDM1_DATIN1, SPI2_MOSI/I2S2_SDO, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT ADC3_INP1 - TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, USART2_CTS/USART2_ NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, ETH_MII_CRS, EVENTOUT ADC1_INP16, WKUP0 - TIM2_CH2, TIM5_CH2, LPTIM3_OUT, TIM15_CH1N, USART2_RTS/USART2_ DE, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCLK_B, ETH_MII_RX_CLK/ETH_ RMII_REF_CLK, LCD_R2, EVENTOUT ADC1_INN16, ADC1_INP17 ADC12_INP14, WKUP1 ADC12_INP15 C14 PA2 I/O FT_a - TIM2_CH3, TIM5_CH3, LPTIM4_OUT, TIM15_CH1, USART2_TX, SAI2_SCK_B, ETH_MDIO, MDIOS_MDIO, LCD_R1, EVENTOUT A13 PA3 I/O FT_ ha - TIM2_CH4, TIM5_CH4, LPTIM5_OUT, TIM15_CH2, 22 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions USART2_RX, LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT A12 B12 C12 A11 PA4 PA5 PA6 PA7 I/O I/O I/O I/O TT_a TT_ ha FT_a TT_a - D1PWREN, TIM5_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT ADC12_INP18, DAC1_OUT1 - D2PWREN, TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, SPI6_SCK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT ADC12_INN18, ADC12_INP19, DAC1_OUT2 - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO/I2S1_SDI, SPI6_MISO, TIM13_CH1, TIM8_BKIN_COMP12, MDIOS_MDC, TIM1_BKIN_COMP12, DCMI_PIXCLK, LCD_G2, EVENTOUT ADC12_INP3 - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SDO, SPI6_MOSI, TIM14_CH1, ETH_MII_RX_DV/ETH_R MII_CRS_DV, FMC_SDNWE, EVENTOUT ADC12_INN3, ADC12_INP7, OPAMP1_VINM C2DSLEEP, DFSDM1_CKIN2, I2S1_MCK, ADC12_INP4, SPDIFRX1_IN3, OPAMP1_VOUT, ETH_MII_RXD0/ETH_R COMP1_INM MII_RXD0, FMC_SDNE0, EVENTOUT B11 PC4 I/O TT_a - D12 PC5 I/O TT_a - C2SLEEP, SAI1_D3, DFSDM1_DATIN2, SPDIFRX1_IN4, 23 ADC12_INN4, ADC12_INP8, OPAMP1_VINM AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions SAI4_D3, ETH_MII_RXD1/ETH_R MII_RXD1, FMC_SDCKE0, COMP1_OUT, EVENTOUT B10 A9 PB0 PB1 I/O I/O FT_a TT_u - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, DFSDM1_CKOUT, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, LCD_G1, EVENTOUT ADC12_INN5, ADC12_INP9, OPAMP1_VINP, COMP1_INP - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN1, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT ADC12_INP5, COMP1_INM COMP1_INP B9 PB2 I/O FT_ ha - RTC_OUT, SAI1_D1, DFSDM1_CKIN1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, SAI4_SD_A, QUADSPI_CLK, SAI4_D1, EVENTOUT A7 PF11 I/O FT_a - SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT ADC1_INP2 B8 PF14 I/O FT_fha - DFSDM1_CKIN6, I2C4_SCL, FMC_A8, EVENTOUT ADC2_INN2, ADC2_INP6 A6 PF15 I/O FT_fh - I2C4_SDA, FMC_A9, EVENTOUT - OPAMP2_VOUT, COMP2_INM OPAMP2_VINM B7 PE7 I/O TT_ha - TIM1_ETR, DFSDM1_DATIN2, UART7_RX, QUADSPI_BK2_IO0, FMC_D4/FMC_DA4, EVENTOUT A5 PE8 I/O TT_ha - TIM1_CH1N, DFSDM1_CKIN2, UART7_TX, QUADSPI_BK2_IO1, 24 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions FMC_D5/FMC_DA5, COMP2_OUT, EVENTOUT B6 A4 A3 B5 A2 B4 PE9 PE10 PE11 PE12 PE13 PE14 I/O I/O I/O I/O I/O I/O TT_ha FT_ha FT_ha FT_h FT_h FT_h - TIM1_CH1, DFSDM1_CKOUT, UART7_RTS/UART7_DE, QUADSPI_BK2_IO2, FMC_D6/FMC_DA6, EVENTOUT OPAMP2_VINP, COMP2_INP - TIM1_CH2N, DFSDM1_DATIN4, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7/FMC_DA7, EVENTOUT COMP2_INM - TIM1_CH2, DFSDM1_CKIN4, SPI4_NSS, SAI2_SD_B, FMC_D8/FMC_DA8, LCD_G3, EVENTOUT COMP2_INP - TIM1_CH3N, DFSDM1_DATIN5, SPI4_SCK, SAI2_SCK_B, FMC_D9/FMC_DA9, COMP1_OUT, LCD_B4, EVENTOUT - - TIM1_CH3, DFSDM1_CKIN5, SPI4_MISO, SAI2_FS_B, FMC_D10/FMC_DA10, COMP2_OUT, LCD_DE, EVENTOUT - - TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11/FMC_DA11, LCD_CLK, EVENTOUT - - - B3 PE15 I/O FT_h - TIM1_BKIN, FMC_D12/FMC_DA12, TIM1_BKIN_COMP12/C OMP_TIM1_BKIN, LCD_R7, EVENTOUT B2 PB10 I/O FT_f - TIM2_CH3, HRTIM_SCOUT, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, 25 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions DFSDM1_DATIN7, USART3_TX, QUADSPI_BK1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT C3 D1 D2 D3 PB11 PB12 PB13 PB14 I/O I/O I/O I/O FT_f FT_u FT_u FT_u - TIM2_CH4, HRTIM_SCIN, LPTIM2_ETR, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_R MII_TX_EN, LCD_G5, EVENTOUT - - TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, DFSDM1_DATIN1, USART3_CK, FDCAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_R MII_TXD0, OTG_HS_ID, TIM1_BKIN_COMP12, UART5_RX, EVENTOUT - - TIM1_CH1N, LPTIM2_OUT, SPI2_SCK/I2S2_CK, DFSDM1_CKIN1, USART3_CTS/USART3_ NSS, FDCAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_R MII_TXD1, UART5_TX, EVENTOUT OTG_HS_VBUS - TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, DFSDM1_DATIN2, USART3_RTS/USART3_ DE, UART4_RTS/UART4_DE, SDMMC2_D0, OTG_HS_DM, EVENTOUT - 26 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No E1 E2 E3 E4 F1 F2 F3 Pin name (function after reset) PB15 PD8 PD9 PD10 PD11 PD12 PD13 Pin I/O Notes type structure I/O I/O I/O I/O I/O I/O I/O FT_u FT_h FT_h FT_h FT_h FT_fh FT_fh Alternate functions Additional functions - RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, DFSDM1_CKIN2, UART4_CTS, SDMMC2_D1, OTG_HS_DP, EVENTOUT - - DFSDM1_CKIN3, SAI3_SCK_B, USART3_TX, SPDIFRX1_IN2, FMC_D13/FMC_DA13, EVENTOUT - - DFSDM1_DATIN3, SAI3_SD_B, USART3_RX, FDCAN2_RXFD_MODE, FMC_D14/FMC_DA14, EVENTOUT - - DFSDM1_CKOUT, SAI3_FS_B, USART3_CK, FDCAN2_TXFD_MODE, FMC_D15/FMC_DA15, LCD_B3, EVENTOUT - - LPTIM2_IN2, I2C4_SMBA, USART3_CTS/USART3_ NSS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT - - LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, USART3_RTS/USART3_ DE, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17, EVENTOUT - - LPTIM1_OUT, TIM4_CH2, I2C4_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, - 27 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions EVENTOUT G1 G2 G3 H3 H2 J3 J4 PD14 PD15 PG6 PG7 PG8 PC6 PC7 I/O I/O I/O I/O I/O I/O I/O FT_h FT_h FT_h FT_h FT_h FT_h FT_h - TIM4_CH3, SAI3_MCLK_B, UART8_CTS, FMC_D0/FMC_DA0, EVENTOUT - - TIM4_CH4, SAI3_MCLK_A, UART8_RTS/UART8_DE, FMC_D1/FMC_DA1, EVENTOUT - - TIM17_BKIN, HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12, LCD_R7, EVENTOUT - - HRTIM_CHE2, SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - TIM8_ETR, SPI6_NSS, USART6_RTS/USART6_ DE, SPDIFRX1_IN3, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT - - HRTIM_CHA1, TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, I2S2_MCK, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, SDMMC1_D6, DCMI_D0, LCD_HSYNC, EVENTOUT SWPMI_IO - TRGIO, HRTIM_CHA2, TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, SWPMI_TX, - 28 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions SDMMC1_D7, DCMI_D1, LCD_G6, EVENTOUT J2 K4 K2 K3 PC8 PC9 PA8 PA9 I/O I/O I/O I/O FT_h FT_fh FT_fha FT_u - TRACED1, HRTIM_CHB1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS/UART5_DE, FMC_NE2/FMC_NCE, SWPMI_RX, SDMMC1_D0, DCMI_D2, EVENTOUT - - MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, LCD_G3, SWPMI_SUSPEND, SDMMC1_D1, DCMI_D3, LCD_B2, EVENTOUT - - MCO1, TIM1_CH1, HRTIM_CHB2, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, UART7_RX, TIM8_BKIN2_COMP12, LCD_B3, LCD_R6, EVENTOUT - - TIM1_CH2, HRTIM_CHC1, LPUART1_TX, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, FDCAN1_RXFD_MODE, DCMI_D0, LCD_R5, EVENTOUT OTG_FS_VBUS - - K1 PA10 I/O FT_u - TIM1_CH3, HRTIM_CHC2, LPUART1_RX, USART1_RX, FDCAN1_TXFD_MODE, OTG_FS_ID, MDIOS_MDIO, LCD_B4, DCMI_D1, LCD_B1, EVENTOUT L2 PA11 I/O FT_u - TIM1_CH4, 29 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions HRTIM_CHD1, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS/USART1_ NSS, FDCAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT L1 PA12 I/O FT_u - TIM1_ETR, HRTIM_CHD2, LPUART1_RTS/LPUART 1_DE, SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS/USART1_ DE, SAI2_FS_B, FDCAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT L3 PA13(JTMS/ SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT - M4 PA14(JTCK/ SWCLK) I/O FT - JTCK-SWCLK, EVENTOUT - - JTDI, TIM2_CH1/TIM2_ETR, HRTIM_FLT1, CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS/UART4_DE, UART7_TX, EVENTOUT - - HRTIM_EEV1, DFSDM1_CKIN5, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT - - HRTIM_FLT2, DFSDM1_DATIN5, SPI3_MISO/I2S3_SDI, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3, DCMI_D4, - M5 N2 N3 PA15(JTDI) PC10 PC11 I/O I/O I/O FT FT_ha FT_h 30 - AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions EVENTOUT P2 N4 P3 R2 P4 R3 R4 L6 PC12 PD0 PD1 PD2 PD3 PD4 PD5 PD6 I/O I/O I/O I/O I/O I/O I/O I/O FT_h FT_h FT_h FT_h FT_h FT_h FT_h FT_h - TRACED3, HRTIM_EEV2, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9, EVENTOUT - - DFSDM1_CKIN6, SAI3_SCK_A, UART4_RX, FDCAN1_RX, FMC_D2/FMC_DA2, EVENTOUT - - DFSDM1_DATIN6, SAI3_SD_A, UART4_TX, FDCAN1_TX, FMC_D3/FMC_DA3, EVENTOUT - - TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT - - DFSDM1_CKOUT, SPI2_SCK/I2S2_CK, USART2_CTS/USART2_ NSS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT - - HRTIM_FLT3, SAI3_FS_A, USART2_RTS/USART2_ DE, FDCAN1_RXFD_MODE, FMC_NOE, EVENTOUT - - HRTIM_EEV3, USART2_TX, FDCAN1_TXFD_MODE, FMC_NWE, EVENTOUT - - SAI1_D1, DFSDM1_CKIN4, DFSDM1_DATIN1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, - 31 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions SAI4_SD_A, FDCAN2_RXFD_MODE, SAI4_D1, SDMMC2_CK, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT N5 M6 M7 L7 PD7 PG9 PG10 PG11 I/O I/O I/O I/O FT_h FT_h FT_h FT_h - DFSDM1_DATIN4, SPI1_MOSI/I2S1_SDO, DFSDM1_CKIN1, USART2_CK, SPDIFRX1_IN1, SDMMC2_CMD, FMC_NE1, EVENTOUT - - SPI1_MISO/I2S1_SDI, USART6_RX, SPDIFRX1_IN4, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT - - HRTIM_FLT5, SPI1_NSS/I2S1_WS, LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT - - LPTIM1_IN2, HRTIM_EEV4, SPI1_SCK/I2S1_CK, SPDIFRX1_IN1, SDMMC2_D2, ETH_MII_TX_EN/ETH_R MII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT - - - L8 PG12 I/O FT_h - LPTIM1_IN1, HRTIM_EEV5, SPI6_MISO, USART6_RTS/USART6_ DE, SPDIFRX1_IN2, LCD_B4, ETH_MII_TXD1/ETH_R MII_TXD1, FMC_NE4, LCD_B1, EVENTOUT M8 PG13 I/O FT_h - TRACED0,LPTIM1_OUT, HRTIM_EEV10, SPI6_SCK, USART6_CTS/USART6_ 32 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions NSS, ETH_MII_TXD0/ETH_R MII_TXD0, FMC_A24, LCD_R0, EVENTOUT M9 M10 L10 N11 M11 PG14 PB3(JTDO/T RACESWO) PB4(NJTRST) PB5 PB6 I/O I/O I/O I/O I/O FT_h FT FT FT FT_f - TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_R MII_TXD1, FMC_A25, LCD_B0, EVENTOUT - - JTDO/TRACESWO, TIM2_CH2, HRTIM_FLT4, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, SPI6_SCK, SDMMC2_D2, CRS_SYNC, UART7_RX, EVENTOUT - - NJTRST, TIM16_BKIN, TIM3_CH1, HRTIM_EEV6, SPI1_MISO/I2S1_SDI, SPI3_MISO/I2S3_SDI, SPI2_NSS/I2S2_WS, SPI6_MISO, SDMMC2_D3, UART7_TX, EVENTOUT - - TIM17_BKIN, TIM3_CH2, HRTIM_EEV7, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI, FDCAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, UART5_RX, EVENTOUT - - TIM16_CH1N, TIM4_CH1, HRTIM_EEV8, I2C1_SCL, CEC, I2C4_SCL, USART1_TX, - 33 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions LPUART1_TX, FDCAN2_TX, QUADSPI_BK1_NCS, DFSDM1_DATIN5, FMC_SDNE1, DCMI_D5, UART5_TX, EVENTOUT R13 PB7 I/O FT_fa - TIM17_CH1N, TIM4_CH2, HRTIM_EEV9, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, FDCAN2_TXFD_MODE, DFSDM1_CKIN5, FMC_NL, DCMI_VSYNC, EVENTOUT P13 BOOT0 I B - - VPP - TIM16_CH1, TIM4_CH3, DFSDM1_CKIN7, I2C1_SCL, I2C4_SCL, SDMMC1_CKIN, UART4_RX, FDCAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6, LCD_B6, EVENTOUT - - TIM17_CH1, TIM4_CH4, DFSDM1_DATIN7, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, FDCAN1_TX, SDMMC2_D5, I2C4_SMBA, SDMMC1_D5, DCMI_D7, LCD_B7, EVENTOUT - - LPTIM1_ETR, TIM4_ETR, HRTIM_SCIN, LPTIM2_ETR, UART8_RX, FDCAN1_RXFD_MODE, SAI2_MCLK_A, FMC_NBL0, DCMI_D2, - P14 N12 N13 PB8 PB9 PE0 I/O I/O I/O FT_fh FT_fh FT_h 34 PVD_IN AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin name (function after reset) Pin I/O Notes type structure Alternate functions Additional functions EVENTOUT L12 PE1 I/O FT_h - LPTIM1_IN2, HRTIM_SCOUT, UART8_TX, FDCAN1_TXFD_MODE, FMC_NBL1, DCMI_D3, EVENTOUT M14 PDR_ON I FT - - - - 1. When this ball was previously configured as an oscillator, the oscillator function is kept during and after a reset. This is valid for all resets except for power-on reset. 2. Pxy_C and Pxy balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits. 3. There is a direct path between Pxy_C and Pxy balls, through an analog switch. Pxy alternate functions are available on Pxy_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits. 35 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU By port functions Table 1.4-2: Port A alternate functions AF0 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC PA0 - TIM2_CH1/ TIM2_ETR TIM5_CH1 TIM8_ETR TIM15_BKIN - - PA1 - TIM2_CH2 TIM5_CH2 LPTIM3_ OUT TIM15_ CH1N - - PA2 - TIM2_CH3 TIM5_CH3 LPTIM4_ OUT TIM15_CH1 - - USART2_ TX SAI2_SCK _B - PA3 - TIM2_CH4 TIM5_CH4 LPTIM5_ OUT TIM15_CH2 - - USART2_ RX - LCD_B2 PA4 D1PWR EN - TIM5_ETR - - SPI1_NSS/ I2S1_WS USART2_ CK SPI6_NSS - PA5 D2PWR EN TIM2_CH1/ TIM2_ETR - TIM8_ CH1N - SPI1_SCK/ I2S1_CK - - SPI6_SCK - OTG_HS_ ULPI_CK - - PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_ MISO/I2S1 _SDI - - SPI6_ MISO TIM13_CH1 TIM8_BKIN _COMP12 MDIOS_ MDC TIM1_BKIN _COMP12 PA7 - TIM1_CH1N TIM3_CH2 TIM8_ CH1N - SPI1_ MOSI/I2S1 _SDO - - SPI6_ MOSI TIM14_CH1 - ETH_MII_RX _DV/ETH_ RMII_CRS_DV FMC_SDN WE PA8 MCO1 TIM1_CH1 HRTIM_ CHB2 TIM8_BKIN2 I2C3_SCL - - USART1_ CK - - TIM8_BKIN 2_COMP12 PA9 - TIM1_CH2 HRTIM_ CHC1 LPUART1_TX - USART1_ TX - PA10 - TIM1_CH3 HRTIM_ CHC2 LPUART1_ RX - - USART1_ RX - PA11 - TIM1_CH4 HRTIM_ CHD1 LPUART1_ CTS - Port A Port AF1 I2C3_SMBA AF5 SPI2_SCK/ I2S2_CK - SPI2_NSS/ I2S2_WS AF6 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI3_NSS/ I2S3_WS UART4_RX AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS UART4_TX SDMMC2_ CMD SAI2_SD_B ETH_MII_ CRS - - - EVENT OUT UART4_RX QUADSPI_ BK1_IO3 SAI2_ MCLK_B - - LCD_R2 EVENT OUT ETH_MDIO MDIOS_ MDIO - LCD_R1 EVENT OUT ETH_MII_ COL - - LCD_B5 EVENT OUT LCD_ VSYNC EVENT OUT LCD_R4 EVENT OUT LCD_G2 EVENT OUT - - EVENT OUT LCD_B3 LCD_R6 EVENT OUT USART2_ CTS/ USART2_NSS USART2_ RTS/ USART2_DE USART1_ CTS/ USART1_NSS 36 - FDCAN1_ RXFD_ MODE FDCAN1_ TXFD_MODE FDCAN1_ RX OTG_HS_ ULPI_D0 - OTG_FS_ SOF ETH_MII_RX _CLK/ETH_ RMII_REF_CLK - UART7_RX OTG_HS_ SOF DCMI_ HSYNC DCMI_PIX CLK - - - DCMI_D0 LCD_R5 EVENT OUT OTG_FS_ID MDIOS_ MDIO LCD_B4 DCMI_D1 LCD_B1 EVENT OUT - - - LCD_R4 EVENT OUT OTG_FS_ DM AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 Port A Port AF1 AF2 AF3 AF4 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC AF5 AF6 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS FDCAN1_ TX OTG_FS_ DP - - - LCD_R5 EVENT OUT SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 PA12 - TIM1_ETR HRTIM_ CHD2 LPUART1_ RTS/ LPUART1_DE PA13 JTMSSWDIO - - - - - - - - - - - - - - EVENT OUT PA14 JTCKSWCLK - - - - - - - - - - - - - - EVENT OUT PA15 JTDI TIM2_CH1/ TIM2_ETR HRTIM_ FLT1 - CEC SPI6_NSS UART4_ RTS/UART 4_DE - - UART7_TX - - - EVENT OUT - SPI1/2/3/4/ 5/6/CEC SPI2_SCK/ I2S2_CK SPI1_NSS/ I2S1_WS UART4_TX SPI3_NSS/ I2S3_WS USART1_ RTS/ USART1_DE 37 SAI2_FS_B AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC PB0 - TIM1_CH2N TIM3_CH3 - - PB1 - TIM1_CH3N TIM3_CH4 - PB2 RTC_ OUT - SAI1_D1 PB3 JTDO/ TRACE SWO TIM2_CH2 PB4 NJTRST TIM16_ BKIN PB5 - TIM17_ BKIN PB6 - PB7 - PB8 - PB9 Port AF1 TIM8_CH3N - DFSDM1_ CKIN1 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS DFSDM1_ CKOUT - UART4_ CTS LCD_R3 OTG_HS_ ULPI_D1 ETH_MII_RX D2 - - LCD_G1 EVENT OUT - DFSDM1_ DATIN1 - - LCD_R6 OTG_HS_ ULPI_D2 ETH_MII_RX D3 - - LCD_G0 EVENT OUT - SAI1_SD_A QUADSPI_ CLK SAI4_D1 - - - - EVENT OUT CRS_SYNC UART7_RX - - - EVENT OUT - UART7_TX - - - EVENT OUT SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI3_ MOSI/I2S3 _SDO SAI4_SD_A - SPI1_SCK/ I2S1_CK SPI3_SCK/ I2S3_CK TIM3_CH1 HRTIM_ EEV6 - SPI1_ MISO/I2S1 _SDI SPI3_MISO/ I2S3_SDI SPI2_NSS/ I2S2_WS SPI6_ MISO SDMMC2_D3 TIM3_CH2 HRTIM_ EEV7 I2C1_SMBA SPI1_ MOSI/I2S1 _SDO I2C4_SMBA SPI3_ MOSI/I2S3 _SDO SPI6_ MOSI FDCAN2_ RX OTG_HS_ ULPI_D7 ETH_PPS_ OUT FMC_SDCKE1 TIM4_CH1 HRTIM_ EEV8 I2C1_SCL CEC I2C4_SCL USART1_ TX LPUART1_TX FDCAN2_ TX QUADSPI_ BK1_NCS DFSDM1_ DATIN5 FMC_SDNE1 TIM4_CH2 HRTIM_ EEV9 I2C1_SDA - I2C4_SDA USART1_ RX LPUART1_ RX TIM16_CH1 TIM4_CH3 DFSDM1_ CKIN7 I2C1_SCL - I2C4_SCL SDMMC1_ CKIN - TIM17_CH1 TIM4_CH4 DFSDM1_ DATIN7 I2C1_SDA SPI2_NSS/ I2S2_WS I2C4_SDA PB10 - TIM2_CH3 HRTIM_SC OUT LPTIM2_IN1 I2C2_SCL SPI2_SCK/ I2S2_CK PB11 - TIM2_CH4 HRTIM_ SCIN LPTIM2_ ETR I2C2_SDA PB12 - TIM1_BKIN - - I2C2_SMBA PB13 - TIM1_CH1N - LPTIM2_ OUT Port B - TIM16_CH1N TIM17_CH1N HRTIM_ FLT4 TIM8_CH2N AF5 - - SPI6_SCK SDMMC2_D2 FDCAN2_ TXFD_ MODE - DFSDM1_ CKIN5 UART4_RX FDCAN1_ RX SDMMC2_ D4 ETH_MII_TX D3 SDMMC1_ CDIR UART4_TX FDCAN1_ TX SDMMC2_ D5 DFSDM1_ DATIN7 USART3_ TX - QUADSPI_ BK1_NCS OTG_HS_ ULPI_D3 DFSDM1_ CKIN7 USART3_ RX - SPI2_NSS/ I2S2_WS DFSDM1_ DATIN1 USART3_ CK - FDCAN2_ RX OTG_HS_ ULPI_D5 ETH_MII_TX D0/ETH_ RMII_TXD0 SPI2_SCK/ I2S2_CK DFSDM1_ CKIN1 - FDCAN2_ TX OTG_HS_ ULPI_D6 ETH_MII_ TXD1/ETH_ RMII_TXD1 - USART3_CTS/ USART3_NSS 38 - OTG_HS_ ULPI_D4 DCMI_D10 UART5_ RX EVENT OUT DCMI_D5 UART5_ TX EVENT OUT DCMI_ VSYNC - EVENT OUT SDMMC1_ D4 DCMI_D6 LCD_B6 EVENT OUT I2C4_SMBA SDMMC1_ D5 DCMI_D7 LCD_B7 EVENT OUT ETH_MII_RX _ER - - LCD_G4 EVENT OUT - - LCD_G5 EVENT OUT OTG_HS_ID TIM1_BKIN _COMP12 UART5_ RX EVENT OUT - - UART5_ TX EVENT OUT ETH_MII_TX _EN/ETH_ RMII_TX_EN FMC_NL AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 Port SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 - TIM1_CH2N AF2 AF3 AF4 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC TIM12_CH1 TIM8_CH2N USART1_TX SPI2_ MISO/I2S2 _SDI TIM12_CH2 TIM8_CH3N USART1_RX SPI2_ MOSI/I2S2 _SDO Port B PB14 AF1 PB15 RTC_ REFIN TIM1_CH3N AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS DFSDM1_ DATIN2 USART3_ RTS/USAR T3_DE UART4_ RTS/UART 4_DE SDMMC2_ D0 - - OTG_HS_ DM - - EVENT OUT DFSDM1_ CKIN2 - - - OTG_HS_ DP - - EVENT OUT SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM UART4_ CTS 39 SDMMC2_D1 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 Port PC0 PC1 PC2 PC3 PC4 Port C PC5 AF1 AF2 AF3 AF4 AF5 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC - - AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS DFSDM1_ DATIN4 - SAI2_FS_B - SPI2_ MOSI/I2S2 _SDO SAI1_SD_A - SAI4_SD_A SDMMC2_ CK DFSDM1_ CKOUT - - SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 - - - DFSDM1_ CKIN0 - SAI1_D1 DFSDM1_ DATIN0 - - DFSDM1_ CKIN1 - SPI2_ MISO/I2S2 _SDI - - DFSDM1_ DATIN1 - SPI2_ MOSI/I2S2 _SDO - - - - - DFSDM1_ CKIN2 - I2S1_MCK - - - SPDIFRX1_ IN3 - ETH_MII_RX D0/ETH_ RMII_RXD0 - SAI1_D3 DFSDM1_ DATIN2 - - - - - SPDIFRX1_ IN4 SAI4_D3 ETH_MII_RX D1/ETH_ RMII_RXD1 TRACE D0 C1DSLEEP C1 SLEEP C2 DSLEEP C2 SLEEP DFSDM1_ CKIN4 OTG_HS_ ULPI_STP - FMC_SDN WE - LCD_R5 EVENT OUT SAI4_D1 ETH_MDC MDIOS_ MDC - - EVENT OUT - OTG_HS_ ULPI_DIR ETH_MII_TX D2 - - EVENT OUT - OTG_HS_ ULPI_NXT - - EVENT OUT - - EVENT OUT COMP1_ OUT - EVENT OUT ETH_MII_TX _CLK FMC_SDNE0 FMC_SDCKE0 FMC_SDNE0 FMC_SDCKE0 PC6 - HRTIM_CH A1 TIM3_CH1 TIM8_CH1 DFSDM1_ CKIN3 I2S2_MCK - USART6_ TX SDMMC1_ D0DIR FMC_ NWAIT SDMMC2_ D6 - SDMMC1_ D6 DCMI_D0 LCD_ HSYNC EVENT OUT PC7 TRGIO HRTIM_CH A2 TIM3_CH2 TIM8_CH2 DFSDM1_ DATIN3 - I2S3_MCK USART6_ RX SDMMC1_ D123DIR FMC_NE1 SDMMC2_ D7 SWPMI_TX SDMMC1_ D7 DCMI_D1 LCD_G6 EVENT OUT HRTIM_CH B1 TIM3_CH3 TIM8_CH3 - - - USART6_ CK UART5_ RTS/UART 5_DE FMC_NE2/ FMC_NCE - SWPMI_RX SDMMC1_ D0 DCMI_D2 - EVENT OUT TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN - UART5_ CTS QUADSPI_ BK1_IO0 LCD_G3 SWPMI_ SUSPEND SDMMC1_ D1 DCMI_D3 LCD_B2 EVENT OUT PC8 TRACE D1 PC9 MCO2 - PC10 - - HRTIM_EE V1 DFSDM1_ CKIN5 - - SPI3_SCK/I 2S3_CK USART3_ TX UART4_TX QUADSPI_ BK1_IO1 - - SDMMC1_ D2 DCMI_D8 LCD_R2 EVENT OUT PC11 - - HRTIM_ FLT2 DFSDM1_ DATIN5 - - SPI3_MISO/ I2S3_SDI USART3_ RX UART4_RX QUADSPI_ BK2_NCS - - SDMMC1_ D3 DCMI_D4 - EVENT OUT - HRTIM_EE V2 - - - SPI3_MOSI/ I2S3_SDO USART3_ CK UART5_TX - - - SDMMC1_ CK DCMI_D9 - EVENT OUT - - - - - - - - - - EVENT OUT PC12 PC13 TRACE D3 - - - - - - 40 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM PC14 - - - - - - - - - - - - - - - EVENT OUT PC15 - - - - - - - - - - - - - - - EVENT OUT Port C Port 41 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC PD0 - - - DFSDM1_ CKIN6 - - PD1 - - - DFSDM1_ DATIN6 - - - TIM3_ETR - - Port Port D PD2 TRACE D2 AF1 - DFSDM1_ CKOUT - AF5 SPI2_SCK/ I2S2_CK AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/3/ 6/UART7/SD MMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS - UART4_RX FDCAN1_ RX - - FMC_D2/ FMC_DA2 - - EVENT OUT SAI3_SD_A - UART4_TX FDCAN1_ TX - - FMC_D3/ FMC_DA3 - - EVENT OUT - - UART5_RX - - - SDMMC1_ CMD DCMI_D11 - EVENT OUT - - - - FMC_CLK DCMI_D5 LCD_G7 EVENT OUT SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SAI3_SCK_A PD3 - - - - PD4 - - HRTIM_ FLT3 - - - SAI3_FS_A PD5 - - HRTIM_EE V3 - - - PD6 - - SAI1_D1 DFSDM1_ CKIN4 PD7 - - - DFSDM1_ DATIN4 PD8 - - - PD9 - - PD10 - PD11 PD12 USART2_CTS/ USART2_NSS USART2_ RTS/USART2 _DE - FDCAN1_ RXFD_ MODE - - FMC_NOE - - EVENT OUT - USART2_ TX - FDCAN1_ TXFD_ MODE - - FMC_NWE - - EVENT OUT SPI3_ MOSI/I2S3 _SDO SAI1_SD_A USART2_ RX SDMMC2_ CK FMC_ NWAIT DCMI_D10 LCD_B2 EVENT OUT - SPI1_ MOSI/I2S1 _SDO DFSDM1_ CKIN1 USART2_ CK - SPDIFRX1_ IN1 - SDMMC2_ CMD FMC_NE1 - - EVENT OUT DFSDM1_ CKIN3 - - SAI3_SCK_B USART3_ TX - SPDIFRX1_ IN2 - - FMC_D13/ FMC_DA13 - - EVENT OUT - DFSDM1_ DATIN3 - - SAI3_SD_B USART3_ RX - FDCAN2_ RXFD_ MODE - - FMC_D14/ FMC_DA14 - - EVENT OUT - - DFSDM1_ CKOUT - - SAI3_FS_B USART3_ CK - FDCAN2_ TXFD_ MODE - - FMC_D15/ FMC_DA15 - LCD_B3 EVENT OUT - - - LPTIM2_ IN2 I2C4_SMBA - - - QUADSPI_ BK1_IO0 SAI2_SD_A - FMC_A16 - - EVENT OUT - LPTIM1_IN1 TIM4_CH1 I2C4_SCL - - - QUADSPI_ BK1_IO1 SAI2_FS_A - FMC_A17 - - EVENT OUT LPTIM2_IN1 DFSDM1_ DATIN1 SAI4_SD_A USART3_CTS/ USART3_NSS USART3_ RTS/ USART3_ DE 42 FDCAN2_ RXFD_ MODE SAI4_D1 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC PD13 - LPTIM1_ OUT TIM4_CH2 - I2C4_SDA PD14 - - TIM4_CH3 - PD15 - - TIM4_CH4 - Prot D Port AF1 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/3/ 6/UART7/SD MMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS - - - - - FMC_A18 - - EVENT OUT - - SAI3_MCLK _B - - - SAI3_MCLK _A - UART8_ CTS UART8_RTS/ UART8_DE 43 QUADSPI_ BK1_IO3 SAI2_SCK_A - - - FMC_D0/ FMC_DA0 - - EVENT OUT - - - FMC_D1/ FMC_DA1 - - EVENT OUT AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 AF5 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS SAI2_ MCLK_A - FMC_NBL0 DCMI_D2 - EVENT OUT - FMC_NBL1 DCMI_D3 - EVENT OUT FMC_A23 - - EVENT OUT SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM PE0 - LPTIM1_ ETR TIM4_ETR HRTIM_ SCIN LPTIM2_ ETR - - - UART8_RX FDCAN1_ RXFD_ MODE PE1 - LPTIM1_IN2 - HRTIM_ SCOUT - - - - UART8_TX FDCAN1_ TXFD_ MODE - SAI4_ MCLK_A QUADSPI_ BK1_IO2 SAI4_CK1 Port Port E AF1 PE2 TRACE CLK - SAI1_CK1 - - SPI4_SCK SAI1_MCLK _A - PE3 TRACE D0 - - - TIM15_BKIN - SAI1_SD_B - PE4 TRACE D1 - SAI1_D2 DFSDM1_ DATIN3 SPI4_NSS SAI1_FS_A - PE5 TRACE D2 - SAI1_CK2 DFSDM1_ CKIN3 TIM15_CH1 SPI4_ MISO SAI1_SCK_A - PE6 TRACE D3 TIM15_CH2 SPI4_ MOSI SAI1_SD_A - TIM1_BKIN2 SAI1_D1 - TIM15_CH1N SAI4_SD_B ETH_MII_TX D3 - - - FMC_A19 - - EVENT OUT SAI4_FS_A - SAI4_D2 - FMC_A20 DCMI_D4 LCD_B0 EVENT OUT SAI4_SCK _A - SAI4_CK2 - FMC_A21 DCMI_D6 LCD_G0 EVENT OUT FMC_A22 DCMI_D7 LCD_G1 EVENT OUT SAI4_SD_A SAI4_D1 SAI2_ MCLK_B TIM1_BKIN2 _COMP12 PE7 - TIM1_ETR - DFSDM1_ DATIN2 - - - UART7_RX - - QUADSPI_ BK2_IO0 - FMC_D4/ FMC_DA4 - - EVENT OUT PE8 - TIM1_CH1N - DFSDM1_ CKIN2 - - - UART7_TX - - QUADSPI_ BK2_IO1 - FMC_D5/ FMC_DA5 COMP2_ OUT - EVENT OUT PE9 - TIM1_CH1 - DFSDM1_ CKOUT - - - UART7_RTS/ UART7_DE - - QUADSPI_ BK2_IO2 - FMC_D6/ FMC_DA6 - - EVENT OUT PE10 - TIM1_CH2N - DFSDM1_ DATIN4 - - - UART7_ CTS - - QUADSPI_ BK2_IO3 - FMC_D7/ FMC_DA7 - - EVENT OUT PE11 - TIM1_CH2 - DFSDM1_ CKIN4 - SPI4_NSS - - - - - FMC_D8/ FMC_DA8 - LCD_G3 EVENT OUT PE12 - TIM1_CH3N - DFSDM1_ DATIN5 - SPI4_SCK - - - - - FMC_D9/ FMC_DA9 COMP1_ OUT LCD_B4 EVENT OUT PE13 - TIM1_CH3 - DFSDM1_ CKIN5 - SPI4_ MISO - - - - - FMC_D10/ FMC_DA10 COMP2_ OUT LCD_DE EVENT OUT 44 SAI2_SD_B SAI2_SCK_B SAI2_FS_B AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM PE14 - TIM1_CH4 - - - SPI4_ MOSI - - - - SAI2_MCL K_B - FMC_D11/ FMC_DA11 - PE15 - TIM1_BKIN - - - - - - - - - - FMC_D12/ FMC_DA12 TIM1_BKIN _COMP12/ COMP_ TIM1_BKIN Prot E Port 45 LCD_CLK LCD_R7 EVENT OUT EVENT OUT AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF1 AF2 AF3 AF4 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM PF0 - - - - I2C2_SDA - - - - - - - FMC_A0 - - EVENT OUT PF1 - - - - I2C2_SCL - - - - - - - FMC_A1 - - EVENT OUT PF2 - - - - I2C2_SMBA - - - - - - - FMC_A2 - - EVENT OUT PF3 - - - - - - - - - - - - FMC_A3 - - EVENT OUT PF4 - - - - - - - - - - - - FMC_A4 - - EVENT OUT PF5 - - - - - - - - - - - - FMC_A5 - - EVENT OUT PF6 - TIM16_CH1 - - - SPI5_NSS SAI1_SD_B UART7_RX PF7 - TIM17_CH1 - - - SPI5_SCK SAI1_MCLK _B UART7_TX PF8 - - - - SPI5_ MISO SAI1_SCK_B UART7_RTS/ UART7_DE PF9 - - - - SPI5_ MOSI SAI1_FS_B PF10 - SAI1_D3 - - - PF11 - - - - - PF12 - - - - - PF13 - - - DFSDM1_ DATIN6 PF14 - - - DFSDM1_ CKIN6 PF15 - - - Port F Port TIM16_CH1N TIM17_CH1N TIM16_BKIN - SPI1/2/3/4/ 5/6/CEC SAI4_SD_B QUADSPI_ BK1_IO3 - - - - - EVENT OUT SAI4_ MCLK_B QUADSPI_ BK1_IO2 - - - - - EVENT OUT SAI4_SCK _B TIM13_CH1 QUADSPI_ BK1_IO0 - - - - EVENT OUT UART7_ CTS SAI4_FS_B TIM14_CH1 QUADSPI_ BK1_IO1 - - - - EVENT OUT - - - SAI4_D3 - - DCMI_D11 LCD_DE EVENT OUT SPI5_ MOSI - - - - SAI2_SD_B - DCMI_D12 - EVENT OUT - - - - - - - FMC_A6 - - EVENT OUT I2C4_SMBA - - - - - - - FMC_A7 - - EVENT OUT I2C4_SCL - - - - - - - FMC_A8 - - EVENT OUT I2C4_SDA - - - - - - - FMC_A9 - - EVENT OUT 46 QUADSPI_ CLK FMC_ SDNRAS AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC PG0 - - - - - PG1 - - - - PG2 - - - TIM8_BKIN PG3 - - - PG4 - PG5 - PG6 Port G Port AF1 TIM1_BKIN2 TIM8_BKIN2 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS - - - - - - - FMC_A10 - - EVENT OUT - - - - - - - - FMC_A11 - - EVENT OUT - - - - - - - TIM8_BKIN_ COMP12 FMC_A12 - - EVENT OUT - - - - - - - TIM8_BKIN2 _COMP12 FMC_A13 - - EVENT OUT TIM1_BKIN2 _COMP12 FMC_A14/ FMC_BA0 - - EVENT OUT - FMC_A15/ FMC_BA1 - - EVENT OUT - FMC_NE3 DCMI_D12 LCD_R7 EVENT OUT - FMC_INT DCMI_D13 - - - - - - - - - TIM1_ETR - - - - - - - - - - TIM17_ BKIN HRTIM_ CHE1 - - - - - - - PG7 - - HRTIM_ CHE2 - - - SAI1_MCLK _A - - - PG8 - - - TIM8_ETR - SPI6_NSS - - - PG9 - - - - - SPI1_ MISO/I2S1 _SDI - PG10 - - HRTIM_ FLT5 - - SPI1_NSS/ I2S1_WS - - PG11 - LPTIM1_IN2 HRTIM_ EEV4 - - SPI1_SCK/ I2S1_CK - - PG12 - LPTIM1_IN1 HRTIM_ EEV5 - - SPI6_ MISO - USART6_ CK USART6_ RTS/ USART6_DE USART6_ RX SPDIFRX1 _ IN3 SPDIFRX1 _ IN4 - SPDIFRX1 _ IN1 USART6_ RTS/ USART6_DE 47 SPDIFRX1 _IN2 QUADSPI_ BK1_NCS ETH_PPS_ OUT LCD_CLK EVENT OUT FMC_ SDCLK - LCD_G7 EVENT OUT DCMI_ VSYNC - EVENT OUT QUADSPI_ BK2_IO2 SAI2_FS_B - FMC_NE2/ FMC_NCE LCD_G3 SAI2_SD_B - FMC_NE3 DCMI_D2 LCD_B2 EVENT OUT - SDMMC2_ D2 ETH_MII_ TX_EN/ETH _RMII_TX_EN - DCMI_D3 LCD_B3 EVENT OUT LCD_B4 - FMC_NE4 - LCD_B1 EVENT OUT ETH_MII_TX D1/ETH_ RMII_TXD1 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 Port Port G SYS AF1 AF2 AF3 AF4 AF5 TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC AF6 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM PG13 TRACE D0 LPTIM1_ OUT HRTIM_ EEV10 - - SPI6_SCK - PG14 TRACE D1 LPTIM1_ ETR - - - SPI6_ MOSI - - - - - - - PG15 - AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS - - - ETH_MII_TX D0/ETH_ RMII_TXD0 FMC_A24 - LCD_R0 EVENT OUT - ETH_MII_TX D1/ETH_ RMII_TXD1 FMC_A25 - LCD_B0 EVENT OUT - - DCMI_D13 - EVENT OUT USART6_CTS/ USART6_NSS USART6_ TX - USART6_CTS/ USART6_NSS 48 - QUADSPI_ BK2_IO3 - FMC_ SDNCAS AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 AF5 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI1/2/3/4/ 5/6/CEC AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM PH0 - - - - - - - - - - - - - - - EVENT OUT PH1 - - - - - - - - - - - - - - - EVENT OUT PH2 - LPTIM1_IN2 - - - - - - - QUADSPI_ BK2_IO0 SAI2_SCK_B ETH_MII_ CRS FMC_ SDCKE0 - LCD_R0 EVENT OUT PH3 - - - - - - - - - QUADSPI_ BK2_IO1 SAI2_ MCLK_B ETH_MII_ COL FMC_SDNE0 - LCD_R1 EVENT OUT PH4 - - - - I2C2_SCL - - - - LCD_G5 OTG_HS_U LPI_NXT - - - LCD_G4 EVENT OUT PH5 - - - - I2C2_SDA SPI5_NSS - - - - - - - EVENT OUT PH6 - - - I2C2_SMBA SPI5_SCK - - - - - ETH_MII_RX D2 FMC_SDNE1 DCMI_D8 - EVENT OUT PH7 - - - - I2C3_SCL SPI5_ MISO - - - - - ETH_MII_RX D3 FMC_ SDCKE1 DCMI_D9 - EVENT OUT PH8 - - TIM5_ETR - I2C3_SDA - - - - - - - FMC_D16 DCMI_HSY NC LCD_R2 EVENT OUT PH9 - - - I2C3_SMBA - - - - - - - FMC_D17 DCMI_D0 LCD_R3 EVENT OUT PH10 - - TIM5_CH1 - I2C4_SMBA - - - - - - - FMC_D18 DCMI_D1 LCD_R4 EVENT OUT PH11 - - TIM5_CH2 - I2C4_SCL - - - - - - - FMC_D19 DCMI_D2 LCD_R5 EVENT OUT PH12 - - TIM5_CH3 - I2C4_SDA - - - - - - - FMC_D20 DCMI_D3 LCD_R6 EVENT OUT PH13 - - - - - - - UART4_TX FDCAN1_ TX - - FMC_D21 - LCD_G2 EVENT OUT PH14 - - - - - - - UART4_RX FDCAN1_ RX - - FMC_D22 DCMI_D4 LCD_G3 EVENT OUT PH15 - - - - - - - - FDCAN1_ TXFD_ MODE - - FMC_D23 DCMI_D11 LCD_G4 EVENT OUT Port Port H AF1 TIM12_CH1 TIM12_CH2 TIM8_CH1N TIM8_CH2N TIM8_CH3N 49 - FMC_SDN WE AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/ 17/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS PI0 - - TIM5_CH4 - - SPI2_NSS/ I2S2_WS - - - - - FMC_D24 DCMI_D13 LCD_G5 EVENT OUT PI1 - - - - SPI2_SCK/ I2S2_CK - - - - - FMC_D25 DCMI_D8 LCD_G6 EVENT OUT PI2 - - - TIM8_CH4 - - - - - - - FMC_D26 DCMI_D9 LCD_G7 EVENT OUT PI3 - - - TIM8_ETR - SPI2_ MOSI/I2S2 _SDO - - - - - - FMC_D27 DCMI_D10 - EVENT OUT PI4 - - - TIM8_BKIN - - - - - - FMC_NBL2 DCMI_D5 LCD_B4 EVENT OUT PI5 - - - TIM8_CH1 - - - - - - - FMC_NBL3 DCMI_ VSYNC LCD_B5 EVENT OUT PI6 - - - TIM8_CH2 - - - - - - SAI2_SD_A - FMC_D28 DCMI_D6 LCD_B6 EVENT OUT PI7 - - - TIM8_CH3 - - - - - - SAI2_FS_A - FMC_D29 DCMI_D7 LCD_B7 EVENT OUT PI8 - - - - - - - - - - - - - - - EVENT OUT PI9 - - - - - - - - UART4_RX FDCAN1_ RX - - FMC_D30 - LCD_VS YNC EVENT OUT PI10 - - - - - - - - - FDCAN1_ RXFD_MODE - ETH_MII_RX _ER FMC_D31 - LCD_HS YNC EVENT OUT PI11 - - - - - - - - - LCD_G6 - - - PI12 - - - - - - - - - - - - - - LCD_HS YNC EVENT OUT PI13 - - - - - - - - - - - - - - LCD_VS YNC EVENT OUT PI14 - - - - - - - - - - - - - - LCD_CLK EVENT OUT PI15 - - - - - - - - - LCD_G2 - - - - Port I Port AF1 TIM8_BKIN2 AF5 SPI1/2/3/4/ 5/6/CEC SPI2_MIS O/I2S2_SDI AF6 50 FDCAN1_ RXFD_MODE SAI2_ MCLK_A SAI2_SCK_A OTG_HS_ ULPI_DIR TIM8_BKIN2 _COMP12 TIM8_BKIN_ COMP12 - LCD_R0 EVENT OUT EVENT OUT AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH SPI1/2/3/4/ 5/6/CEC TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS PJ0 - - - - - - - - - LCD_R7 - - - - LCD_R1 EVENT OUT PJ1 - - - - - - - - - - - - - - LCD_R2 EVENT OUT PJ2 - - - - - - - - - - - - - - LCD_R3 EVENT OUT PJ3 - - - - - - - - - - - - - - LCD_R4 EVENT OUT PJ4 - - - - - - - - - - - - - - LCD_R5 EVENT OUT PJ5 - - - - - - - - - - - - - - LCD_R6 EVENT OUT PJ6 - - - TIM8_CH2 - - - - - - - - - - LCD_R7 EVENT OUT PJ7 TRGIN - - - - - - - - - - - - LCD_G0 EVENT OUT PJ8 - TIM1_CH3N - - - - - UART8_TX - - - - - LCD_G1 EVENT OUT PJ9 - TIM1_CH3 - - - - - UART8_RX - - - - - LCD_G2 EVENT OUT PJ10 - TIM1_CH2N - - SPI5_ MOSI - - - - - - - - LCD_G3 EVENT OUT PJ11 - TIM1_CH2 - - SPI5_µ MISO - - - - - - - - LCD_G4 EVENT OUT - - - - - - - - LCD_G3 - - - - LCD_B0 EVENT OUT Port J Port PJ12 TRGOUT AF1 TIM8_CH2N TIM8_CH1 TIM8_CH1N TIM8_CH2 TIM8_CH2N AF5 AF6 PJ13 - - - - - - - - - LCD_B4 - - - - LCD_B1 EVENT OUT PJ14 - - - - - - - - - - - - - - LCD_B2 EVENT OUT PJ15 - - - - - - - - - - - - - - LCD_B3 EVENT OUT 51 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU AF0 AF2 AF3 AF4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/12/ HRTIM1 LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC SPI2/3/SAI1 /3/I2C4 / UART4/ DFSDM SPI2/3/6/ USART1/2/ 3/6/UART7 /SDMMC1 SPI6/SAI2/ 4/UART4/5 /8/LPUART /SDMMC1/ SPDIFRX1 SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX1 SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ETH SPI1/2/3/4/ 5/6/CEC TIM1/8/FM C/SDMMC1 /MDIOS/ OTG1_FS/ LCD TIM1/ DCMI/LCD/ COMP UART5/ LCD SYS PK0 - TIM1_CH1N - TIM8_CH3 - SPI5_SCK - - - - - - - - LCD_G5 EVENT OUT PK1 - TIM1_CH1 - - SPI5_NSS - - - - - - - - LCD_G6 EVENT OUT PK2 - TIM1_BKIN - TIM8_BKIN - - - - - - - - LCD_G7 EVENT OUT PK3 - - - - - - - - - - - - - - LCD_B4 EVENT OUT PK4 - - - - - - - - - - - - - - LCD_B5 EVENT OUT PK5 - - - - - - - - - - - - - - LCD_B6 EVENT OUT PK6 - - - - - - - - - - - - - - LCD_B7 EVENT OUT PK7 - - - - - - - - - - - - - - LCD_DE EVENT OUT Port K Port AF1 TIM8_CH3N AF5 AF6 52 TIM8_BKIN _COMP12 TIM1_BKIN_ COMP12 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 1.4.2 ESC Sub-system Pin Description Following abbreviations are used in “Type” column of below pin description tables. Note that some I/O pins with multiple signal definitions on the same pin may have different attributes in “Type” column for different signal definition A B5 I5 O5 B3 I3 O3 Analog Bi-directional I/O, 3.3V with 5V tolerant Input, 3.3V with 5V tolerant Output, 3.3V with 5V tolerant Bi-directional I/O, 3.3V Input, 3.3V Output, 3.3V PU PD P S T 4m 8m Internal Pull-Up Internal Pull-Down Power/Ground pin Schmitt Trigger Tri-state 4mA driving strength 8mA driving strength The multi-function pin settings are configured by the I2C Hardware Configuration EEPROM (HWCFGEE). Please refer to Section 2.45.4.2 for details. Pin No Pin Name Type E12 TEST I5/PD/S F12 NC I3 C13 RSTn I5/PU/S RSTO\ RSTO_POL O5/8m B13 M1 LED_RUN\ EEP_SIZE B5/4m M2 LED_ERR\ 3PORT_MODE B5/4m L14 P0_ACT\ P0_FIBER B5/4m M13 P1_ACT\ P1_FIBER B5/4m G4 SYNC_LATCH[1] B5/8m F4 SYNC_LATCH[0] B5/8m M3 EEP_DONE O5/8m Description Test mode enable For normal operation, please always tie to logic low or NC. Reserved. Please connect to GND. Reset Input, active low RST_N is the hardware reset input used to reset this chip. This input is logic AND with internal Power-On-Reset (POR) circuit, which generates the main system reset for this chip. Reset Output This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the RSTO polarity, please refer to Section 2.45.4.1. RUN LED This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the EEPROM size configuration, please refer to Section 2.45.4.1. Error LED This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the Port 2 MII enable configuration, please refer to Section 2.45.4.1. PHY 0 Link/Activity LED This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the PHY 0 media mode, please refer to Section 2.45.4.1. PHY 1 Link/Activity LED This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the PHY 1 media mode, please refer to Section 2.45.4.1. Distributed Clocks SyncSignal output or LatchSignal input 1 Distributed Clocks SyncSignal output or LatchSignal input 0 This pin asserted high indicates that the EEPROM 53 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin Name Type PDI_EMU OE_EXT LRDn SCLK SOF LECSn SCS_ESC OUTVLD LWRn MOSI EOF LFCSn SCS_FUNC WD_TRIG LINT SINT I5 I5 I5 I5 O5/8m I5 I5 O5/8m I5 I5 O5/8m I5 I5 O5/8m O5/T O5/T D11 SCL O5/T/4m /S A10 SDA B5/T/4m /S LAT_IN LRDY MISO IO[0] LDA[0] MSCLK IO[1] LDA[1] MMOSI IO[2] LDA[2] MMISO IO[4] LDA[4] MSS[0] IO[16] LA[8] I5 O5/T O5 B5/8m B5 O5 B5/8m B5 O5 B5/8m B5 I5 B5/8m B5 O5 B5/8m I5 LINK I5 IO[17] LA[9] B5/8m I5 PULAB O5 MDIO IO[18] LA[10] B5 B5/8m I5 C11 A8 C2 C5 D4 D5 H4 J11 J12 G5 E11 K11 H11 H12 Description is successfully loaded (Checksum matched) and the PDI can be used. PDI Emulation enable Output Enable Local bus Read SPI Clock Start-of-Frame Local bus ESC Chip Select SPI Chip Select for ESC Output data Valid/Output event Local bus Write SPI data MOSI End-of-Frame Local bus Function Chip Select SPI Chip Select for Function Watchdog Trigger Local bus Interrupt SPI Interrupt I2C Serial Clock line for I2C master controller SCL is a tri-stateable output, which requires an external pull-up resistor. I2C Serial Data line for I2C master controller. SDA is a tri-stateable output, which requires an external pull-up resistor. external data Latch Local bus Ready SPI data MISO Digital /General Purpose I/O[7:0] Local bus Data bus [7:0] SPI Master SCLK Digital /General Purpose I/O[7:0] Local bus Data bus [7:0] SPI Master MOSI Digital /General Purpose I/O[7:0] Local bus Data bus [7:0] SPI Master MISO Digital /General Purpose I/O[7:0] Local bus Data bus [7:0] SPI Master Slave Select Digital /General Purpose I/O[23:16] Local bus Address bus LINK Provided by the PHY if a 100 Mbps (Full Duplex) link is established. Digital /General Purpose I/O[23:16] Local bus Address bus Pulse AB, toggle when programmable point A and B PHY Management Interface data Digital /General Purpose I/O[23:16] Local bus Address bus 54 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No G12 Pin Name PULC MDC IO[19] LA[11] PULZ Type O5 O5 B5/8m I5 O5 TXD[0] \ LINK_POL O5 IO[20] LA[12] PULB B5/8m I5 O5 TXD[1] TXD[2:1]\ TX_SH[1:0] O5 IO[21] LA[13] PULA B5/8m I5 O5 TXD[2] TXD[2:1]\ TX_SH[1:0] O5 IO[22] LBHE PWM3H TXD[3] IO[23] PWM3L TX_EN IO[24] LDA[8] PWM2H RXD[0] IO[25] LDA[9] PWM2L RXD[1] IO[26] LDA[10] PWM1H RXD[2] IO[27] LDA[11] PWM1L RXD[3] IO[28] LDA[12] EMn B5/8m I5 O5/T O5 B5/8m O5/T O5 B5/8m B5 O5/T I5 B5/8m B5 O5/T I5 B5/8m B5 O5/T I5 B5/8m B5 O5/T I5 B5/8m B5 I5 L11 E8 D8 C8 C4 F5 E5 H5 J5 Description Pulse C, PWM period central point PHY Management Interface clock Digital /General Purpose I/O[23:16] Local bus Address bus Pulse Z, PWM period start point Transmit data [0] These pins are input direction during chip reset use to bootstrap the mode setting to decide external PHY’s LINK polarity. Digital /General Purpose I/O[23:16] Local bus Address bus Pulse B, programmable point B Transmit data [2:1] This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the external PHY’s TXD phase shift, please refer to Section 2.45.4.1. Digital /General Purpose I/O[23:16] Local bus Address bus Pulse A, programmable point A Transmit data [2:1] This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the external PHY’s TXD phase shift, please refer to Section 2.45.4.1. Digital /General Purpose I/O[23:16] Local bus Byte High Enable (16-bit width only) PWM 3 High pin Transmit data [3] Digital /General Purpose I/O[23:16] PWM 3 Low pin Transmit enable Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] PWM 2 High pin Receive data Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] PWM 2 Low pin Receive data Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] PWM 1 High pin or DIR pin Receive data Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] PWM 1 Low pin or STEP pin Receive data Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] Emergency input, active low 55 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Pin No Pin Name RX_ER IO[29] LDA[13] ENCA RX_DV IO[30] LDA[14] ENCB RX_CLK IO[31] LDA[15] ENCZ Type I5 B5/8m B5 I5 I5 B5/8m B5 I5 I5 B5/8m B5 I5 MCLK O5 P6 P7 P1_TXON P1_RXIN A A P8 P1_SD A P9 P10 P0_TXON P0_RXIN A A P11 P0_SD A P12 R12 P0_XSCI P0_XSCO A A R6 P1_TXOP A R7 P1_RXIP A R9 P0_TXOP A R10 P0_RXIP A L9 P0_RSET_BG A K5 L5 L4 Description Receive error Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] ENC input A, Sin., CW, CLK, or HALL A Receive data valid Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] ENC input B, Cos., CCW, DIR, or HALL B Receive Clock Digital/General Purpose I/O[31:24] Local bus Data bus [15:8] ENC input Z, Zero point or HALL C MII Clock 25 MHz clock source for Ethernet PHYs PHY 1 differential Transmitted Negative signal PHY 1 differential Received Negative signal PHY 1 fiber mode Signal Detect Same P0_SD description PHY 0 differential Transmitted Negative signal PHY 0 differential Received Negative signal PHY 0 fiber mode Signal Detect SD < 0.2V, Copper mode1.0V < SD < 1.8V, Fiber mode without detected signal. Generate far-end fault SD > 2.4V, Fiber mode with detected signal Crystal 25MHz Input Crystal 25MHz Output PHY 1 differential Transmitted Positive signal Same as PHY0 TXOP/ON description PHY 1 differential Received Positive signal Same as PHY0 RXIP/IN description PHY 0 differential Transmitted Positive signal In the copper mode, the differential data is transmitted to the media on the TXOP/TXON signal pair in the MDI mode. In the fiber mode, the signal pair should be connected to the TX+/TX- pin of the fiber transceiver. PHY 0 differential Received Positive signal In the copper mode, the differential data from the media is received on the RXIP/RXIN signal pair in the MDI mode. In the fiber mode, the signal pair should be connected to the RX+/RX- pin of the fiber transceiver. PHY off-chip Bias Resistor Connects an external resistor of 12 KΩ ± 1% to the PCB analog ground. 56 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 1.4.3 Power/Ground Pin Description Pin No C6, D6, E6, F6, G6, H6, J6, J10, K6, K7, K10 K15 J15 H15 H14 C1, N1, R14 A1, R1, R15 A15 A14 B14 B15 K14 J1 H1 B1, C9, D9, E9, F8, F9, F11, G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J14, K8, K9, N6, N7, N8, N9, N10, P1, P5, P15 C10, D10, E10, F10 Pin Name Type Description VDD P Power supply for I/O ports and LDO source for internal PLL and digital circuit. VSSSMPS VLXSMPS VDDSMPS VFBSMPS S S S S VCAP S VDDLDO S VSSA VREF+ VREFVDDA VBAT VDD50USB VDD33USB GND (VSS) S S S S S S S P VCCK P VCC12A_PLL P VCC3IO P VCC33A P D15 C7, D7, E7, F7 R5, R8, R11 Ground for all Analog and Digital Power. Digital Power for core, 1.2V Please add a 0.1uF bypass capacitor between each VCCK and GND. Analog Power for PLL, 1.2V. Please add a 0.1uF bypass capacitor between VCC12A_PLL and GND. Digital Power for I/O pins, 3.3V Please add a 0.1uF bypass capacitor between each VCC3IO and GND. Analog Power for Ethernet PHY, 3.3V Please add a 0.1uF bypass capacitor between VCC33A and GND. 57 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2 Function Description Dual STM32 Arm® Cortex® cores The industrial AX58400 device embed two STM32 Arm® cores, a Cortex® -M7 and a Cortex® - M4. The Cortex® M4 offers optimal performance for real-time applications while the Cortex® -M7 core can execute highperformance tasks in parallel. The two cores belong to separate power domains. This allows designing gradual high- power efficiency solutions in combination with the low-power modes already available on this AX58400 device. 2.1.1 Arm® Cortex® -M7 with FPU The Arm® Cortex® -M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency. The Cortex® -M7 processor is a highly efficient high-performance featuring: • Six-stage dual-issue pipeline • Dynamic branch prediction • Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache) • 64-bit AXI interface • 64-bit ITCM interface • 2x32-bit DTCM interfaces The following memory interfaces are supported: • Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency • Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses • AXI Bus interface to optimize Burst transfers • Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. Figure 1.2-1 shows the general block diagram of the AX58400 device. Note: Cortex® -M7 with FPU core is binary compatible with the Cortex® -M4 core. 58 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.1.2 Arm® Cortex® -M4 with FPU The Arm® Cortex® -M4 processor is a high-performance embedded processor which supports DSP instructions. It was developed to provide an optimized power consumption MCU, while delivering outstanding computational performance and low interrupt latency. The Arm® Cortex® -M4 processor is a highly efficient MCU featuring: • 3-stage pipeline with branch prediction • Harvard architecture • 32-bit System (S-BUS) interface • 32-bit I-BUS interface • 32-bit D-BUS interface The Arm® Cortex® -M4 processor also features a dedicated hardware adaptive real-time accelerator (ST ART Accelerator™). This is an instruction cache memory composed of sixty- four 256-bit lines, a 256-bit cache buffer connected to the 64-bit AXI interface and a 32-bit interface for non-cacheable accesses. Memory protection unit (MPU) The devices feature two memory protection units. Each MPU manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions. The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory. When an unauthorized access is performed, a memory management exception is generated. 59 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Memories 2.3.1 Embedded Flash memory The AX58400 device embeds 2 Mbytes of Flash memory that can be used for storing programs and data. The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of: • One Flash word (8 words, 32 bytes or 256 bits) • 10 ECC bits. The Flash memory is divided into two independent banks. Each bank is organized as follows: • 1 Mbyte of user Flash memory block containing eight user sectors of 128 Kbytes (4 K Flash memory words) • 128 Kbytes of System Flash memory from which the device can boot • 2 Kbytes (64 Flash words) of user option bytes for user configuration 2.3.2 Secure access mode In addition to other typical memory protection mechanism (RDP, PCROP), AX58400 device introduces the Secure access mode, a new enhanced security feature. This mode allows developing user-defined secure services by ensuring, on the one hand code and data protection and on the other hand code safe execution. Two types of secure services are available: • Root Secure Services: These services are embedded in System memory. They provide a secure solution for firmware and third-party modules installation. These services rely on cryptographic algorithms based on a device unique private key. • User-defined secure services: These services are embedded in user Flash memory. Examples of user secure services are proprietary user firmware update solution, secure Flash integrity check or any other sensitive applications that require a high level of protection. The secure firmware is embedded in specific user Flash memory areas configured through option bytes. Secure services are executed just after a reset and preempt all other applications to guarantee protected and safe execution. Once executed, the corresponding code and data are no more accessible. The above secure services are available only for Cortex ® -M7 core operating in Secure access mode. The other masters cannot access the option bytes involved in Secure access mode settings or the Flash secured areas. 2.3.3 Embedded SRAM All devices feature around 1 Mbyte of RAM with hardware ECC. The RAM is divided as follows: • 512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain. • SRAM1 mapped on D2 domain: 128 Kbytes • SRAM2 mapped on D2 domain: 128 Kbytes • SRAM3 mapped on D2 domain: 32 Kbytes • SRAM4 mapped on D3 domain: 64 Kbytes • 4 Kbytes of backup SRAM The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 60 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU • RAM mapped to TCM interface (ITCM and DTCM): Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either from the Arm® Cortex® M7 CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the Cortex® -M7(AHBS): – 64 Kbytes of ITCM-RAM (instruction RAM) This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the Cortex® -M7. – 128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports) The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex ® M7 dual issue capability. The MDMA can be used to load code or data in ITCM or DTCM RAMs. Error code correction (ECC) Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at finalapplication software level in order to ensure data integrity through ECC algorithms implementation. SRAM data are protected by ECC: • 7 ECC bits are added per 32-bit word. • 8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM. The ECC mechanism is based on the SECDED algorithm. It supports single-error correction and double-error detection. 2.3.4 ST ART™ accelerator The ART™ (adaptive real-time) accelerator block speeds up instruction fetch accesses of the Cortex ® -M4 core from D1-domain internal memories (Flash memory bank 1, Flash memory bank 2, AXI SRAM) and from D1domain external memories attached via Quad-SPI controller and Flexible memory controller (FMC). The ART™ accelerator is a 256-bit cache line using 64-bit WRAP4 accesses from the 64-bit AXI D1 domain. The acceleration is achieved by loading selected code into an embedded cache and making it instantly available to Cortex® -M4 core, thus avoiding latency due to memory wait states. Figure 2.3-1shows the block schematic and the environment of the ART accelerator. 61 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Figure 2.3-1: ST ART™ accelerator schematic and environment 62 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Boot modes By default, the boot codes are executed simultaneously by both cores. However, by programming the appropriate Flash user option byte, it is possible to boot from one core while clock-gating the other core. At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes: • All Flash address space • Flash memory and SRAMs (except for ITCM /DTCM RAMs which cannot be accessed by the Cortex ® -M4 core) The bootloader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU). Power supply management 2.5.1 Power supply scheme AX58400 power supply voltages are the following: • VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD pins. • VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE • VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and OPAMP. • VDD33USB and VDD50USB: • VDD50USB can be supplied through the USB cable to generate the V DD33USB via the USB internal regulator. This allows supporting a VDD supply different from 3.3 V. The USB regulator can be bypassed to supply directly V DD33USB if VDD = 3.3 V. • VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present. • VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V, 1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register and ODEN bit in the SYSCFG_PWRCR register. The VCORE domain is split into the following power domains that can be independently switch off. – D1 domain containing some peripherals and the Cortex ® -M7 core. – D2 domain containing a large part of the peripherals and the Cortex ® -M4 core. – D3 domain containing some peripherals and the system control. • VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply VDDSMPS must be kept at the same voltage level as VDD. • VLXSMPS = SMPS step-down converter output coupled to an inductor. • VFBSMPS = VCORE, 1.8 V or 2.5 V external SMPS step-down converter feedback voltage sense input. During power-up and power-down phases, the following power sequence requirements must be respected (see Figure 2.5-1): • When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB) must remain below VDD + 300 mV. • When VDD is above 1 V, all power supplies are independent (except for V DDSMPS, which must remain at the same level as VDD). 63 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase. Figure 2.5-1: Power-up/power-down sequence 1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB. 2. VDD and VDDSMPS must be wired together into order to follow the same voltage sequence. 2.5.2 Power supply supervisor The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry: • Power-on reset (POR) The POR supervisor monitors VDD power supply and compares it to a fixed threshold. The devices remain in Reset mode when VDD is below this threshold, • Power-down reset (PDR) The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops below a fixed threshold. The PDR supervisor can be enabled/disabled through PDR_ON pin. • Brownout reset (BOR) The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when VDD drops below this threshold. 64 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.5.3 Voltage regulator (SMPS step-down converter and LDO) The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off. Voltage regulator output can be adjusted according to application needs through 6 power supply levels: • Run mode (VOS0 to VOS3) – Scale 0: boosted performance (available only with LDO regulator) – Scale 1: high performance – Scale 2: medium performance and consumption – Scale 3: optimized performance and low-power consumption Note: For AX58400 sales types (industrial temperature range) the voltage regulator output can be set only to VOS2 or VOS3 in Run mode (VOS0 and VOS1 are not available for industrial temperature range). • Stop mode (SVOS3 to SVOS5) – Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C, LPTIM) are operational – Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt. 2.5.4 SMPS step-down converter The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear switching regulator that provides lower power consumption than a conventional voltage regulator (LDO). The SMPS step-down converter can be used for the following purposes: • Direct supply of the VCORE domain – the SMPS step-down converter operating modes follow the device system operating modes (Run, Stop, Standby). – the SMPS step-down converter output voltage are set according to the selected VOS and SVOS bits (voltage scaling) • Delivery of an intermediate voltage level to supply the internal voltage regulator (LDO) – SMPS step-down converter operating modes When the SDEXTHP bit is equal to 0 in the PWR_CR3 register, the SMPS step- down converter follows the device system operating modes (Run, Stop and Standby). When the SDEXTHP bit is equal to 1 in PWR_CR3, the SMPS step-down converter is forced to Highperformance mode and does not follow the device system operating modes (Run, Stop and Standby). – The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected SD level • Delivery of an external supply – The SMPS step-down converter is forced to High-performance mode (provided SDEXTHP bit is equal to 1 in PWR_CR3) – The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected SD level 65 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Low-power strategy There are several ways to reduce power consumption on AX58400: • Select the SMPS step-down converter as VCORE supply voltage source, as it allows to enhance power efficiency. • Select the adequate voltage scaling • Decrease the dynamic power consumption by slowing down the system clocks even in Run mode, and by individually clock gating the peripherals that are not used. • Save power consumption when one or both CPUs are idle, by selecting among the available low-power mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources. The devices feature several low-power modes: • CSleep (CPU clock stopped) • CStop (CPU sub-system clock stopped) • DStop (Domain bus matrix clock stopped) • Stop (System clock stopped) • DStandby (Domain powered down) • Standby (System powered down) CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex® -Mx core is set after returning from an interrupt service routine. A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode. For instance, D1 or D2 domain enters DStop/DStandby mode when the CPU of the domain is in CStop mode AND the other CPU has no peripheral allocated in that domain, or if it is in CStop mode too. D3 domain can enter DStop/DStandby mode if both core subsystems do not have active peripherals in D3 domain, and D3 is not forced in Run mode. If part of the domain is not in low-power mode, the domain remains in the current mode. Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode. The clock system can be re-initialize by a master CPU (either the Cortex® -M4 or -M7) after exiting Stop mode while the slave CPU is held in low-power mode. Once the master CPU has re-initialized the system, the slave CPU can receive a wakeup interrupt and proceed with the interrupt service routine. System power mode Run D1 domain power mode D2 domain power mode DRun/DStop/DStandby DRun/DStop/DStandby D3 domain power mode DRun Stop DStop/DStandby DStop/DStandby DStop Standby DStandby DStandby DStandby Table 2.6-1: System vs domain low-power mode 66 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Reset and clock controller (RCC) The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate. 2.7.1 Clock management The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs. The RCC receives the following clock source inputs: • Internal oscillators: – 64 MHz HSI clock – 48 MHz RC oscillator – 4 MHz CSI clock – 32 KHz LSI clock • External oscillators: – HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz (generated from a crystal/ ceramic resonator) – LSE clock: 32.768 KHz The RCC provides three PLLs: one for system clock, two for kernel clocks. The system starts on the HSI clock. The user application can then select the clock configuration. 2.7.2 System reset sources Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the RCC and power controller status registers, as well as the backup power domain. A system reset is generated in the following cases: • Power-on reset (pwr_por_rst) • Brownout reset • Low level on NRST pin (external reset) • Independent watchdog 1 (from D1 domain) • Independent watchdog 2 (from D2 domain) • Window watchdog 1 (from D1 domain) • Window watchdog 2 (from D2 domain) • Software reset • Low-power mode security reset • Exit from Standby 67 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. After reset, all GPIOs (except debug pins) are in Analog mode to reduce power consumption (refer to GPIOs register reset values in the device reference manual). The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Bus-interconnect matrix The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow interconnecting bus masters with bus slaves (see Figure 2.9-1). Figure 2.9-1: AX58400 Bus matrix 68 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU DMA controllers The devices feature four DMA instances to unload CPU activity: • A master direct memory access (MDMA) The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface and a dedicated AHB interface to access Cortex® -M7 TCM memories. The MDMA is located in D1 domain. It is able to interface with the other DMA controllers located in D2 domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly. Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers. • Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request router capabilities. • One basic DMA (BDMA) located in D3 domain, with request router capabilities. The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output trigger or DMA event. ST Chrom-ART Accelerator™ (DMA2D) The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions: • Rectangle filling with a fixed color • Rectangle copy • Rectangle copy with pixel format conversion • Rectangle composition with blending and pixel format conversion Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also supports block based YCbCr to handle JPEG decoder output. An interrupt can be generated when an operation is complete or at a programmed watermark. All the operations are fully automatized and are running independently from the CPU or the DMAs. 69 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Nested vectored interrupt controller (NVIC) Both Cortex® -M7 (CPU1) and Cortex® -M4 (CPU2) cores have their own nested vector interrupt controller (respectively NVIC1 and NVIC2). Each NVIC instance is able to manage 16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt lines of the Cortex ® -M7 with FPU core. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor context automatically saved on interrupt entry, and restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. Extended interrupt and event controller (EXTI) The EXTI controller performs interrupt and event management. In addition, it can wake up the processors, power domains and/or D3 domain from Stop mode. The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events and 61 direct events (including two interrupt lines for inter-core management). Configurable events have dedicated pending flags, active edge selection, and software trigger capable. Direct events provide interrupts or events from peripherals having a status flag. Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location. 70 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Flexible memory controller (FMC) The FMC controller main features are the following: • Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (4 memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data • Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories • 8-,16-,32-bit data bus width • Independent Chip Select control for each memory bank • Independent configuration for each memory bank • Write FIFO • Read FIFO for SDRAM controller • The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the FMC kernel clock divided by 2. Quad-SPI memory interface (QUADSPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and double datarate operations. It can operate in any of the following modes: • Direct mode through registers • External Flash status register polling mode • Memory mapped mode. Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data accesses are supported as well as code execution. The opcode and the frame format are fully programmable. Analog-to-digital converters (ADCs) The AX58400 device embeds three analog-to-digital converters, which resolution can be configured to 16, 14, 12, 10 or 8 bits. Each ADC shares up to 20 external channels, performing conversions in the Single-shot or Scan mode. In Scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold 71 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC converted values to a destination location without any software action. In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, HRTIM1 and LPTIM1 timer. Temperature sensor AX58400 device embeds a temperature sensor that generates a voltage (VTS) that varies linearly with the temperature. This temperature sensor is internally connected to ADC3_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device junction temperature ranging from − 40 up to +140 °C. The temperature sensor has a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated. The temperature sensor factory calibration data are stored in the System memory area, which is accessible in Readonly mode. VBAT operation The VBAT power domain contains the RTC, the backup registers and the backup SRAM. To optimize battery duration, this power domain is supplied by VDD when available or by the voltage applied on VBAT pin (when VDD supply is not present). VBAT power is switched when the PDR detects that VDD dropped below the PDR level. The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by VDD, in which case, the VBAT mode is not functional. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 72 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Digital-to-analog converters (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel including DMA underrun error detection • external triggers for conversion • input voltage reference VREF+ or internal VREFBUF reference. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. Ultra-low-power comparators (COMP) AX58400 device embeds two rail-to-rail comparators (COMP1 and COMP2). They feature programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as selectable output polarity. The reference voltage can be one of the following: • An external I/O • A DAC output channel • An internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined into a window comparator. Operational amplifiers (OPAMP) AX58400 device embeds two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability. The operational amplifier main features are: • PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3, -7 or -15 • One positive input connected to DAC • Output connected to internal ADC • Low input bias current down to 1 nA 73 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU • Low input offset voltage down to 1.5 mV • Gain bandwidth up to 7.3 MHz The devices embed two operational amplifiers (OPAMP1 and OPAMP2) with two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15. Digital filter for sigma-delta modulators (DFSDM) The devices embed one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support. The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from internal ADC peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM). DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution. The DFSDM peripheral supports: • 8 multiplexed input digital serial channels: – configurable SPI interface to connect various SD modulator(s) – configurable Manchester coded 1 wire interface support – PDM (Pulse Density Modulation) microphone input support – maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding) – clock output for SD modulator(s): 0..20 MHz • alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution): – internal sources: ADC data or memory data streams (DMA) • 4 digital filter modules with adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – integrator: oversampling ratio (1..256) • up to 24-bit output data resolution, signed output data format • automatic data offset correction (offset stored in register by user) • continuous or single conversion • start-of-conversion triggered by: – software trigger – internal timers – external events – start-of-conversion synchronously with first digital filter module (DFSDM0) • analog watchdog feature: 74 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU – low value and high value data threshold registers – dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – input from final output data or from selected input digital serial channels – continuous monitoring independently from standard conversion • short circuit detector to detect saturated analog input values (bottom and top range): – up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream – monitoring continuously each input serial channel • break signal generation on analog watchdog event or on short circuit detector event • extremes detector: – storage of minimum and maximum values of final conversion data – refreshed by software • DMA capability to read the final conversion data • interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence • “regular” or “injected” conversions: – “regular” conversions can be requested at any time or even in Continuous mode without having any impact on the ti ming of “injected” conversions – “injected” conversions for precise timing and with high conversion priority DFSDM features DFSDM1 Number of filters 4 Number of input transceivers/channels 8 Internal ADC parallel input X Number of external triggers 16 Regular channel information in identification register X Table 2.23-1: DFSDM implementation Digital camera interface (DCMI) The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 105 Mbyte/s using a 60 MHz pixel clock. It features: • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports Continuous mode or Snapshot (a single frame) mode • Capability to automatically crop the image 75 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU LCD-TFT controller The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features: • 2 display layers with dedicated FIFO (64x64-bit) • Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer • Up to 8 input color formats selectable per layer • Flexible blending between two layers using alpha value (per pixel or constant) • Flexible programmable parameters for each layer • Color keying (transparency color) • Up to 4 programmable interrupt events • AXI master interface with burst of 16 words JPEG Codec (JPEG) The JPEG Codec can encode and decode a JPEG stream as defined in the ISO/IEC 10918- 1 specification. It provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers. The JPEG codec main features are as follows: • 8-bit/channel pixel depths • Single clock per pixel encoding and decoding • Support for JPEG header generation and parsing • Up to four programmable quantization tables • Fully programmable Huffman tables (two AC and two DC) • Fully programmable minimum coded unit (MCU) • Encode/decode support (non simultaneous) • Single clock Huffman coding and decoding • Two-channel interface: Pixel/Compress In, Pixel/Compressed Out • Support for single greyscale component • Ability to enable/disable header processing • Fully synchronous design • Configuration for High-speed decode mode 76 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Random number generator (RNG) All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. Cryptographic acceleration (CRYP and HASH) The devices embed a cryptographic processor that supports the advanced cryptographic algorithms usually required to ensure confidentiality, authentication, data integrity and non- repudiation when exchanging messages with a peer: • Encryption/Decryption – DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key – AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (Counter mode) chaining algorithms, 128, 192 or 256-bit key • Universal HASH – SHA-1 and SHA-2 (secure HASH algorithms) – MD5 – HMAC The cryptographic accelerator supports DMA request generation. Timers and watchdogs The devices include one high-resolution timer, two advanced-control timers, ten general- purpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer. All timer counters can be frozen in Debug mode. Table 2.29-1 compares the features of the advanced-control, general-purpose and basic timers. Timer type Timer Highresolution HRTIM1 timer Advancedcontrol TIM1, TIM8 DMA Capture/ Counter Counter Prescaler request compare resolution type factor generation channels 16-bit 16-bit Complementary output /1 /2 /4 (x2 x4 x8 x16 x32, with DLL) Yes 10 Yes Any Up, integer Down, between 1 Up/down and 65536 Yes 4 Yes Up 77 Max interface clock (MHz) 480 (2) 120 Max timer clock (MHz) (1)(2) 480 240 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Timer type Timer TIM2, TIM5 TIM3, TIM4 TIM12 DMA Capture/ Counter Counter Prescaler request compare resolution type factor generation channels TIM15 TIM16, TIM17 Max interface clock (MHz) Max timer clock (MHz) (1)(2) 32-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 120 240 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 120 240 16-bit Up Any integer between 1 and 65536 No 2 No 120 240 Up Any integer between 1 and 65536 No 1 No 120 240 Up Any integer between 1 and 65536 Yes 2 1 120 240 Up Any integer between 1 and 65536 Yes 1 1 120 240 Yes 0 No 120 240 No 0 No 120 240 General purpose TIM13, TIM14 Complementary output 16-bit 16-bit 16-bit Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Lowpower timer LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5 16-bit Up 1, 2, 4, 8, 16, 32, 64, 128 Table 2.29-1: Timer feature comparison 1. The maximum timer clock is up to 480 MHz depending on TIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in RCC_D2CFGR register. 2. On AX58400 sales types (extended industrial temperature range), the maximum clock frequency is 300 MHz for the high-resolution timer and 150 MHz for the other timers. 78 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.29.1 High-resolution timer (HRTIM1) The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy timings, such as PWM or phase-shifted pulses. It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection purposes and 10 inputs to handle external events such as current limitation, zero voltage or zero current switching. The HRTIM1 timer is made of a digital kernel clocked at 480 MHz(a) The high-resolution is available on the 10 outputs in all operating modes: variable duty cycle, variable frequency, and constant ON time. The slave timers can be combined to control multi-switch complex converters or operate independently to manage multiple independent converters. The waveforms are defined by a combination of user-defined timings and external events such as analog or digital feedbacks signals. HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also offers specific modes and features to offload the CPU: DMA requests, Burst mode controller, Push-pull and Resonant mode. It supports many topologies including LLC, Full bridge phase shifted, buck or boost converters, either in voltage or current mode, as well as lighting application (fluorescent or LED). It can also be used as a general purpose timer, for instance to achieve high-resolution PWM-emulated DAC. a. Up to 300 MHz for AX58400 sales types (extended industrial temperature range). 2.29.2 Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (Edge- or Center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0- 100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 79 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.29.3 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the AX58400 device (see Table 2.29-1 for differences). • TIM2, TIM3, TIM4, TIM5 The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or One-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM12, TIM13, TIM14, TIM15, TIM16, TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers or used as simple timebases. 2.29.4 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16bit time base. TIM6 and TIM7 support independent DMA request generation. 2.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) The low-power timers have an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: • 16-bit up counter with 16-bit auto-reload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous / One-shot mode • Selectable software / hardware input trigger • Selectable clock source: • Internal clock source: LSE, LSI, HSI or APB clock • External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) • Programmable digital glitch filter • Encoder mode 80 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.29.6 Independent watchdogs There are two independent watchdogs, one per domain. Each independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 KHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. 2.29.7 Window watchdogs There are two window watchdogs, one per domain. Each window watchdog is based on a 7- bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device or each respective domain (configurable in the RCC register), when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode. 2.29.8 SysTick timer The devices feature two SysTick timers, one per CPU. These timers are dedicated to real- time operating systems, but could also be used as a standard downcounter. It features: • A 24-bit downcounter • Auto-reload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. 81 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Real-time clock (RTC), backup SRAM and backup registers The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. • Three anti-tamper detection pins with programmable filter. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode. • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC and the 32 backup registers are supplied through a switch that takes power either from the V DD supply when present or from the VBAT pin. The backup registers are 32-bit registers used to store 128 bytes of user application data when V DD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC clock sources can be: • A 32.768 KHz external crystal (LSE) • An external resonator or oscillator (LSE) • The internal low-power RC oscillator (LSI, with typical frequency of 32 KHz) • The high-speed external clock (HSE) divided by 32. The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes. All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes. 82 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Inter-integrated circuit interface (I2C) AX58400 device embeds four I2C interfaces. The I2C bus interface handles communications between the microcontroller and the serial I 2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • I2C-bus specification and user manual rev. 5 compatibility: – Slave and Master modes, multi-master capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching • System Management Bus (SMBus) specification rev 2.0 compatibility: – Hardware PEC (Packet Error Checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability 83 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Universal synchronous/asynchronous receiver transmitter (USART) AX58400 device has four embedded universal synchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7 and UART8). Refer to Table 2.32-1for a summary of USARTx and UARTx features. These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire Half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 12.5 Mbit/s. USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability. The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode. The wakeup from Stop mode is programmable and can be done on: • Start bit detection • Any received data frame • A specific programmed data frame • Specific TXFIFO/RXFIFO status when FIFO mode is enabled. All USART interfaces can be served by the DMA controller. (1) USART1/2/3/6 UART4/5/7/8 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode (Master/Slave) X - Smartcard mode X - Single-wire Half-duplex communication X X IrDA SIR ENDEC block X X LIN mode X X Dual clock domain and wakeup from low power mode X X Receiver timeout interrupt X X Modbus communication X X Auto baud rate detection X X Driver Enable X X USART modes/features USART data length 7, 8 and 9 bits Tx/Rx FIFO X Tx/Rx FIFO size 1. X = supported. X 16 Table 2.32-1: USART features 84 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Low-power universal asynchronous receiver transmitter (LPUART) The device embeds one Low-Power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup from Stop mode are programmable and can be done on: • Start bit detection • Any received data frame • A specific programmed data frame • Specific TXFIFO/RXFIFO status when FIFO mode is enabled. Only a 32.768 KHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. Serial peripheral interface (SPI)/inter-integrated sound interfaces (I2S) The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI6) that allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Full- duplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode, Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability. Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in Master or Slave mode, in Simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 KHz up to 192 KHz are supported. When either or both of the I2S interfaces is/are configured in Master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I 2S interfaces support 16x 8- bit embedded Rx and Tx FIFOs with DMA capability. Serial audio interfaces (SAI) The devices embed 4 SAIs (SAI1, SAI2, SAI3 and SAI4) that allow designing many stereo or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller. Audio sampling frequencies up to 192 KHz are supported. In addition, up to 8 microphones can be supported thanks to an embedded PDM interface. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously. 85 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU SPDIFRX Receiver Interface (SPDIFRX) The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1). The main SPDIFRX features are the following: • Up to 4 inputs available • Automatic symbol rate detection • Maximum symbol rate: 12.288 MHz • Stereo stream from 32 to 192 KHz supported • Supports Audio IEC-60958 and IEC-61937, consumer applications • Parity bit management • Communication using DMA for audio samples • Communication using DMA for control and user channel information • Interrupt capabilities The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags. The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms. Single wire protocol master interface (SWPMI) The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are: • Full-duplex communication mode • automatic SWP bus state management (active, suspend, resume) • configurable bitrate up to 2 Mbit/s • automatic SOF, EOF and CRC handling SWPMI can be served by the DMA controller. 86 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Management Data Input/Output (MDIO) slaves The devices embed an MDIO slave interface it includes the following features: • 32 MDIO Registers addresses, each of which is managed using separate input and output data registers: – 32 x 16-bit firmware read/write, MDIO read-only output data registers – 32 x 16-bit firmware read-only, MDIO write-only input data registers • Configurable slave (port) address • Independently maskable interrupts/events: – MDIO Register write – MDIO Register read – MDIO protocol error • Able to operate in and wake up from Stop mode SD/SDIO/MMC card host interfaces (SDMMC) Two SDMMC host interfaces are available. They support MultiMediaCard System Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits. Both interfaces support the SD memory card specifications version 4.1. and the SDIO card specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits. Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous. The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM. Controller area network (FDCAN1, FDCAN2) The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit. Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. The FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with eventtriggered and time-triggered CAN communication. A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules. The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1. 87 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Universal serial bus on-the-go high-speed (OTG_HS) The devices embed two USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral. OTG-HS1 supports both full-speed and high-speed operations, while OTG-HS2 supports only full-speed operations. They both integrate the transceivers for full-speed operation (12 Mbit/s) and are able to operate from the internal HSI48 oscillator. OTG-HS1 features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG-HS1 in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripherals are compliant with the USB 2.0 specification and with the OTG 2.0 specification. They have software-configurable endpoint setting and supports suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The main features are: • Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 9 bidirectional endpoints (including EP0) • 16 host channels with periodic OUT support • Software configurable to OTG1.3 and OTG2.0 modes of operation • USB 2.0 LPM (Link Power Management) support • Battery Charging Specification Revision 1.2 support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode (OTG_HS1 only) The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Ethernet MAC interface with dedicated DMA controller (ETH) The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced mediumindependent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller. The devices include the following features: • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) 88 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time High-definition multimedia interface (HDMI)-consumer electronics control (CEC) The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception. Debug infrastructure The devices offer a comprehensive set of debug and trace features on both cores to support software development and system integration. • Breakpoint debugging • Code execution tracing • Software instrumentation • JTAG debug port • Serial-wire debug port • Trigger input and output • Serial-wire trace port • Trace port • Arm® CoreSight™ debug and trace components The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools. The debug infrastructure allows debugging one core at a time, or both cores in parallel. The trace port performs data capture for logging and analysis. A 4-Kbyte embedded trace FIFO (ETF) allows recording data and sending them to any com port. In Trace mode, the trace is transferred by DMA to system RAM or to a high-speed interface (such as SPI or USB). It can even be monitored by a software running on one of the cores. Unlike hardware FIFO mode, this mode is invasive since it uses system resources which are shared by the processors. 89 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU ESC (EtherCAT) Sub-system 2.45.1 Overview The AX58400 implements a 2/3-port EtherCAT slave controller (ESC), licensed from Beckhoff Automation, with 9 Kbytes Process Data RAM, 8 Fieldbus Memory Management Units (FMMUs), 8 Sync-Managers and a 64-bit Distributed Clock. Port 0 and 1 integrate embedded Ethernet PHYs, and port 2 is an optional MII interface which are multi-function pins shared with other interfaces (i.e. PWM, Hall, etc.). Packets are forwarded in the following order: Port 0>EtherCAT Processing Unit->Port 1->Port 2. The AX58400 supports function register mirror from/to ESC memory space. The mirror registers located at process data memory address from 0x3000 to 0x33FF. For detailed information about the EtherCAT technology, the EtherCAT core mechanisms, and major features, we refer to the official standard documentations and guidelines available from ETG (www.ethercat.org, ETG.1000), IEC (http://www.iec.ch, IEC61158, IEC61784-2, IEC 61800-7), and Beckhoff (http://www.beckhoff.de, technical specification) web sites. The AX58400 requires a crystal (25MHz, ±25 PPM at room temperature) as the clock source. Internal PLL generates the 100MHz clock for EtherCAT Slave Controller (ESC) and also for other functions. The AX58400 has three reset sources. First, during the VCCK power-on, the internal Power-On-Reset (POR) can generate a reset pulse to reset all the function blocks when the VCCK power pin rises to a certain threshold voltage level. The second reset is RSTn pin, which is to do the fundamental reset. And third, EtherCAT command reset, the EtherCAT master can send reset sequence to force AX58400 reset. AX58400 also supports a reset output RSTO polarity bootstrap configuration (RSTO_POL). 90 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.2 Features • 2/3-port EtherCAT Slave Controller (ESC) with 2 Integrated Fast Ethernet PHYs • Standard EtherCAT Slave Controller (ESC) – 8 Fieldbus Memory Management Units (FMMUs) – 8 Sync Managers – 64-bit distributed clock – 9K bytes RAM • Integrated Fast Ethernet PHYs – Compliant with IEEE 802.3/802.3u 100BASE-TX/100BASE-FX – PHY loopback mode – Supports twisted pair crossover detection and auto-correction (HP Auto-MDIX) – Automatic polarity detection and correction • 3rd Ethernet MII Port for Flexible EtherCAT Network Configurations • SPI Slave Interface for PDI and Function Access • 3-channel PWM Controller for simple Motion Control • Step & Direction Controller for simple Motion Control • Incremental and Hall Encoder Interface for simple Motion Control • Emergency Stop Input • Configurable Watchdog for Outputs and Inputs Monitoring • IRQ Event Output • SPI Master Interface for ADC/DAC application • Supports I2C Master Interface 91 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.3 Block Diagram Figure 2.45-1: ESC Sub-system Block Diagram 92 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.4 ESC Configuration 2.45.4.1 Bootstrap Pins for Chip Configuration The AX58400 supports five multi-function bootstrap pins (pin M1, M2, C11, L14 and M13) for five hardware configurations, i.e. external I2C EEPROM size, ESC supported port number, RSTO polarity and integrated port 0/1 PHY media mode; and it also supports other three multi-function bootstrap pins (pin L11, E8, G12) for the configuration of port 2 MII signals. User needs to utilize an external resistor to pull up / down these bootstrap pins. Pins Signal Name M1 EEP_SIZE M2 3PORT_MODE B13 RSTO_POL C11 PDI_EMU L14 P0_FIBER M13 P1_FIBER L11 TX_SH [1] E8 TX_SH [0] G12 LINK_POL Description I2C EEPROM Size 0: 1 Kbit to 16Kbit 1: 32Kbit to 4Mbit ESC port number 0: 2 ports mode 1: 3 ports mode RSTO Reset Output Polarity 0: Active Low 1: Active High Device emulation (0x0141.0) 0: Device status register is controlled by PDI 1: Device status register is identical to device control register Port 0 PHY media mode 0: Copper mode 1: Fiber mode Port 1 PHY Media mode 0: Copper mode 1: Fiber mode Port 2 MII TXD Align position 2‘b00: Align with MCLK, 2’b01: Delay 1/4 phase with MCLK 2’b10: Delay 1/2 phase with MCLK 2’b11: Delay 3/4 phase with MCLK Port 2 MII LINK Polarity 0: Active Low 1: Active High Table 2.45-1: ESC Bootstrap Pins Configuration 93 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.4.2 Hardware Configuration EEPROM (HWCFGEE) The AX58400 I2C master controller supports the communication to external I 2C devices and an I2C Hardware Configuration EEPROM Loader to support loading the EtherCAT Slave Information (ESI) from external I2C EEPROM during chip reset. The AX58400 supports I2C EEPROM with EEPROM size from 1 Kbit (128 bytes) to 4 Mbit (500Kbytes). The AX58400 I2C Hardware Configuration EEPROM layout is shown in following table. EEPROM EEPROM Byte Offset Word Offset ESC Configuration Area 0x00 0x00 0x01 0x02 0x03 0x05 - 0x04 0x07 - 0x06 0x09 - 0x08 0x0A 0x0B 0x0C 0x0D 0x0F - 0x0E 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x13 - 0x10 0x09 – 0x08 0x17 - 0x14 0x0B – 0x0A 0x1B - 0x18 0x0D – 0x0C 0x1F - 0x1C 0x0F – 0x0E 0x27 - 0x20 0x13 – 0x10 Bootstrap Mailbox Config 0x29 - 0x28 0x14 0x2B - 0x2A 0x15 0x2D - 0x2C 0x16 0x2F - 0x2E 0x17 Mailbox Sync Man Config 0x31 - 0x30 0x18 0x33 - 0x32 0x19 0x35 - 0x34 0x1A 0x37 - 0x36 0x1B 0x39 - 0x38 0x1C 0x3F - 0x3A 0x1F – 0x1D ESC Register Offset Parameter PDI Control ESC Configuration (bit 2 is also mapped to ESC register 0x0110.2) PDI Configuration Sync/Latch [1:0] Configuration Pulse Length of SyncSignals Extended PDI Configuration Configured Station Alias Host Interface Extend Setting and Drive Strength Reserved, shall be zero Reserved, shall be zero Multi-Function Select and Drive Strength Checksum 0x0140 0x0141 0x0150 0x0151 0x0983 - 0x0982 0x0153 - 0x0152 0x0013 - 0x0012 Vendor ID Product Code Revision Number Serial Number Reserved Bootstrap Receive Mailbox Offset Bootstrap Receive Mailbox Size Bootstrap Send Mailbox Offset Bootstrap Send Mailbox Size Standard Receive Mailbox Offset Standard Receive Mailbox Size Standard Send Mailbox Offset Standard Send Mailbox Size Mailbox Protocol Reserved 0x7B - 0x40 0x3D – 0x20 Reserved 0x7D - 0x7C 0x3E Size 0x7F - 0x7E 0x3F Version ESC Category 1 (for AX58400 Bridge Access Configuration if used) *Note1 0x81 ~ 0x80 0x40 Category 1 Type (Default: 0x0001) 0x83 ~ 0x82 0x41 Category 1 Data Size (words) (Default: 0x0021) 0x84 0x42 MCTLR Access Control 94 0x0580 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU EEPROM Byte Offset 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C 0x8D 0x8E 0x8F 0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C 0x9D 0x9E 0x9F 0xA0 0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC 0xAD 0xAE 0xAF 0xB0 0xB1 0xB2 0xB3 0xB4 EEPROM Word Offset 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A Parameter PXCFGR Access Control PTAPPR Access Control PTBPPR Access Control PPCR Access Control PBBMR Access Control P1CTRLR Access Control P1SHR Access Control P1HPWR Access Control P2CTRLR Access Control P2SHR Access Control P2HPWR Access Control P3CTRLR Access Control P3SHR Access Control P3HPWR Access Control SGTR Access Control SHPWR Access Control TDLYR Access Control STNR Access Control SCFGR Access Control SCTRLR Access Control SCNTR Access Control ECNTVR Access Control ECNSTR Access Control ELATR Access Control EMODR Access Control ECLRR Access Control HALSTR Access Control WTR Access Control WCFGR Access Control WTPVCR Access Control WMSPR Access Control WMMR Access Control WOMR Access Control WOER Access Control WOPR Access Control WTPVR Access Control SPICFGR Access Control SPIBRR Access Control SPIDBSR Access Control SPIDTR Access Control SPIRPTR Access Control SPILTR Access Control SPIPRLR Access Control SPI01BCR Access Control SPI23BCR Access Control SPI45BCR Access Control SPI67BCR Access Control SPI03SSR Access Control 95 ESC Register Offset 0x0581 0x0582 0x0583 0x0584 0x0585 0x0586 0x0587 0x0588 0x0589 0x058A 0x058B 0x058C 0x058D 0x058E 0x058F 0x0590 0x0591 0x0592 0x0593 0x0594 0x0595 0x0596 0x0597 0x0598 0x0599 0x059A 0x059B 0x059C 0x059D 0x059E 0x059F 0x05A0 0x05A1 0x05A2 0x05A3 0x05A4 0x05A5 0x05A6 0x05A7 0x05A8 0x05A9 0x05AA 0x05AB 0x05AC 0x05AD 0x05AE 0x05AF 0x05B0 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU EEPROM Byte Offset 0xB5 0xB6 0xB7 0xB8 EEPROM Word Offset Parameter SPI47SSR Access Control SPIINTSR Access Control 0x5B SPITSR Access Control SPIPOSR Access Control 0x5C SPI Data Status (SPIDSR and SPIDSMR) 0xB9 Access Control SPIC0DR Access Control 0xBA 0x5D SPIC1DR Access Control 0xBB SPIC2DR Access Control 0xBC 0x5E SPIC3DR Access Control 0xBD SPIC4DR Access Control 0xBE 0x5F SPIC5DR Access Control 0xBF SPIC6DR Access Control 0xC0 0x60 SPIC7DR Access Control 0xC1 0xC2 SPIMCR Access Control 0x61 0xC3 INTCR Access Control 0xC4 INTSR Access Control 0x62 0xC5 Function Mirror Enable Other ESC Categories Information (Subdivided in Categories) … Category Strings Category Generals Category FMMU Category SyncManager Category Tx - / RxPDO for each PDO ESC Register Offset 0x05B1 0x05B2 0x05B3 0x05B4 0x05B5 0x05B6 0x05B7 0x05B8 0x05B9 0x05BA 0x05BB 0x05BC 0x05BD 0x05BE 0x05BF 0x05C0 0x05C1 Table 2.45-2: ESC I2C EEPROM Layout Note 1: Reserved words or reserved bits of the ESC Configuration Area should be filled with 0. Note 2: When (re-) configuring the EEPROM from an EtherCAT master system special care must be taken. Not every master allows writing a category 1 entry to the EEPROM. There are different ways to write this into the EEPROM for automatically loading access control configuration when AX58400 booting. 1. Use preprogrammed I2C EEPROM. 2. Use a different category, e.g., 2049, first. Then overwrite the upper byte with 0 with a single EEPROM byte writes. The AX58400 HWCFGEE contents from offset 0x00 to 0x7F are mandatory, as well as the general category (at least the minimum I2C EEPROM size is 2Kbit, and for the complex devices with many categories should be equipped with 32 Kbit EEPROMs or larger one). The ESC Configuration Area is used for AX58400 hardware configuration. All other areas are used by the EtherCAT master or the local application. The ESC Configuration Area (EEPROM offset 0x00 to 0x0F) is automatically read by AX58400 after power-on or reset. It contains the PDI configuration, Distributed Clocks settings, and Configured Station Alias. The consistency of the ESC Configuration Area data is secured with a checksum. The EtherCAT Master can invoke reloading the EEPROM contents. In this case, the Configured Station Alias register 0x0012:0x0013 and ESC Configuration register bits 0x0141 [1,4,5,6,7] (enhanced link detection) are not transferred into the registers. They are only transferred at the initial EEPROM loading after power-on or reset. To use AX58400 bridge functionalities, users should define the Bridger Access Configuration parameters in the first category located at EEPROM offset 0x80. The Category Type must be 0x0001and the Category Data Size must be 0x0021 so the AX58400 will automatically load the EEPROM Bridger Access Configuration parameters into the Bridge Access Configuration registers memory area starting at 0x0580 after power-on or reset. 96 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.4.3 EEPROM Contents Detailed Descriptions PDI Control (0x00) Bit 7:0 Description PDI Control [7:0] 0x00: Interface deactivated (no PDI) 0x04: Digital I/O 0x05: SPI Slave 0x08: 16-bit Asynchronous Local Bus 0x09: 8-bit Asynchronous Local Bus Others: reserved ESC Configuration (0x01) Bit 0 1 3:2 4 5 6 7 Description Device emulation enables (control of AL status) Enhanced Link detection all ports Reserved Enhanced Link port 0 Enhanced Link port 1 Enhanced Link port 2 Reserved PDI Configuration (0x02) Digital I/O Bit 0 1 2 3 5:4 7:6 Description OUTVALID polarity OUTVALID mode Unidirectional/Bidirectional mode Watchdog behavior Input DATA is sampled Output DATA is updated SPI Slave Bit 1:0 3:2 4 5 7:6 Description SPI mode SPI_IRQ output driver/polarity SPI_SEL polarity Data Out sample mode Reserved Asynchronous Local Bus Bit Description 1:0 BUSY/RDY driver/polarity 3:2 IRQ driver/polarity 4 BHE/Byte Enable polarity 7:5 Reserved 97 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Sync/Latch[1:0] Configuration (0x03) Bit 1:0 2 3 5:4 6 7 Description SYNC0 output driver/polarity SYNC0/LATCH0 configuration SYNC0 mapped to AL Event Request SYNC1 output driver/polarity SYNC1/LATCH1 configuration SYNC1 mapped to AL Event Request Pulse Length SyncSignals (0x05 - 0x04) Bit 15:0 Description Pulse length of SyncSignal Extended PDI Configuration (0x07 - 0x06) Digital I/O / SPI Slave (for GPIO) Bit Description Digital I/O or GPIO Digital I/O or GPIO are configured in pairs (1:0) as inputs or outputs: 0 0: Input 1: Output 1 3:2 pair (0: Input, 1: Output) 2 5:4 pair (0: Input, 1: Output) 3 7:6 pair (0: Input, 1: Output) 4 9:8 pair (0: Input, 1: Output) 5 11:10 pair (0: Input, 1: Output) 6 13:12 pair (0: Input, 1: Output) 7 15:14 pair (0: Input, 1: Output) 8 17:16 pair (0: Input, 1: Output) 9 19:18 pair (0: Input, 1: Output) 10 21:20 pair (0: Input, 1: Output) 11 23:22 pair (0: Input, 1: Output) 12 25:24 pair (0: Input, 1: Output) 13 27:26 pair (0: Input, 1: Output) 14 29:28 pair (0: Input, 1: Output) 15 31:30 pair (0: Input, 1: Output) Asynchronous Local Bus Bit Description 0 Read BUSY delay 1 Perform internal write 10:2 Reserved 11 23:22 pair (data bus 8-bit width only) (0: Input, 1: Output) 12 25:24 pair (data bus 8-bit width only) (0: Input, 1: Output) 13 27:26 pair (data bus 8-bit width only) (0: Input, 1: Output) 14 29:28 pair (data bus 8-bit width only) (0: Input, 1: Output) 15 31:30 pair (data bus 8-bit width only) (0: Input, 1: Output) Configured Station Alias (0x09 - 0x08) Bit 15:0 Description Alias Address used for node addressing 98 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Host Interface Extend Setting and Drive Strength (0x0A) Digital I/O Bit Description 4:0 Reserved Control Driving Select: 5 0: 4mA 1: 8mA IO [9:0] Driving Select: 6 0: 4mA 1: 8mA IO [15:10] Driving Select: 7 0: 4mA 1: 8mA SPI Slave / Asynchronous Local Bus Bit Description Interrupt Edge Pulse Length (INTP_LEN) 3:0 Interrupt Edge Pulse = (INTP_LEN+1) * 100ns The trigger type of interrupt signal, SINT / LINT 4 0: Level trigger. 1: Edge trigger. Control Driving Select: 5 0: 4mA 1: 8mA IO [9:0] Driving Select: 6 0: 4mA 1: 8mA IO [15:10] Driving Select: 7 0: 4mA 1: 8mA Multi-Function Select and Drive Strength (0x0D) Bit 0 1 2 3 4 5 Description IO [9:0] select: 0: IO [9:0] 1: MTRG, MDRLD, MSS [3:0], MINT, MMISO, MMOSI, MSCLK, Note: in Local Bus mode this bit no function IO [15:10] (SPI slave separates) select: 0: IO [15:10] 1: IO [15:14], FMOSI, FSCLK, FMISO, SFINT Note: in Local Bus mode this bit no function IO [21:16] select: 0: IO [21:16] 1: PULA, PULB, PULZ, PULZ, PULAB, IO [16] Note: in Local Bus mode this bit no function IO [25:22] select: 0: IO [25:22] 1: PWM2L, PWM2H, PWM3L, PWM3H Note: in Local Bus 16 bits mode this bit no function IO [28:26] select: 0: IO [28:26] 1: EM, PWM1L, PWM1H Note: in Local Bus 16 bits mode this bit no function IO [31:29] select: 0: IO [31:29] 1: ENCZ, ENCB, ENCA Note: in Local Bus 16 bits mode this bit no function 99 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU IO [21:16] Driving Select: 0: 4mA 1: 8mA IO [31:22] Driving Select: 7 0: 4mA 1: 8mA Note: When MII port 2 enable, the IO [31:16] pins are forced to MII port 2 6 Checksum (0x0F - 0x0E) Bit 15:0 Description Checksum Low byte contains remainder of division of EEPROM offset 0x00 to 0x0D as unsigned number divided by the polynomial X^8+X^2+X+1 (initial value 0xFF) For debugging purposes, it is possible to disable the checksum validation with a checksum value of 0x88A4. Note that NEVER use this for production! Category 1 Type (0x81 - 0x80) Bit 15:0 Description Category 1 Type MUST be 0x0001 Category 1 Data Size (0x83 - 0x82) Bit 15:0 Description Category 1 Data Size (words) MUST be 0x0021 MCTLR Access Control (0x84) Bit 3:0 4 7:5 Description Sync. Source Select 0x0: Always triggered 0x1: Start Of Frame (SOF) 0x2: End Of Frame (EOF) 0x3: SYNC0 signal 0x4: LATCH0 signal 0x5: SYNC1 signal 0x6: LATCH1 signal 0x7: After write access 0x8: Trigger when data value changes 0x9: PDI Chip Select Assert 0xA: PDI Chip Select De-assert 0xB: FUNC Chip Select Assert 0xC: FUNC Chip Select De-assert 0xD: Trigger at start of MFC PWM cycle Others: Always triggered ESC Access Enable 0: Writeable with Function Host Interface 1: Writeable with ESC Reserved The Bit Definitions of the other parameters from EEPROM offset 0x85 to 0xC4 are the same as the Bit Definitions of EEPROM offset 0x84. 100 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Function mirror enable (0xC5) Bit 0 1 2 3 7:4 Description PWM function register mirror: 0: Disable PWM function register mirror 1: Enable PWM function register mirror ENC function register mirror: 0: Disable ENC function register mirror 1: Enable ENC function register mirror SPI Master function register mirror: 0: Disable SPI Master function register mirror 1: Enable SPI Master function register mirror IO Watchdog function register mirror: 0: Disable IO Watchdog function register mirror 1: Enable IO Watchdog function register mirror Reserved 101 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.5 Memory Map This section introduces the memory mapping in AX58400. AX58400 provides SPI and Local Bus slave interfaces for both ESC PDI and Function to access the internal registers. Section 2.45.5.1 introduces the ESC memory map which can be accessed by PDI SPI or Local bus interface ,and section 2.45.5.2 introduces the Function register map which can be accessed by Function SPI or Local Bus interface. Due to the Function registers can be accessed by PDI interface and EtherCAT Master directly. So, section 2.45.5.3 introduces the relationship between Function and ESC PDI through the Bridge function. 2.45.5.1 ESC Memory Map ESC Address Length Description (Bytes) 0x0000 0x0001 0x0002 0x0004 0x0005 0x0006 0x0007 0x0008 1 1 2 1 1 1 1 2 0x0010 0x0012 2 2 0x0020 0x0021 0x0030 0x0031 1 1 1 1 0x0040 0x0041 0x0100 0x0108 0x0110 1 1 4 2 2 0x0120 0x0130 0x0134 0x0138 0x0139 2 2 2 1 1 0x0140 0x0141 0x0150 0x0151 0x0152 1 1 1 1 2 0x0200 0x0204 0x0210 0x0220 2 4 2 4 0x0300 0x0308 4x2 4x1 ESC Information Type Revision Build FMMUs supported SyncManagers supported RAM Size Port Descriptor ESC Features supported Station Address Configured Station Address Configured Station Alias Write Protection Write Register Enable Write Register Protection ESC Write Enable ESC Write Protection Data Link Layer ESC Reset ECAT ESC Reset PDI ESC DL Control Physical Read/Write Offset ESC DL Status Application Layer AL Control AL Status AL Status Code RUN LED Override ERR LED Override PDI PDI Control ESC Configuration PDI Configuration Sync/Latch PDI Configuration Extended PDI Configuration Interrupts ECAT Event Mask AL Event Mask ECAT Event Request AL Event Request Error Counters RX Error Counter [3:0] Forwarded RX Error counter [3:0] 102 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 0x030C 0x030D 0x030E 0x0310 1 1 1 4x1 0x0400 0x0410 0x0420 0x0440 0x0442 0x0443 2 2 2 2 1 1 0x0500 0x0501 0x0502 0x0504 0x0508 1 1 2 4 4 0x0510 0x0512 0x0513 0x0514 0x0516 0x0517 0x0518 2 1 1 2 1 1 4 0x0580 0x0581 0x0582 0x0583 0x0584 0x0585 0x0586 0x0587 0x0588 0x0589 0x058A 0x058B 0x058C 0x058D 0x058E 0x058F 0x0590 0x0591 0x0592 0x0593 0x0594 0x0595 0x0596 0x0597 0x0598 0x0599 0x059A 0x059B 0x059C 0x059D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ECAT Processing Unit Error Counter PDI Error Counter PDI Error Code Lost Link Counter [3:0] Watchdogs Watchdog Divider Watchdog Time PDI Watchdog Time Process Data Watchdog Status Process Data Watchdog Counter Process Data Watchdog Counter PDI I2C EEPROM Interface EEPROM Configuration EEPROM PDI Access State EEPROM Control/Status EEPROM Address EEPROM Data MII Management Interface MII Management Control/Status PHY Address PHY Register Address PHY Data MII Management ECAT Access State MII Management PDI Access State PHY Port Status Bridge Access Configuration MCTLR Access Control Register PXCFGR Access Control Register PTAPPR Access Control Register PTBPPR Access Control Register PPCR Access Control Register PBBMR Access Control Register P1CTRLR Access Control Register P1SHR Access Control Register P1HPWR Access Control Register P2CTRLR Access Control Register P2SHR Access Control Register P2HPWR Access Control Register P3CTRLR Access Control Register P3SHR Access Control Register P3HPWR Access Control Register Step Gap Time Access Control Register SHPWR Access Control Register TDLYR Access Control Register Step Target Number Access Control Register SCFGR Access Control Register SCTRLR Access Control Register Step Counter Content Access Control Register Encoder Counter Value Access Control Register Encoder Constant Access Control Register Encoder Latched Access Control Register EMODR Access Control Register ECLRR Access Control Register HALSTR Access Control Register Watchdog Timer Access Control Register WCFGR Access Control Register 103 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 0x059E 0x059F 0x05A0 0x05A1 0x05A2 0x05A3 0x05A4 0x05A5 0x05A6 0x05A7 0x05A8 0x05A9 0x05AA 0x05AB 0x05AC 0x05AD 0x05AE 0x05AF 0x05B0 0x05B1 0x05B2 0x05B3 0x05B4 0x05B5 0x05B6 0x05B7 0x05B8 0x05B9 0x05BA 0x05BB 0x05BC 0x05BD 0x05BE 0x05BF 0x05C0 0x05C1 0x0600:0x067F +0x0 +0x4 +0x6 +0x7 +0x8 +0xA +0xB +0xC +0xD 0x0800:0x083F +0x0 +0x2 +0x4 +0x5 +0x6 +0x7 0x0900:0x09FF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0x0900 4 4 2 1 1 2 1 1 1 3 2 2 1 1 1 1 WTPVCR Access Control Register Watchdog monitored Polarity Access Control Register Watchdog monitored Mask Access Control Register Watchdog Output Mask Access Control Register Watchdog Output Enable Access Control Register Watchdog Output Polarity Access Control Register Watchdog Timer Peak value Access Control Register SPICFGR Access Control Register SPIBRR Access Control Register SPIDBSR Access Control Register SPIDTR Access Control Register SPIRPTR Access Control Register SPILTR Access Control Register SPIPRLR Access Control Register SPI01BCR Access Control Register SPI23BCR Access Control Register SPI45BCR Access Control Register SPI67BCR Access Control Register SPI03SSR Access Control Register SPI47SSR Access Control Register SPINTSR Access Control Register SPITSR Access Control Register SPIPOSR Access Control Register SPI Data Status (SPIDSR and SPIDSMR) Access Control Register SPIC0DR Access Control Register SPIC1DR Access Control Register SPIC2DR Access Control Register SPIC3DR Access Control Register SPIC4DR Access Control Register SPIC5DR Access Control Register SPIC6DR Access Control Register SPIC7DR Access Control Register SPIMCR Access Control Register INTCR Access Control Register INTSR Access Control Register Function Mirror Enable Register FMMU[7:0] Logical Start Address Length Logical Start bit Logical Stop bit Physical Start Address Physical Start bit Type Activate Reserved SyncManager[7:0] Physical Start Address Length Control Register Status Register Activate PDI Control Distributed Clocks (DC) DC – Receive Times Receive Time Port 0 104 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 0x0904 0x0908 0x090C 0x0910 0x0918 0x0920 0x0928 0x092C 0x0930 0x0932 0x0934 0x0935 0x0980 0x0981 0x0982 0x0984 0x098E 0x098F 0x0990 0x0998 0x09A0 0x09A4 0x09A8 0x09A9 0x09AE 0x09AF 0x09B0 0x09B8 0x09C0 0x09C8 0x09F0 0x09F8 0x09FC 0x0E00 0x0E08 0x0F00 0x0F10 0x0F18 0x0F80 0x1000 0x1000 0x3000 0x3002 0x3004 0x3006 4 4 4 Receive Time Port 1 Receive Time Port 2 Receive Time Port 3 DC – Time Loop Control Unit 4(W)/8(R) System Time 8 Receive Time ECAT Processing Unit 8 System Time Offset 4 System Time Delay 4 System Time Difference 2 Speed Counter Start 2 Speed Counter Diff 1 System Time Difference Filter Depth 1 Speed Counter Filter Depth DC – Cyclic Unit Control 1 Cyclic Unit Control DC – SYNC Out Unit 1 Activation 2 Pulse Length of SyncSignals 1 Activation Status 1 SYNC0 Status 1 SYNC1 Status 8 Start Time Cyclic Operation/Next SYNC0 Pulse 8 Next SYNC1 Pulse 4 SYNC0 Cycle Time 4 SYNC1 Cycle Time DC – Latch In Unit 1 Latch0 Control 1 Latch1 Control 1 Latch0 Status 1 Latch1 Status 8 Latch0 Time Positive Edge 8 Latch0 Time Negative Edge 8 Latch1 Time Positive Edge 8 Latch1 Time Negative Edge DC – SyncManager Event Times 4 EtherCAT Buffer Change Event Time 4 PDI Buffer Start Event Time 4 PDI Buffer Change Event Time ESC specific 8 Product ID 8 Vendor ID Digital Input/Output 4 Digital I/O Output Data 4 General Purpose Outputs 4 General Purpose Inputs User RAM/Extended ESC features 128 User RAM/Extended ESC Features Process Data RAM 4 Digital I/O Input Data 8KB Process Data RAM Function Register Mirror (Refer to Section 2.45.5.2) Write / Read 2 Motor Control Register 2 PWM Pulse X Configure Register 2 PWM Trigger A Pulse Position Register 2 PWM Trigger B Pulse Position Register 105 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 0x3008 0x300A 0x300C 0x300E 0x3010 0x3012 0x3014 0x3016 0x3018 0x301A 0x301C 0x3020 0x3024 0x3026 0x3028 0x302C 0x302E 0x3040 0x3044 0x304C 0x304E 0x3060 0x3064 0x3066 0x3068 0x306C 0x3070 0x3074 0x3078 0x3080 0x3082 0x3084 0x3086 0x3088 0x308A 0x308C 0x3090 0x3092 0x3094 0x3096 0x3098 0x309A 0x30B0 0x30B8 0x30C0 0x30C8 0x30D0 0x30D8 0x30E0 0x30E8 0x30F2 0x3100 0x3102 2 2 2 2 2 2 2 2 2 2 2 4 2 2 4 2 2 4 4 2 2 4 2 2 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 8 8 8 8 8 2 2 2 0x3230 0x3248 4 4 PWM Period Cycle Register PWM Pulse Break Before Make Register PWM1Control Register PWM1 Counter Shift Register PWM1 High Pulse Width Register PWM2 Control Register PWM2 Shift Register PWM2 High Pulse Width Register PWM3 Control Register PWM3 Counter Shift Register PWM3 High Pulse Width Register Step Gap Time Register Step High Pulse Width Register Direction Transform Delay Step Register Step Target Number Register Step Configure Register Step Control Register Encoder Counter Value Register Encoder Constant Register Encoder Mode configuration Register Encoder Clear Register Watchdog Timer Register Watchdog Control Register Watchdog Timer Peak Value Clear Register Watchdog Monitored Signals Polarity Register Watchdog Monitored Signals Mask Register Watchdog Output Mask Register Watchdog Output Enable Register Watchdog Output Polarity Register SPI Configure Register SPI Baud Rate Register SPI Delay Byte and SS Register SPI Delay Transfer Register SPI RDY / Pulse Time Register SPI LDAC Time Register SPI Pulse/ RDY/ LDAC Register SPI 0/1 Byte Count Register SPI 2/3 Byte Count Register SPI 4/5 Byte Count Register SPI 6/7 Byte Count Register SPI 0/1/2/3 slave Select Register SPI 4/5/6/7 slave Select Register SPI Channel 0 Data Register SPI Channel 1 Data Register SPI Channel 2 Data Register SPI Channel 3 Data Register SPI Channel 4 Data Register SPI Channel 5 Data Register SPI Channel 6 Data Register SPI Channel 7 Data Register SPI Master Control Register Interrupt Configure Register Interrupt Status Register Read Only Step Counter Content Register Encoder Latched Register 106 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 0x3250 0x327C 0x32A8 0x32AA 0x32AC 0x32AE 0x32B0 0x32B8 0x32C0 0x32C8 0x32D0 0x32D8 0x32E0 0x32E8 0x32F0 2 4 2 2 2 2 8 8 8 8 8 8 8 8 2 Hall State Register Watchdog Timer Peak Value Register SPI Interrupt Status Register SPI Timeout Status Register SPI Pulse Overrun Status Register SPI Data Status Register SPI Channel 0 Data Register SPI Channel 1 Data Register SPI Channel 2 Data Register SPI Channel 3 Data Register SPI Channel 4 Data Register SPI Channel 5 Data Register SPI Channel 6 Data Register SPI Channel 7 Data Register SPI Data Status Mirror Register Table 2.45-3: ESC Memory Map 107 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.5.2 Function Register Map Address Offset 0x000 0x002 0x004 0x006 0x008 0x00A 0x00C 0x00E 0x010 0x012 0x014 0x016 0x018 0x01A 0x01C 0x020 0x022 0x024 0x026 0x028 0x02A 0x02C 0x02E 0x030 0x032 0x040 0x042 0x044 0x046 0x048 0x04A 0x04C 0x04E 0x050 0x060 0x062 0x064 0x066 0x068 0x06A 0x06C 0x06E 0x070 0x072 0x074 0x076 0x078 0x07A 0x07C 0x07E 0x080 0x082 0x084 Name MCTLR PXCFGR PTAPPR PTBPPR PPCR PBBMR P1CTRLR P1SHR P1HPWR P2CTRLR P2SHR P2HPWR P3CTRLR P3SHR P3HPWR SGTLR SGTHR SHPWR TDLYR STNLR STNHR SCFGR SCTRLR SCNTLR SCNTHR ECNTVLR ECNTVHR ECNSTLR ECNSTHR ELATLR ELATHR EMODR ECLRR HALSTR WTLR WTHR WCFGR WTPVCR WMPLR WMPHR WMMLR WMMHR WOMLR WOMHR WOELR WOEHR WOPLR WOPHR WTPVLR WTPVHR SPICFGR SPIBRR SPIDBSR Description Motor Control Register PWM Pulse X Configure Register PWM Trigger A Pulse Position Register PWM Trigger B Pulse Position Register PWM Period Cycle Register PWM Pulse Break Before Make Register PWM1Control Register PWM1 Counter Shift Register PWM1 High Pulse Width Register PWM2 Control Register PWM2 Shift Register PWM2 High Pulse Width Register PWM3 Control Register PWM3 Counter Shift Register PWM3 High Pulse Width Register Step Gap Time Low Register Step Gap Time High Register Step High Pulse Width Register direction Transform Delay step Register Step Target Number Low Word Register Step Target Number High Word Register Step Configure Register Step Control Register Step Counter Content Low Register Step Counter Content High Register Encoder Counter value Low Register Encoder Counter value High Register Encoder Constant Low Register Encoder Constant High Register Encoder Latched Low Register Encoder Latched High Register Encoder Mode Configuration Register Encoder Clear Register Hall State Register Watchdog Timer Low Register Watchdog Timer High Register Watchdog Configure Register Watchdog Timer Peak Value Clear Register Watchdog Monitored Polarity Low Register Watchdog Monitored Polarity High Register Watchdog Monitored Mask Low Register Watchdog Monitored Mask High Register Watchdog Output Mask Low Register Watchdog Output Mask High Register Watchdog Output Enable Low Register Watchdog Output Enable High Register Watchdog Output Polarity Low Register Watchdog Output Polarity High Register Watchdog Timer Peak Value Low Register Watchdog Timer Peak Value High Register SPI Configure Register SPI Baud Rate Register SPI Delay Byte and SS Register 108 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Address Offset 0x086 0x088 0x08A 0x08C 0x090 0x092 0x094 0x096 0x098 0x09A 0x0A8 0x0AA 0x0AC 0x0AE 0x0B0 0x0B8 0x0C0 0x0C8 0x0D0 0x0D8 0x0E0 0x0E8 0x0F0 0x0F2 0x100 0x102 0x104 0x106 Others Name SPIDTR SPIRPTR SPILTR SPIPRLR SPI01BCR SPI23BCR SPI45BCR SPI67BCR SPI03SSR SPI47SSR SPINTSR SPITSR SPIPOSR SPIDSR SPIC0DR SPIC1DR SPIC2DR SPIC3DR SPIC4DR SPIC5DR SPIC6DR SPIC7DR SPIDSMR SPIMCR INTCR INTSR ESTOR HSTSR Reserved Description SPI Delay Transfer Register SPI RDY / Pulse Time Register SPI LDAC Time Register SPI Pulse/ RDY/ LDAC Register SPI 0/1 Byte Count Register SPI 2/3 Byte Count Register SPI 4/5 Byte Count Register SPI 6/7 Byte Count Register SPI 0/1/2/3 slave Select Register SPI 4/5/6/7 slave Select Register SPI Interrupt Status Register SPI Timeout Status Register SPI Pulse Overrun Status Register SPI Data Status Register SPI Channel 0 Data Register SPI Channel 1 Data Register SPI Channel 2 Data Register SPI Channel 3 Data Register SPI Channel 4 Data Register SPI Channel 5 Data Register SPI Channel 6 Data Register SPI Channel 7 Data Register SPI Data Status Mirror Register SPI Master Control Register Interrupt Configure Register Interrupt Status Register ESC State Override register Host interface Status Register Reserved Table 2.45-4: ESC Function Register Map 109 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 2.45.5.3 Memory Map between ESC Memory and Function Registers Function Address 0x000 0x002 0x004 0x006 0x008 0x00A 0x00C 0x00E 0x010 0x012 0x014 0x016 0x018 0x01A 0x01C 0x020 0x022 0x024 0x026 0x028 0x02A 0x02C 0x02E 0x030 0x032 0x040 0x042 0x044 0x046 0x048 0x04A 0x04C 0x04E 0x050 0x060 0x062 0x064 0x066 0x068 0x06A 0x06C 0x06E 0x070 0x072 0x074 0x076 0x078 0x07A 0x07C 0x07E 0x080 0x082 0x084 ESC Address R/W RO 0x3000 0x3002 0x3004 0x3006 0x3008 0x300A 0x300C 0x300E 0x3010 0x3012 0x3014 0x3016 0x3018 0x301A 0x301C 0x3020 - 0x3024 0x3026 - 0x3028 - 0x302C 0x302E - - 0x3230 0x3040 - 0x3044 - - 0x3248 0x304C 0x304E - 0x3250 0x3060 - 0x3064 0x3066 - 0x3068 - 0x306C - 0x3070 - 0x3074 - 0x3078 - - 0x327C 0x3080 0x3082 0x3084 - Name Description MCTLR PXCFGR PTAPPR PTBPPR PPCR PBBMR P1CTRLR P1SHR P1HPWR P2CTRLR P2SHR P2HPWR P3CTRLR P3SHR P3HPWR SGTLR SGTHR SHPWR TDLYR STNLR STNHR SCFGR SCTRLR SCNTLR SCNTHR ECNTVLR ECNTVHR ECNSTLR ECNSTHR ELATLR ELATHR EMODR ECLRR HALSTR WTLR WTHR WCFGR WTPVCR WMPLR WMPHR WMMLR WMMHR WOMLR WOMHR WOELR WOEHR WOPLR WOPHR WTPVLR WTPVHR SPICFGR SPIBRR SPIDBSR 110 Motor Control Register PWM Pulse X Configure Register PWM Trigger A Pulse Position Register PWM Trigger B Pulse Position Register PWM Period Cycle Register PWM Pulse Break Before Make Register PWM1Control Register PWM1 Counter Shift Register PWM1 High Pulse Width Register PWM2 Control Register PWM2 Shift Register PWM2 High Pulse Width Register PWM3 Control Register PWM3 Counter Shift Register PWM3 High Pulse Width Register Step Gap Time Low Register Step Gap Time High Register Step High Pulse Width Register direction Transform Delay step Register Step Target Number Low Word Register Step Target Number High Word Register Step Configure Register Step Control Register Step Counter Content Low Register Step Counter Content High Register Encoder Counter value Low Register Encoder Counter value High Register Encoder Constant Low Register Encoder Constant High Register Encoder Latched Low Register Encoder Latched High Register Encoder Mode Configuration Register Encoder Clear Register Hall State Register Watchdog Timer Low Register Watchdog Timer High Register Watchdog Configure Register Watchdog Timer Peak Value Clear Register Watchdog Monitored Polarity Low Register Watchdog Monitored Polarity High Register Watchdog Monitored Mask Low Register Watchdog Monitored Mask High Register Watchdog Output Mask Low Register Watchdog Output Mask High Register Watchdog Output Enable Low Register Watchdog Output Enable High Register Watchdog Output Polarity Low Register Watchdog Output Polarity High Register Watchdog Timer Peak Value Low Register Watchdog Timer Peak Value High Register SPI Configure Register SPI Baud Rate Register SPI Delay Byte and SS Register AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Function Address 0x086 0x088 0x08A 0x08C 0x090 0x092 0x094 0x096 0x098 0x09A 0x0A8 0x0AA 0x0AC 0x0AE 0x0B0 0x0B8 0x0C0 0x0C8 0x0D0 0x0D8 0x0E0 0x0E8 0x0F0 0x0F2 0x100 0x102 ESC Address R/W RO 0x3086 0x3088 0x308A 0x308C 0x3090 0x3092 0x3094 0x3096 0x3098 0x309A 0x32A8 0x32AA 0x32AC 0x32AE 0x30B0 0x32B0 0x30B8 0x32B8 0x30C0 0x32C0 0x30C8 0x32C8 0x30D0 0x32D0 0x30D8 0x32D8 0x30E0 0x32E0 0x30E8 0x32E8 0x32F0 0x30F2 0x3100 0x3102 - Name Description SPIDTR SPIRPTR SPILTR SPIPRLR SPI01BCR SPI23BCR SPI45BCR SPI67BCR SPI03SSR SPI47SSR SPINTSR SPITSR SPIPOSR SPIDSR SPIC0DR SPIC1DR SPIC2DR SPIC3DR SPIC4DR SPIC5DR SPIC6DR SPIC7DR SPIDSMR SPIMCR INTCR INTSR SPI Delay Transfer Register SPI RDY / Pulse Time Register SPI LDAC Time Register SPI Pulse/ RDY/ LDAC Register SPI 0/1 Byte Count Register SPI 2/3 Byte Count Register SPI 4/5 Byte Count Register SPI 6/7 Byte Count Register SPI 0/1/2/3 slave Select Register SPI 4/5/6/7 slave Select Register SPI Interrupt Status Register SPI Timeout Status Register SPI Pulse Overrun Status Register SPI Data Status Register SPI Channel 0 Data Register SPI Channel 1 Data Register SPI Channel 2 Data Register SPI Channel 3 Data Register SPI Channel 4 Data Register SPI Channel 5 Data Register SPI Channel 6 Data Register SPI Channel 7 Data Register SPI Data Status Mirror Register SPI Master Control Register Interrupt Configure Register Interrupt Status Register Table 2.45-5: ESC Memory and Function Registers Mirror Mapping Table 111 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 3 Electrical Specifications Parameter conditions Unless otherwise specified, all voltages are referenced to GND(VSS). 3.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at TJ = 25 °C and TJ = TJmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 3.1.2 Typical values Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the 1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 3.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 3.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 3.1-1. 3.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 3.1-2. Figure 3.1-1: Pin loading conditions 112 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Figure 3.1-2: Pin input voltage 113 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 3.1.6 Power supply scheme 1. N corresponds to the number of VDD pins available on the package. 2. A tolerance of +/- 20% is acceptable on decoupling capacitors. Figure 3.1-3: Power supply scheme Caution: Each power supply pair (VDD/GND(VSS), VDDA/VSSA ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device. 114 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU 3.1.7 Current consumption measurement Figure 3.1-4: Current consumption measurement scheme 115 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Absolute Maximum Ratings Stresses above the absolute maximum ratings listed in Table 3.2-1: Voltage characteristics(1), Table 3.2-2: Current characteristics, and Table 3.2-3: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Symbols VDDX - VSS Ratings Min Max Unit −0.3 4.0 V −0.3 4.0 V Digital core power supply for ESC sub-system −0.5 1.6 V Analog power supply for PLL for ESC sub-system −0.5 1.6 V GND−0.3 Min(VDD, VDDA, VDD33USB, VBAT) V External main supply voltage (including VDD, VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT) VCC3IO, VCC33A Power supply of 3.3V I/O for ESC sub-system and Ethernet PHY VCCK VCC12A_PLL Input voltage on FT_xxx pins +4.0(3)(4) VIN(2) |∆VDDX| |VSSx-VSS| I IN I OUT Input voltage on TT_xx pins GND -0.3 4.0 V Input voltage on BOOT0 pin GND 9.0 V Input voltage on any other pins GND -0.3 4.0 V Input voltage of 3.3V I/O with 5V tolerant(VCC3IO domain). GND -0.3 5.5 V Variations between different VDDX power pins of the same domain - 50 mV Variations between all the different ground pins - 50 mV DC input current (VCC3IO domain). 50 mA Output short circuit current (VCC3IO domain). 50 mA 1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (GND, VSSA) pins must always be connected to the external power supply, in the permitted range. (1) 2. VIN maximum must always be respected. Refer to Table 3.3-46: I/O current injection susceptibility for the maximum allowed injected current values. 3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table. 4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled. Table 3.2-1: Voltage characteristics(1) 116 AX58400 EtherCAT Slave Controller w/ Dual-Core MCU Symbols Ratings Max ΣIVDD Total current into sum of all VDD power lines (source)(1) 620 ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) 620 IVDD Maximum current into each VDD power pin (source)(1) 100 IVSS pin (sink)(1) 100 Maximum current out of each VSS ground IIO ΣI(PIN) IINJ(PIN)(3)(4) ΣIINJ(PIN) Output current sunk by any I/O and control pin 20 Total output current sunk by sum of all I/Os and control pins(2) 140 Total output current sourced by sum of all I/Os and control pins(2) 140 Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5 −5/+0 Injected current on PA4, PA5 −0/0 Total injected current (sum of all I/Os and control pins)(5) ±25 Unit mA 1. All main power (VDD, VDDA, VDD33USB) and ground (GND, VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN
AX58400 价格&库存

很抱歉,暂时无法提供与“AX58400”相匹配的价格&库存,您可以联系我们找货

免费人工找货