0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AT29BV040A-20TI

AT29BV040A-20TI

  • 厂商:

    ATMEL(爱特梅尔)

  • 封装:

  • 描述:

    AT29BV040A-20TI - 4 Megabit 512K x 8 Single 2.7-volt Battery-Voltage CMOS Flash Memory - ATMEL Corpo...

  • 数据手册
  • 价格&库存
AT29BV040A-20TI 数据手册
Features • • • • • • Single Supply Voltage, Range 2.7V to 3.6V Single Supply for Read and Write Software Protected Programming Fast Read Access Time – 200 ns Low Power Dissipation – 15 mA Active Current – 40 µA CMOS Standby Current Sector Program Operation – Single Cycle Reprogram (Erase and Program) – 2048 Sectors (256 Bytes/Sector) – Internal Address and Data Latches for 256 Bytes Two 16K Bytes Boot Blocks with Lockout Fast Sector Program Cycle Time – 20 ms Max. Internal Program Control and Timer DATA Polling for End of Program Detection Minimum Endurance 10,000 Cycles CMOS and TTL Compatible Inputs and Outputs Commercial and Industrial Temperature Ranges • • • • • • • 4-megabit (512K x 8) Single 2.7-volt Battery-Voltage™ Flash Memory AT29BV040A Description The AT29BV040A is a 3-volt-only in-system Flash Programmable and Erasable Read Only Memory (PEROM). Its 4 megabits of memory is organized as 524,288 words by 8 bits. Manufactured with Atmel’s advanced nonvolatile CMOS EEPROM technology, the device offers access times to 200 ns, and a low 54 mW power dissipation. When the device is deselected, the CMOS standby current is less than 40 µA. The device Pin Configurations Pin Name Function A0 - A18 CE OE WE I/O0 - I/O7 NC Addresses Chip Enable Output Enable Write Enable Data Inputs/Outputs No Connect TSOP Top View Type 1 A11 A9 A8 A13 A14 A17 WE VCC A18 A16 A15 A12 A7 A6 A5 A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 OE A10 CE I/O7 I/O6 I/O5 I/O4 I/O3 GND I/O2 I/O1 I/O0 A0 A1 A2 A3 Rev. 0383G–FLASH–5/03 1 endurance is such that any sector can be written to in excess of 10,000 times. The programming algorithm is compatible with other devices in Atmel’s 2.7-volt-only Flash memories. To allow for simple in-system reprogrammability, the AT29BV040A does not require high input voltages for programming. The device can be operated with a single 2.7V to 3.6V supply. Reading data out of the device is similar to reading from an EPROM. Reprogramming the AT29BV040A is performed on a sector basis; 256 bytes of data are loaded into the device and then simultaneously programmed. During a reprogram cycle, the address locations and 256 bytes of data are captured at microprocessor speed and internally latched, freeing the address and data bus for other operations. Following the initiation of a program cycle, the device will automatically erase the sector and then program the latched data using an internal control timer. The end of a program cycle can be detected by DATA polling of I/O7. Once the end of a program cycle has been detected, a new access for a read or program can begin. Block Diagram Device Operation READ: The AT29BV040A is accessed like an EPROM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever CE or OE i s high. This dual-line control gives designers flexibility in preventing bus contention. SOFTWARE DATA PROTECTION PROGRAMMING: The AT29BV040 has 2048 individual sectors, each 256 bytes. Using the software data protection feature, byte loads are used to enter the 256 bytes of a sector to be programmed. The AT29BV040A can only be programmed or reprogrammed using the software data protection feature. The device is programmed on a sector basis. If a byte of data within the sector is to be changed, data for the entire 256-byte sector must be loaded into the device. The AT29BV040A automatically does a sector erase prior to loading the data into the sector. An erase command is not required. Software data protection protects the device from inadvertent programming. A series of three program commands to specific addresses with specific data must be presented to the device before programming may occur. The same three program commands must begin each program operation. All software program commands must obey the sector program timing specifications. Power transitions will not reset the software data protection feature, however the software feature will guard against inadvertent program cycles during power transitions. 2 AT29BV040A 0383G–FLASH–5/03 AT29BV040A Any attempt to write to the device without the 3-byte command sequence will start the internal write timers. No data will be written to the device; however, for the duration of tWC, a read operation will effectively be a polling operation. After the software data protection’s 3-byte command code is given, a byte load is performed by applying a low pulse on the WE or CE input with CE or WE low (respectively) and OE high. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. The 256 bytes of data must be loaded into each sector. Any byte that is not loaded during the programming of its sector will be indeterminate. Once the bytes of a sector are loaded into the device, they are simultaneously programmed during the internal programming period. After the first data byte has been loaded into the device, successive bytes are entered in the same manner. Each new byte to be programmed must have its high-to-low transition on WE (or CE) within 150 µs of the low-to-high transition of WE (or CE) of the preceding byte. If a high-to-low transition is not detected within 150 µs of the last low-to-high transition, the load period will end and the internal programming period will start. A8 to A18 specify the sector address. The sector address must be valid during each high-to-low transition of WE (or CE). A0 to A7 specify the byte address within the sector. The bytes may be loaded in any order; sequential loading is not required. HARDWARE DATA PROTECTION: Hardware features protect against inadvertent programs to the AT29BV040A in the following ways: (a) VCC s ense – if V CC is below 1.8V (typical), the program function is inhibited; (b) VCC power on delay – once VCC has reached the V CC s ense level, the device will automatically time out 10 ms (typical) before programming; (c) Program inhibit – holding any one of OE low, CE high or WE high inhibits program cycles; and (d) Noise filter – pulses of less than 15 ns (typical) on the WE or CE inputs will not initiate a program cycle. INPUT LEVELS: While operating with a 2.7V to 3.6V power supply, the address inputs and control inputs (OE, CE and WE) may be driven from 0 to 5.5V without adversely affecting the operation of the device. The I/O lines can only be driven from 0 to VCC + 0.6V. PRODUCT IDENTIFICATION: The product identification mode identifies the device and manufacturer as Atmel. It may be accessed by hardware or software operation. The hardware operation mode can be used by an external programmer to identify the correct programming algorithm for the Atmel product. In addition, users may wish to use the software product identification mode to identify the part (i.e. using the device code), and have the system software use the appropriate sector size for program operations. In this manner, the user can have a common board design for 256K to 4-megabit densities and, with each density’s sector size in a memory map, have the system software apply the appropriate sector size. For details, see Operating Modes (for hardware operation) or Software Product Identification. The manufacturer and device code is the same for both modes. DATA POLLING: The AT29BV040A features DATA polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA polling may begin at any time during the program cycle. TOGGLE BIT: In addition to DATA polling the AT29BV040A provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling 3 0383G–FLASH–5/03 and valid data will be read. Examining the toggle bit may begin at any time during a program cycle. OPTIONAL CHIP ERASE MODES: The entire device may be erased by using a 6-byte software code. Please see Software Chip Erase application note for details. BOOT BLOCK PROGRAMMING LOCKOUT: The AT29BV040A has two designated memory blocks that have a programming lockout feature. This feature prevents programming of data in the designated block once the feature has been enabled. Each of these blocks consists of 16K bytes; the programming lockout feature can be set independently for either block. While the lockout feature does not have to be activated, it can be activated for either or both blocks. These two 16K memory sections are referred to as boot blocks. Secure code which will bring up a system can be contained in a boot block. The AT29BV040A blocks are located in the first 16K bytes of memory and the last 16K bytes of memory. The boot block programming lockout feature can therefore support systems that boot from the lower addresses of memory or the higher addresses. Once the programming lockout feature has been activated, the data in that block can no longer be erased or programmed; data in other memory locations can still be changed through the regular programming methods. To activate the lockout feature, a series of seven program commands to specific addresses with specific data must be performed. Please see Boot Block Lockout Feature Enable Algorithm. If the boot block lockout feature has been activated on either block, the chip erase function will be disabled. BOOT BLOCK LOCKOUT DETECTION: A software method is available to determine whether programming of either boot block section is locked out. See Software Product Identification Entry and Exit sections. When the device is in the software product identification mode, a read from location 00002H will show if programming the lower address boot block is locked out while reading location 7FFF2H will do so for the upper boot block. If the data is FE, the corresponding block can be programmed; if the data is FF, the program lockout feature has been activated and the corresponding block cannot be programmed. The software product identification exit mode should be used to return to standard operation. Absolute Maximum Ratings* Temperature Under Bias............................... -55° C to +125° C Storage Temperature .................................... -65° C to +150° C All Input Voltages (including NC Pins) with Respect to Ground ...................................-0.6V to +6.25V All Output Voltages with Respect to Ground .............................-0.6V to VCC + 0.6V Voltage on A9 (including NC Pins) with Respect to Ground ...................................-0.6V to +13.5V *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 4 AT29BV040A 0383G–FLASH–5/03 AT29BV040A DC and AC Operating Range AT29BV040A-20 Operating Temperature (Case) VCC Power Supply Note: (1) AT29BV040A-25 0°C - 70°C -40°C - 85°C 2.7V to 3.6V Com. Ind. 0°C - 70°C -40°C - 85°C 2.7V to 3.6V 1. After power is applied and VCC is at the minimum specified data sheet value, the system should wait 20 ms before an operational mode is started. Operating Modes Mode Read Program(2) Standby/Write Inhibit Program Inhibit Program Inhibit Output Disable Product Identification Hardware VIL VIL VIH A1 - A18 = VIL, A9 = VH(3), A0 = VIL A1 - A18 = VIL, A9 = VH(3), A0 = VIH Software(5) A0 = VIL, A1 - A18 = VIL A0 = VIH, A1 - A18 = VIL Notes: 1. 2. 3. 4. 5. X can be VIL or VIH. Refer to AC Programming Waveforms. VH = 12.0V ± 0.5V. Manufacturer Code is 1F. The Device Code is C4. See details under Software Product Identification Entry/Exit. Manufacturer Code(4) Device Code(4) Manufacturer Code(4) Device Code(4) CE VIL VIL VIH X X X OE VIL VIH X (1) WE VIH VIL X VIH X X Ai Ai Ai X I/O DOUT DIN High Z X VIL VIH High Z DC Characteristics Symbol ILI ILO ISB1 Parameter Input Load Current Output Leakage Current VCC Standby Current CMOS Condition VIN = 0V to VCC VI/O = 0V to VCC CE = VCC - 0.3V to VCC Com. Ind. ISB2 ICC VIL VIH VOL VOH VCC Standby Current TTL VCC Active Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 1.6 mA; VCC = 3.0V IOH = -100 µA; VCC = 3.0V 2.4 2.0 0.45 CE = 2.0V to VCC f = 5 MHz; IOUT = 0 mA; VCC = 3.6V Min Max 1 1 40 50 1 15 0.6 Units µA µA µA µA mA mA V V V V 5 0383G–FLASH–5/03 AC Read Characteristics AT29BV040A-20 Symbol tACC tCE (1) (6) AT29BV040A-25 Min Max 250 250 0 0 0 120 60 Units ns ns ns ns ns Parameter Address to Output Delay CE to Output Delay OE to Output Delay CE or OE to Output Float Output Hold from OE, CE or Address, whichever occurred first Min Max 200 200 tOE 0 0 0 80 50 tDF(7)(8) tOH AC Read Waveforms Notes: 1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC. 6. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change without impact on tACC. 7. tDF is specified from OE or CE whichever occurs first (CL = 5 pF). 8. This parameter is characterized and is not 100% tested. 6 AT29BV040A 0383G–FLASH–5/03 AT29BV040A Input Test Waveforms and Measurement Level tR, tF < 5 ns Output Test Load Pin Capacitance f = 1 MHz, T = 25°C(1) Symbol CIN COUT Note: Typ 4 8 Max 6 12 Units pF pF Conditions VIN = 0V VOUT = 0V 1. These parameters are characterized and not 100% tested. 7 0383G–FLASH–5/03 AC Byte Load Characteristics Symbol tAS, tOES tAH tCS tCH tWP tDS tDH, tOEH tWPH Parameter Address, OE Set-up Time Address Hold Time Chip Select Set-up Time Chip Select Hold Time Write Pulse Width (WE or CE) Data Set-up Time Data, OE Hold Time Write Pulse Width High Min 10 100 0 0 200 100 10 200 Max Units ns ns ns ns ns ns ns ns AC Byte Load Waveforms(1)(2) WE Controlled CE Controlled 8 AT29BV040A 0383G–FLASH–5/03 AT29BV040A Program Cycle Characteristics Symbol tWC tAS tAH tDS tDH tWP tBLC tWPH Parameter Write Cycle Time Address Set-up Time Address Hold Time Data Set-up Time Data Hold Time Write Pulse Width Byte Load Cycle Time Write Pulse Width High 200 10 100 100 10 200 150 Min Max 20 Units ms ns ns ns ns ns µs ns Software Protected Program Waveform Notes: 1. OE must be high when WE and CE are both low. 2. A8 through A18 must specify the sector address during each high to low transition of WE (or CE) after the software code has been entered. 3. All bytes that are not loaded within the sector being programmed will be indeterminate. Programming Algorithm(1) LOAD DATA AA TO ADDRESS 5555 LOAD DATA 55 TO ADDRESS 2AAA LOAD DATA A0 TO ADDRESS 5555 WRITES ENABLED LOAD DATA TO SECTOR (256 BYTES)(3) ENTER DATA PROTECT STATE(2) Notes: 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex). 2. Data Protect state will be re-activated at end of program cycle. 3. 256 bytes of data MUST BE loaded. 9 0383G–FLASH–5/03 Data Polling Characteristics(1)(2) Symbol tDH tOEH tOE tWR Notes: Parameter Data Hold Time OE Hold Time OE to Output Delay (2) Min 10 10 Typ Max Units ns ns ns Write Recovery Time 1. These parameters are characterized and not 100% tested. 2. See tOE spec in AC Read Characteristics. 0 ns Data Polling Waveforms Toggle Bit Characteristics(1) Symbol tDH tOEH tOE tOEHP tWR Notes: Parameter Data Hold Time OE Hold Time OE to Output Delay OE High Pulse Write Recovery Time 1. These parameters are characterized and not 100% tested. 2. See tOE spec in AC Read Characteristics. (2) Min 10 10 Typ Max Units ns ns ns 150 0 ns ns Toggle Bit Waveforms(1)(4) Notes: 1. Toggling either OE or CE or both OE and CE will operate toggle bit. 3. Beginning and ending state of I/O6 will vary. 4. Any address location may be used but the address should not vary. 10 AT29BV040A 0383G–FLASH–5/03 AT29BV040A Software Product Identification Entry(1) LOAD DATA AA TO ADDRESS 5555 Boot Block Lockout Feature Enable Algorithm(1) LOAD DATA AA TO ADDRESS 5555 LOAD DATA 55 TO ADDRESS 2AAA LOAD DATA 55 TO ADDRESS 2AAA LOAD DATA 90 TO ADDRESS 5555 LOAD DATA 80 TO ADDRESS 5555 PAUSE 20 mS ENTER PRODUCT IDENTIFICATION MODE(2)(3) LOAD DATA AA TO ADDRESS 5555 Software Product Identification Exit(1) LOAD DATA AA TO ADDRESS 5555 LOAD DATA 55 TO ADDRESS 2AAA LOAD DATA 55 TO ADDRESS 2AAA LOAD DATA 00 TO ADDRESS 00000H(2) LOAD DATA 40 TO ADDRESS 5555 LOAD DATA F0 TO ADDRESS 5555 LOAD DATA FF TO ADDRESS 7FFFFH(3) PAUSE 20 mS PAUSE 20 mS EXIT PRODUCT IDENTIFICATION MODE(4) PAUSE 20 mS Notes: Notes: 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex). 2. A1 - A18 = VIL. Manufacturer Code is read for A0 = VIL; Device Code is read for A0 = VIH. 3. The device does not remain in identification mode if powered down. 4. The device returns to standard operation mode. 5. Manufacturer Code is 1F. The Device Code is C4. 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex). 2. Lockout feature set on lower address boot block. 3. Lockout feature set on higher address boot block. 11 0383G–FLASH–5/03 Ordering Information tACC (ns) 200 ICC (mA) Active 15 15 250 15 15 Standby 0.04 0.05 0.04 0.05 Ordering Code AT29BV040A-20TC AT29BV040A-20TI AT29BV040A-25TC AT29BV040A-25TI Package 32T 32T 32T 32T Operation Range Commercial (0° to 70° C) Industrial (-40° to 85° C) Commercial (0° to 70° C) Industrial (-40° to 85° C) Package Type 32C1 32T 32-ball, Plastic Chip-scale Ball Grid Array Package (CBGA) 32-lead, Thin Small Outline Package (TSOP) 12 AT29BV040A 0383G–FLASH–5/03 AT29BV040A Packaging Information 32T – TSOP PIN 1 0º ~ 8º c Pin 1 Identifier D1 D L e b L1 E A2 A SEATING PLANE GAGE PLANE A1 SYMBOL A A1 A2 Notes: 1. This package conforms to JEDEC reference MO-142, Variation BD. 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side. 3. Lead coplanarity is 0.10 mm maximum. D D1 E L L1 b c e COMMON DIMENSIONS (Unit of Measure = mm) MIN – 0.05 0.95 19.80 18.30 7.90 0.50 NOM – – 1.00 20.00 18.40 8.00 0.60 0.25 BASIC 0.17 0.10 0.22 – 0.50 BASIC 0.27 0.21 MAX 1.20 0.15 1.05 20.20 18.50 8.10 0.70 Note 2 Note 2 NOTE 10/18/01 2325 Orchard Parkway San Jose, CA 95131 TITLE 32T, 32-lead (8 x 20 mm Package) Plastic Thin Small Outline Package, Type I (TSOP) DRAWING NO. 32T REV. B R 13 0383G–FLASH–5/03 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 e-mail literature@atmel.com Web Site http://www.atmel.com Disclaimer: A tmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems. © Atmel Corporation 2003 . A ll rights reserved. A tmel® a nd combinations thereof are the registered trademarks, and B attery-Voltage ™ is the trademark of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper. 0383G–FLASH–5/03 xM
AT29BV040A-20TI 价格&库存

很抱歉,暂时无法提供与“AT29BV040A-20TI”相匹配的价格&库存,您可以联系我们找货

免费人工找货