0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AT25160AN-10SU-2.7

AT25160AN-10SU-2.7

  • 厂商:

    ATMEL(爱特梅尔)

  • 封装:

  • 描述:

    AT25160AN-10SU-2.7 - SPI Serial EEPROMs - ATMEL Corporation

  • 数据手册
  • 价格&库存
AT25160AN-10SU-2.7 数据手册
Features • Serial Peripheral Interface (SPI) Compatible • Supports SPI Modes 0 (0,0) and 3 (1,1) – Datasheet Describes Mode 0 Operation • Low-voltage and Standard-voltage Operation • • • • • • • • • – 2.7 (VCC = 2.7V to 5.5V) – 1.8 (VCC = 1.8V to 5.5V) 20 MHz Clock Rate (5V) 32-byte Page Mode Block Write Protection – Protect 1/4, 1/2, or Entire Array Write Protect (WP) Pin and Write Disable Instructions for Both Hardware and Software Data Protection Self-timed Write Cycle (5 ms max) High Reliability – Endurance: One Million Write Cycles – Data Retention: 100 Years Automotive Devices Available 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin Mini-MAP (MLP 2x3), and 8lead TSSOP Packages Die Sales: Wafer Form, Waffle Pack, and Bumped Wafers SPI Serial EEPROMs 8K (1024 x 8) 16K (2048 x 8) 32K (4096 x 8) 64K (8192 x 8) AT25080A AT25160A AT25320A AT25640A Description The AT25080A/160A/320A/640A provides 8192/16384/32768/65536 bits of serial electrically-erasable programmable read-only memory (EEPROM) organized as 1024/2048/4096/8192 words of 8 bits each. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. The AT25080A/160A/320A/640A is available in space-saving 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead MAP, 8-lead Ultra Thin Mini-MAP (MLP 2x3) and 8lead TSSOP packages. The AT25080A/160A/320A/640A is enabled through the Chip Select pin (CS ) and accessed via a three-wire interface consisting of Serial Data Input (SI), Serial Data Output (SO), and Serial Clock (SCK). All programming cycles are completely selftimed, and no separate erase cycle is required before write. Table 1. Pin Configuration Pin Name CS SCK SI SO GND VCC WP HOLD NC DC Function Chip Select Serial Data Clock Serial Data Input Serial Data Output Ground Power Supply Write Protect Suspends Serial Input No Connect Don’t Connect VCC HOLD SCK SI 8 7 6 5 1 2 3 4 CS SO WP GND CS SO WP GND CS SO WP GND 8-lead PDIP 1 2 3 4 8 7 6 5 VCC HOLD SCK SI CS SO WP GND 8-lead SOIC 1 2 3 4 8 7 6 5 VCC HOLD SCK SI 8-lead TSSOP 1 2 3 4 8 7 6 5 VCC HOLD SCK SI 8-lead Ultra Thin Mini-MAP (MLP 2x3) VCC HOLD SCK SI 8 7 6 5 1 2 3 4 CS SO WP GND Bottom View 8-lead MAP 3347K–SEEPR–2/07 Bottom View 1 Block write protection is enabled by programming the status register with one of four blocks of write protection. Separate program enable and program disable instructions are provided for additional data protection. Hardware data protection is provided via the WP pin to protect against inadvertent write attempts to the status register. The HOLD pin may be used to suspend any serial communication without resetting the serial sequence. Absolute Maximum Ratings* Operating Temperature.................................–55° C to +125° C Storage Temperature ....................................–65° C to +150° C Voltage on Any Pin with Respect to Ground .................................... –1.0V to +7.0V Maximum Operating Voltage .......................................... 6.25V DC Output Current........................................................ 5.0 mA *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Figure 1. Block Diagram 2 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A Table 2. Pin Capacitance(1) Applicable over recommended operating range from TA = 25° C, f = 1.0 MHz, VCC = +5.0V (unless otherwise noted) Symbol COUT CIN Note: Test Conditions Output Capacitance (SO) Input Capacitance (CS, SCK, SI, WP, HOLD) 1. This parameter is characterized and is not 100% tested. Max 8 6 Units pF pF Conditions VOUT = 0V VIN = 0V Table 3. DC Characteristics Applicable over recommended operating range from: TAI = –40° C to +85° C, VCC = +1.8V to +5.5V (unless otherwise noted) Symbol VCC1 VCC2 VCC3 ICC1 ICC2 Parameter Supply Voltage Supply Voltage Supply Voltage Supply Current Supply Current VCC = 5.0V at 20 MHz, SO = Open, Read VCC = 5.0V at 20 MHz, SO = Open, Read, Write VCC = 5.0V at 5 MHz, SO = Open, Read, Write VCC = 1.8V, CS = VCC VCC = 2.7V, CS = VCC VCC = 5.0V, CS = VCC VIN = 0V to VCC VIN = 0V to VCC, TAC = 0°C to 70°C –3.0 –3.0 –0.6 VCC x 0.7 4.5V ≤VCC ≤5.5V 1.8V ≤VCC ≤3.6V IOL = 3.0 mA IOH = − mA 1.6 IOL = 0.15 mA IOH = − 100 µA VCC - 0.2 VCC - 0.8 0.2 Test Condition Min 1.8 2.7 4.5 7.5 4.0 Typ Max 5.5 5.5 5.5 10.0 10.0 Units V V V mA mA ICC3 ISB1 ISB2 ISB3 IIL IOL VIL(1) VIH (1) Supply Current Standby Current Standby Current Standby Current Input Leakage Output Leakage Input Low-voltage Input High-voltage Output Low-voltage Output High-voltage Output Low-voltage Output High-voltage 4.0 < 0.1 0.3 2.0 6.0 6.0(2) 7.0 (2) (2) mA µA µA µA µA µA V V V V V V 10.0 3.0 3.0 VCC x 0.3 VCC + 0.5 0.4 VOL1 VOH1 VOL2 VOH2 Notes: 1. VIL min and VIH max are reference only and are not tested. 2. Worst case measured at 85° C 3 3347K–SEEPR–2/07 Table 4. AC Characteristics Applicable over recommended operating range from TAI = –40° C to +85° C, VCC = As Specified, CL = 1 TTL Gate and 30 pF (unless otherwise noted) Symbol Parameter SCK Clock Frequency Voltage 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 20 40 80 20 40 80 25 50 100 25 50 100 25 50 100 5 10 20 5 10 20 5 10 20 5 10 20 0 0 0 0 0 0 20 40 80 ns Min 0 0 0 Max 20 10 5 2 2 2 2 2 2 Units MHz fSCK tRI Input Rise Time µs tFI Input Fall Time µs tWH SCK High Time ns tWL SCK Low Time ns tCS CS High Time ns tCSS CS Setup Time ns tCSH CS Hold Time ns tSU Data In Setup Time ns tH Data In Hold Time ns tHD HOLD Setup Time tCD HOLD Hold Time tV Output Valid ns tHO Output Hold Time ns 4 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A Table 4. AC Characteristics (Continued) Applicable over recommended operating range from TAI = –40° C to +85° C, VCC = As Specified, CL = 1 TTL Gate and 30 pF (unless otherwise noted) Symbol Parameter HOLD to Output Low Z Voltage 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 4.5–5.5 2.7–5.5 1.8–5.5 1M Min 0 0 0 Max 25 50 100 40 80 200 40 80 200 5 5 5 Units ns tLZ tHZ HOLD to Output High Z ns tDIS Output Disable Time ns tWC Endurance(1) Note: Write Cycle Time 5.0V, 25°C, Page Mode ms Write Cycles 1. This parameter is characterized and is not 100% tested. 5 3347K–SEEPR–2/07 Serial Interface Description MASTER: The device that generates the serial clock. S L AV E : B e c a u s e t h e S e r i a l C l o c k p i n ( S C K ) i s a l w a y s a n i n p u t , t h e AT25080A/160A/320A/640A always operates as a slave. TRANSMITTER/RECEIVER: The AT25080A/160A/320A/640A has separate pins designated for data transmission (SO) and reception (SI). MSB: The Most Significant Bit (MSB) is the first bit transmitted and received. SERIAL OP-CODE: A fter the device is selected with CS g oing low, the first byte will be received. This byte contains the op-code that defines the operations to be performed. I NVALID OP-CODE: I f an invalid op-code is received, no data will be shifted into the AT25080A/160A/320A/640A, and the serial output pin (SO) will remain in a high impedance state until the falling edge of CS i s detected again. This will reinitialize the serial communication. CHIP SELECT: The AT25080A/160A/320A/640A is selected when the CS pin is low. When the device is not selected, data will not be accepted via the SI pin, and the serial output pin (SO) will remain in a high impedance state. HOLD: The HOLD pin is used in conjunction with the CS pin to select the AT25080A/160A/320A/640A. When the device is selected and a serial sequence is underway, HOLD can be used to pause the serial communication with the master device without resetting the serial sequence. To pause, the HOLD pin must be brought low while the SCK pin is low. To resume serial communication, the HOLD pin is brought high while the SCK pin is low (SCK may still toggle during HOLD). Inputs to the SI pin will be ignored while the SO pin is in the high impedance state. WRITE PROTECT: The write protect pin (WP) will allow normal read/write operations when held high. When the WP pin is brought low and WPEN bit is “1”, all write operations to the status register are inhibited. WP going low while CS is still low will interrupt a write to the status register. If the internal write cycle has already been initiated, WP going low will have no effect on any write operation to the status register. The WP pin function is blocked when the WPEN bit in the status register is “0”. This will allow the user to install the AT25080A/160A/320A/640A in a system with the WP pin tied to ground and still be able to write to the status register. All WP pin functions are enabled when the WPEN bit is set to “1”. 6 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A Figure 2. SPI Serial Interface AT25080A/160A/320A/640A 7 3347K–SEEPR–2/07 Functional Description The AT25080A/160A/320A/640A is designed to interface directly with the synchronous serial peripheral interface (SPI) of the 6805 and 68HC11 series of microcontrollers. The AT25080A/160A/320A/640A utilizes an 8-bit instruction register. The list of instructions and their operation codes are contained in Table 5. All instructions, addresses, and data are transferred with the MSB first and start with a high-to-low CS transition. Table 5. Instruction Set for the AT25080A/160A/320A/640A Instruction Name WREN WRDI RDSR WRSR READ WRITE Instruction Format 0000 X110 0000 X100 0000 X101 0000 X001 0000 X011 0000 X010 Operation Set Write Enable Latch Reset Write Enable Latch Read Status Register Write Status Register Read Data from Memory Array Write Data to Memory Array WRITE ENABLE (WREN): The device will power up in the write disable state when VCC is applied. All programming instructions must therefore be preceded by a Write Enable instruction. WRITE DISABLE (WRDI): To protect the device against inadvertent writes, the Write Disable instruction disables all programming modes. The WRDI instruction is independent of the status of the WP pin. READ STATUS REGISTER (RDSR): The Read Status Register instruction provides access to the status register. The READY/BUSY and Write Enable status of the device can be determined by the RDSR instruction. Similarly, the Block Write Protection Bits indicate the extent of protection employed. These bits are set by using the WRSR instruction. Table 6. Status Register Format Bit 7 WPEN Bit 6 X Bit 5 X Bit 4 X Bit 3 BP1 Bit 2 BP0 Bit 1 WEN Bit 0 RDY Table 7. Read Status Register Bit Definition Bit Bit 0 (RDY) Bit 1 (WEN) Bit 2 (BP0) Bit 3 (BP1) Definition Bit 0 = “0” (RDY) indicates the device is READY. Bit 0 = “1” indicates the write cycle is in progress. Bit 1= “0” indicates the device is not WRITE ENABLED. Bit 1 = “1” indicates the device is write enabled. See Table 8 on page 9. See Table 8 on page 9. Bits 4–6 are “0”s when device is not in an internal write cycle. Bit 7 (WPEN) See Table 9 on page 9. Bits 0–7 are “1”s during an internal write cycle. 8 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A WRITE STATUS REGISTER (WRSR): The WRSR instruction allows the user to select one of four levels of protection. The AT25080A/160A/320A/640A is divided into four array segments. One-quarter, one-half, or all of the memory segments can be protected. Any of the data within any selected segment will therefore be read only. The block write protection levels and corresponding status register control bits are shown in Table 8. The three bits BP0, BP1, and WPEN are nonvolatile cells that have the same properties and functions as the regular memory cells (e.g., WREN, tWC, RDSR). Table 8. Block Write Protect Bits Status Register Bits Level 0 1(1/4) 2(1/2) 3(All) BP1 0 0 1 1 BP0 0 1 0 1 AT25080A None 0300 − 03FF 0200 − 03FF 0000 − 03FF Array Addresses Protected AT25160A None 0600 − 07FF 0400 − 07FF 0000 − 07FF AT25320A None 0C00 − 0FFF 0800 − 0FFF 0000 − 0FFF AT25640A None 1800 − 1FFF 1000 − 1FFF 0000 − 1FFF The WRSR instruction also allows the user to enable or disable the write protect (WP) pin through the use of the Write Protect Enable (WPEN) bit. Hardware write protection is enabled when the WP pin is low and the WPEN bit is “1”. Hardware write protection is disabled when either the WP pin is high or the WPEN bit is “0”. When the device is hardware write protected, writes to the status register, including the block protect bits and the WPEN bit, and the blockprotected sections in the memory array are disabled. Writes are only allowed to sections of the memory that are not block-protected. NOTE: When the WPEN bit is hardware write protected, it cannot be changed back to “0” as long as the WP pin is held low. Table 9. WPEN Operation WPEN 0 0 1 1 X X WP X X Low Low High High WEN 0 1 0 1 0 1 Protected Blocks Protected Protected Protected Protected Protected Protected Unprotected Blocks Protected Writeable Protected Writeable Protected Writeable Status Register Protected Writeable Protected Protected Protected Writeable 9 3347K–SEEPR–2/07 READ SEQUENCE (READ): Reading the AT25080A/160A/320A/640A via the Serial Output (SO) pin requires the following sequence. After the CS line is pulled low to select a device, the read op-code is transmitted via the SI line followed by the byte address to be read (A15–A0, see Table 10). Upon completion, any data on the SI line will be ignored. The data (D7–D0) at the specified address is then shifted out onto the SO line. If only one byte is to be read, the CS line should be driven high after the data comes out. The read sequence can be continued since the byte address is automatically incremented and data will continue to be shifted out. When the highest address is reached, the address counter will roll over to the lowest address allowing the entire memory to be read in one continuous read cycle. WRITE SEQUENCE (WRITE): In order to program the AT25080A/160A/320A/640A, two separate instructions must be executed. First, the device must be write enabled via the WREN instruction. Then a write (WRITE) instruction may be executed. Also, the address of the memory location(s) to be programmed must be outside the protected address field location selected by the block write protection level. During an internal write cycle, all commands will be ignored except the RDSR instruction. A write instruction requires the following sequence. After the CS line is pulled low to select the device, the WRITE op-code is transmitted via the SI line followed by the byte address (A15– A0) and the data (D7–D0) to be programmed (see Table 10). Programming will start after the CS pin is brought high. The low-to-high transition of the CS pin must occur during the SCK low-time immediately after clocking in the D0 (LSB) data bit. The READY/BUSY status of the device can be determined by initiating a read status register (RDSR) instruction. If Bit 0 = “1”, the write cycle is still in progress. If Bit 0 = “0”, the write cycle has ended. Only the RDSR instruction is enabled during the write programming cycle. The AT25080A/160A/320A/640A is capable of a 32-byte page write operation. After each byte of data is received, the five low-order address bits are internally incremented by one; the highorder bits of the address will remain constant. If more than 32 bytes of data are transmitted, the address counter will roll over and the previously written data will be overwritten. The AT25080A/160A/320A/640A is automatically returned to the write disable state at the completion of a write cycle. NOTE: If the device is not write-enabled (WREN), the device will ignore the write instruction and will return to the standby state, when CS i s brought high. A new CS falling edge is required to reinitiate the serial communication. Table 10. Address Key Address AN Don’t Care Bits AT25080A A 9– A 0 A 15– A 10 AT25160A A 10– A 0 A 15– A 11 AT25320A A 11– A 0 A 15– A 12 AT25640A A 12– A 0 A 15– A 13 10 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A Timing Diagrams Figure 3. Synchronous Data Timing (for Mode 0) VIH CS VIL t CSS VIH SCK VIL t SU VIH SI VIL tV VOH SO VOL HI-Z t HO t DIS HI-Z VALID IN tH t WH t WL t CSH t CS Figure 4. WREN Timing Figure 5. WRDI Timing 11 3347K–SEEPR–2/07 Figure 6. RDSR Timing CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK SI INSTRUCTION SO HIGH IMPEDANCE DATA OUT 7 6 5 4 3 2 1 0 MSB Figure 7. WRSR Timing CS 0 SCK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SI INSTRUCTION 7 6 5 DATA IN 4 3 2 1 0 SO HIGH IMPEDANCE Figure 8. READ Timing CS 0 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23 24 25 26 27 28 29 30 31 SCK SI INSTRUCTION BYTE ADDRESS 15 14 13 ... 3 2 1 0 SO HIGH IMPEDANCE DATA OUT 76543210 MSB 12 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A Figure 9. WRITE Timing CS 0 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23 24 25 26 27 28 29 30 31 SCK SI INSTRUCTION BYTE ADDRESS DATA IN ... 3 2 1 0 7 6 5 4 3 2 1 0 15 14 13 SO HIGH IMPEDANCE Figure 10. HOLD Timing CS tCD tCD SCK t HD HOLD t HZ t HD SO t LZ 13 3347K–SEEPR–2/07 AT25080A Ordering Information(1) Ordering Code AT25080A-10PU-2.7 AT25080A-10PU-1.8(2) AT25080AN-10SU-2.7(2) AT25080AN-10SU-1.8(2) AT25080A-10TU-2.7(2) AT25080A-10TU-1.8(2) AT25080AY1-10YU-1.8(2) (Not recommended for new design) AT25080AY6-10YH-1.8(3) AT25080A-W1.8-11(4) Notes: 1. 2. 3. 4. (2) Package 8P3 8P3 8S1 8S1 8A2 8A2 8Y1 8Y6 Die Sale Operation Range Lead-free/Halogen-free/ Industrial Temperature (− to 85° C) 40 Industrial Temperature (− to 85° C) 40 For 2.7V devices used in the 4.5 to 5.5V range, please refer to performance values in the AC and DC Characteristics tables. “U” designates Green package + RoHS compliant. “H” designates Green package + RoHS compliant, with NiPdAu Lead Finish. Available in waffle pack and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial EEPROM Marketing. Package Type 8P3 8S1 8A2 8Y1 8Y6 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP) 8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP) 8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead Package (DFN), (MLP 2x3mm) Options − 2.7 − 1.8 Low Voltage (2.7 to 5.5V) Low Voltage (1.8 to 5.5V) 14 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A AT25160A Ordering Information(1) Ordering Code AT25160A-10PU-2.7 AT25160A-10PU-1.8(2) AT25160AN-10SU-2.7(2) AT25160AN-10SU-1.8(2) AT25160A-10TU-2.7(2) AT25160A-10TU-1.8(2) AT25160AY1-10YU-1.8(2) (Not recommended for new design) AT25160AY6-10YH-1.8(3) AT25160A-W1.8-11(4) Notes: 1. 2. 3. 4. (2) Package 8P3 8P3 8S1 8S1 8A2 8A2 8Y1 8Y6 Die Sale Operation Range Lead-free/Halogen-free/ Industrial Temperature (− to 85° C) 40 Industrial Temperature (− to 85° C) 40 For 2.7V devices used in the 4.5 to 5.5V range, please refer to performance values in the AC and DC Characteristics tables. “U” designates Green package + RoHS compliant. “H” designates Green package + RoHS compliant, with NiPdAu Lead Finish. Available in waffle pack and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial EEPROM Marketing. Package Type 8P3 8S1 8A2 8Y1 8Y6 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP) 8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP) 8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead Package (DFN), (MLP 2x3mm) Options − 2.7 − 1.8 Low Voltage (2.7 to 5.5V) Low Voltage (1.8 to 5.5V) 15 3347K–SEEPR–2/07 AT25320A Ordering Information(1) Ordering Code AT25320A-10PU-2.7 AT25320A-10PU-1.8(2) AT25320AN-10SU-2.7(2) AT25320AN-10SU-1.8(2) AT25320A-10TU-2.7(2) AT25320A-10TU-1.8(2) AT25320AY1-10YU-1.8(2) (Not recommended for new design) AT25320AY6-10YH-1.8(3) AT25320A-W1.8-11(4) Notes: 1. 2. 3. 4. (2) Package 8P3 8P3 8S1 8S1 8A2 8A2 8Y1 8Y6 Die Sale Operation Range Lead-free/Halogen-free/ Industrial Temperature (− to 85° C) 40 Industrial Temperature (− to 85° C) 40 For 2.7V devices used in the 4.5 to 5.5V range, please refer to performance values in the AC and DC Characteristics tables. “U” designates Green package + RoHS compliant. “H” designates Green package + RoHS compliant, with NiPdAu Lead Finish. Available in waffle pack and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial EEPROM Marketing. Package Type 8P3 8S1 8A2 8Y1 8Y6 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP) 8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP) 8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead Package (DFN), (MLP 2x3mm) Options − 2.7 − 1.8 Low Voltage (2.7 to 5.5V) Low Voltage (1.8 to 5.5V) 16 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A AT25640A Ordering Information(1) Ordering Code AT25640A-10PU-2.7 AT25640A-10PU-1.8(2) AT25640AN-10SU-2.7(2) AT25640AN-10SU-1.8(2) AT25640A-10TU-2.7(2) AT25640A-10TU-1.8(2) AT25640AY1-10YU-1.8(2) AT25640A-W1.8-11(3) Notes: (2) Package 8P3 8P3 8S1 8S1 8A2 8A2 8Y1 Die Sale Operation Range Lead-free/Halogen-free/ Industrial Temperature (− to 85° C) 40 Industrial Temperature (− to 85° C) 40 1. For 2.7V devices used in the 4.5 to 5.5V range, please refer to performance values in the AC and DC Characteristics tables. 2. “U” designates Green package + RoHS compliant. 3. Available in waffle pack and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial EEPROM Marketing. Package Type 8P3 8S1 8A2 8Y1 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP) 8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP) Options − 2.7 − 1.8 Low Voltage (2.7 to 5.5V) Low Voltage (1.8 to 5.5V) 17 3347K–SEEPR–2/07 Packaging Information 8P3 – PDIP E E1 1 N Top View c eA End View D e D1 A2 A SYMBOL COMMON DIMENSIONS (Unit of Measure = inches) MIN – NOM – MAX NOTE A A2 b b2 b3 c D 0.210 0.195 0.022 0.070 0.045 0.014 0.400 – 2 0.115 0.014 0.045 0.030 0.008 0.355 0.005 0.300 0.240 0.130 0.018 0.060 0.039 0.010 0.365 – 5 6 6 3 3 4 3 b2 b3 4 PLCS L D1 E E1 e eA L b 0.310 0.250 0.100 BSC 0.300 BSC 0.325 0.280 Side View 4 0.150 2 0.115 0.130 Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA, for additional information. 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3. 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch. 4. E and eA measured with the leads constrained to be perpendicular to datum. 5. Pointed or rounded lead tips are preferred to ease insertion. 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm). 01/09/02 2325 Orchard Parkway San Jose, CA 95131 TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP) DRAWING NO. 8P3 REV. B R 18 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A 8S1 – JEDEC SOIC C 1 E E1 N ∅ L Top View End View e B A SYMBOL COMMON DIMENSIONS (Unit of Measure = mm) MIN 1.35 0.10 0.31 0.17 4.80 3.81 5.79 NOM – – – – – – – 1.27 BSC 0.40 0˚ – – 1.27 8˚ MAX 1.75 0.25 0.51 0.25 5.00 3.99 6.20 NOTE A1 A A1 b C D D E1 E Side View e L ∅ Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc. 10/7/03 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TITLE 8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC) DRAWING NO. 8S1 REV. B R 19 3347K–SEEPR–2/07 8A2 – TSSOP 3 21 Pin 1 indicator this corner E1 E L1 N L Top View End View COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN 2.90 NOM 3.00 6.40 BSC 4.30 – 0.80 0.19 4.40 – 1.00 – 0.65 BSC 0.45 0.60 1.00 REF 0.75 4.50 1.20 1.05 0.30 4 3, 5 MAX 3.10 NOTE 2, 5 b A D E E1 A e D A2 A2 b e Side View L L1 Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc. 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side. 3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010 in) per side. 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07 mm. 5. Dimension D and E1 to be determined at Datum Plane H. 5/30/02 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 8A2, 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP) DRAWING NO. 8A2 REV. B 20 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A 8Y1 – MAP PIN 1 INDEX AREA A 1 2 3 4 PIN 1 INDEX AREA E1 D D1 L 8 E A1 b 7 6 5 e Top View End View Bottom View COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL A A A1 MIN – 0.00 4.70 2.80 0.85 0.85 0.25 NOM – – 4.90 3.00 1.00 1.00 0.30 0.65 TYP MAX 0.90 0.05 5.10 3.20 1.15 1.15 0.35 NOTE Side View D E D1 E1 b e L 0.50 0.60 0.70 2/28/03 2325 Orchard Parkway San Jose, CA 95131 TITLE 8Y1, 8-lead (4.90 x 3.00 mm Body) MSOP Array Package (MAP) Y1 DRAWING NO. 8Y1 REV. C R 21 3347K–SEEPR–2/07 8Y6 – Mini MAP A D2 b (8X) Pin 1 Index Area E2 E Pin 1 ID L (8X) D A2 A3 A1 e (6X) 1.50 REF. COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL D E D2 E2 A A1 A2 A3 L e b 0.20 0.20 1.40 0.0 MIN NOM 2.00 BSC 3.00 BSC 1.50 0.02 0.20 REF 0.30 0.50 BSC 0.25 0.30 2 0.40 1.60 1.40 0.60 0.05 0.55 MAX NOTE Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-229, for proper dimensions, tolerances, datums, etc. 2. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension should not be measured in that radius area. 8/26/05 2325 Orchard Parkway San Jose, CA 95131 DRAWING NO. TITLE 8Y6, 8-lead 2.0 x 3.0 mm Body, 0.50 mm Pitch, Utlra Thin Mini-Map, 8Y6 Dual No Lead Package (DFN) ,(MLP 2x3) REV. C R 22 AT25080A/160A/320A/640A 3347K–SEEPR–2/07 AT25080A/160A/320A/640A Revision History Doc. Rev. 3347K Date 2/2007 Comments Implemented revision history. Added ‘Ultra Thin’ description to 8-lead Mini Map package. 23 3347K–SEEPR–2/07 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Literature Requests www.atmel.com/literature Disclaimer: T he information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. A tmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2007 Atmel Corporation. A ll rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are ® a nd others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Printed on recycled paper. 3347K–SEEPR–2/07
AT25160AN-10SU-2.7 价格&库存

很抱歉,暂时无法提供与“AT25160AN-10SU-2.7”相匹配的价格&库存,您可以联系我们找货

免费人工找货