Features
• Single 2.7V - 3.6V Supply • Serial Interface Architecture • Page Program Operation • • • • • • • • • • •
– Single Cycle Reprogram (Erase and Program) – 512 Pages (264 Bytes/Page) Main Memory Optional Page and Block Erase Operations One 264-byte SRAM Data Buffer Internal Program and Control Timer Fast Page Program Time – 7 ms Typical 120 µs Typical Page to Buffer Transfer Time Low Power Dissipation – 4 mA Active Read Current Typical – 2 µA CMOS Standby Current Typical 13 MHz Max Clock Frequency Hardware Data Protection Feature Serial Peripheral Interface (SPI) Compatible – Modes 0 and 3 CMOS and TTL Compatible Inputs and Outputs Commercial and Industrial Temperature Ranges
1-megabit 2.7-volt Only Serial DataFlash® AT45DB011
Recommend using AT45DB011B for new designs.
Description
The AT45DB011 is a 2.7-volt only, serial interface Flash memory suitable for in-system reprogramming. Its 1,081,344 bits of memory are organized as 512 pages of 264 bytes each. In addition to the main memory, the AT45DB011 also contains one SRAM data buffer of 264 bytes. Unlike conventional Flash memories that are accessed randomly with multiple address lines and a parallel interface, the DataFlash (continued)
Pin Configurations
Pin Name CS SCK SI SO WP RESET RDY/BUSY Function Chip Select Serial Clock Serial Input Serial Output Hardware Page Write Protect Pin Chip Reset Ready/Busy PLCC
CS NC NC GND VCC NC NC
SOIC
SI SCK RESET CS 1 2 3 4 8 7 6 5 SO GND VCC WP
TSSOP Top View Type 1
RDY/BUSY RESET WP VCC GND SCK SO 1 2 3 4 5 6 7 14 13 12 11 10 9 8 CS NC NC NC NC NC SI
NC NC DC DC NC NC NC
14 15 16 17 18 19 20
SCK SI SO NC NC NC NC NC NC
5 6 7 8 9 10 11 12 13
4 3 2 1 32 31 30
AT45DB011 Preliminary 16Megabit 2.7-volt Only Serial DataFlash
29 28 27 26 25 24 23 22 21
WP RESET RDY/BUSY NC NC NC NC NC NC
Rev. 1103E–01/01
Note: PLCC package pins 16 and 17 are DON’T CONNECT
1
uses a serial interface to sequentially access its data. The simple serial interface facilitates hardware layout, increases system reliability, minimizes switching noise, and reduces package size and active pin count. The device is optimized for use in many commercial and industrial applications where high density, low pin count, low voltage, and low power are essential. Typical applications for the DataFlash are digital voice storage, image storage, and data storage. The device operates at clock frequencies up to 13 MHz with a typical active read current consumption of 4 mA.
To allow for simple in-system reprogrammability, the AT45DB011 does not require high input voltages for programming. The device operates from a single power supply, 2.7V to 3.6V, for both the program and read operations. The AT45DB011 is enabled through the chip select pin (CS) and accessed via a three-wire interface consisting of the Serial Input (SI), Serial Output (SO), and the Serial Clock (SCK). All programming cycles are self-timed, and no separate erase cycle is required before programming.
Block Diagram
WP FLASH MEMORY ARRAY
PAGE (264 BYTES)
BUFFER (264 BYTES)
SCK CS RESET VCC GND RDY/BUSY
I/O INTERFACE
SI
SO
Memory Array
To provide optimal flexibility, the memory array of the AT45DB011 is divided into three levels of granularity comprising of sectors, blocks, and pages. The Memory Architecture Diagram illustrates the breakdown of each level and details the number of pages per sector and block. All program operations to the DataFlash occur on a page by page basis; however, the optional erase operations can be performed at the block or page level.
2
AT45DB011
AT45DB011
Memory Architecture Diagram
SECTOR ARCHITECTURE
SECTOR 0 = 2112 BYTES (2K + 64) SECTOR 0
BLOCK ARCHITECTURE
BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3 SECTOR 1 BLOCK 0 8 Pages
PAGE ARCHITECTURE
PAGE 0 PAGE 1
PAGE 6 PAGE 7 PAGE 8 BLOCK 29 BLOCK 30 BLOCK 31 BLOCK 32 BLOCK 33 BLOCK 34 BLOCK 1 PAGE 9
SECTOR 1 = 65,472 BYTES (62K + 1984)
PAGE 14 PAGE 15 PAGE 16
SECTOR 2
PAGE 17 PAGE 18
SECTOR 2 = 67,584 BYTES (64K + 2K)
BLOCK 61 BLOCK 62 BLOCK 63 Block = 2112 bytes (2K + 64)
PAGE 509 PAGE 510 PAGE 511 Page = 264 bytes (256 + 8)
Device Operation
The device operation is controlled by instructions from the host processor. The list of instructions and their associated opcodes are contained in Tables 1 and 2. A valid instruction starts with the falling edge of CS f ollowed by the appropriate 8-bit opcode and the desired buffer or main memory address location. While the CS pin is low, toggling the SCK pin controls the loading of the opcode and the desired buffer or main memory address location through the SI (serial input) pin. All instructions, addresses, and data are transferred with the most significant bit (MSB) first. bits (BA8-BA0) specify the starting byte address within the page. The 32 don’t care bits which follow the 24 address bits are sent to initialize the read operation. Following the 32 don’t care bits, additional pulses on SCK result in serial data being output on the SO (serial output) pin. The CS pin must remain low during the loading of the opcode, the address bits, and the reading of data. When the end of a page in main memory is reached during a main memory page read, the device will continue reading at the beginning of the same page. A low-to-high transition on the CS pin will terminate the read operation and tri-state the SO pin. BUFFER READ: Data can be read from the data buffer using an opcode of 54H. To perform a buffer read, the eight bits of the opcode must be followed by 15 don’t care bits, nine address bits, and eight don’t care bits. Since the buffer size is 264-bytes, nine address bits (BFA8-BFA0) are required to specify the first byte of data to be read from the buffer. The CS pin must remain low during the loading of the opcode, the address bits, the don’t care bits, and the reading of data. When the end of the buffer is reached, the device will continue reading back at the beginning of the buffer. A low-to-high transition on the CS pin will terminate the read operation and tri-state the SO pin.
Read
By specifying the appropriate opcode, data can be read from the main memory or from the data buffer. MAIN MEMORY PAGE READ: A main memory read allows the user to read data directly from any one of the 512 pages in the main memory, bypassing the data buffer and leaving the contents of the buffer unchanged. To start a page read, the 8-bit opcode, 52H, is followed by 24 address bits and 32 don’t care bits. In the AT45DB011, the first six address bits are reserved for larger density devices (see Notes on page 9), the next nine address bits (PA8PA0) specify the page address, and the next nine address
3
MAIN MEMORY PAGE TO BUFFER TRANSFER: A page of data can be transferred from the main memory to buffer. An 8-bit opcode of 53H is followed by the six reserved bits, nine address bits (PA8-PA0) which specify the page in main memory that is to be transferred, and nine don’t care bits. The CS pin must be low while toggling the SCK pin to load the opcode, the address bits, and the don’t care bits from the SI pin. The transfer of the page of data from the main memory to the buffer will begin when the CS pin transitions from a low to a high state. During the transfer of a page of data (tXFR), the status register can be read to determine whether the transfer has been completed or not. MAIN MEMORY PAGE TO BUFFER COMPARE: A page of data in main memory can be compared to the data in the buffer. An 8-bit opcode of 60H is followed by 24 address bits consisting of the six reserved bits, nine address bits (PA8-PA0) which specify the page in the main memory that is to be compared to the buffer, and nine don’t care bits. The loading of the opcode and the address bits is the same as described previously. The CS pin must be low while toggling the SCK pin to load the opcode, the address bits, and the don’t care bits from the SI pin. On the low-to-high transition of the CS p in, the 264 bytes in the selected main memory page will be compared with the 264 bytes in the buffer. During this time (tXFR), the status register will indicate that the part is busy. On completion of the compare operation, bit 6 of the status register is updated with the result of the compare.
the data stored in the buffer into the specified page in the main memory. Both the erase and the programming of the page are internally self-timed and should take place in a maximum time of tEP. During this time, the status register will indicate that the part is busy. BUFFER TO MAIN MEMORY PAGE PROGRAM WITHOUT BUILT-IN ERASE: A previously erased page within main memory can be programmed with the contents of the buffer. An 8-bit opcode of 88H is followed by the six reserved bits, nine address bits (PA8-PA0) that specify the page in the main memory to be written, and nine additional don’t care bits. When a low-to-high transition occurs on the CS pin, the part will program the data stored in the buffer into the specified page in the main memory. It is necessary that the page in main memory that is being programmed has been previously erased. The programming of the page is internally self-timed and should take place in a maximum time of tP. During this time, the status register will indicate that the part is busy. PAGE ERASE: The optional Page Erase command can be used to individually erase any page in the main memory array allowing the Buffer to Main Memory Page Program without Built-in Erase command to be utilized at a later time. To perform a Page Erase, an opcode of 81H must be loaded into the device, followed by six reserved bits, nine address bits (PA8-PA0), and nine don’t care bits. The nine address bits are used to specify which page of the memory array is to be erased. When a low-to-high transition occurs on the CS pin, the part will erase the selected page to 1s. The erase operation is internally self-timed and should take place in a maximum time of tPE. During this time, the status register will indicate that the part is busy. BLOCK ERASE: A block of eight pages can be erased at one time allowing the Buffer to Main Memory Page Program without Built-in Erase command to be utilized to reduce programming times when writing large amounts of data to the device. To perform a Block Erase, an opcode of 50H must be loaded into the device, followed by six reserved bits, six address bits (PA8-PA3), and 12 don’ t care bits. The six address bits are used to specify which block of eight pages is to be erased. When a low-to-high transition occurs on the CS p in, the part will erase the selected block of eight pages to 1s. The erase operation is internally self-timed and should take place in a maximum time of tBE. During this time, the status register will indicate that the part is busy.
Program
BUFFER WRITE: Data can be shifted in from the SI pin into the data buffer. To load data into the buffer, an 8-bit opcode of 84H is followed by 15 don’t care bits and nine address bits (BFA8-BFA0). The nine address bits specify the first byte in the buffer to be written. The data is entered following the address bits. If the end of the data buffer is reached, the device will wrap around back to the beginning of the buffer. Data will continue to be loaded into the buffer until a low-to-high transition is detected on the CS pin. BUFFER TO MAIN MEMORY PAGE PROGRAM WITH BUILT-IN ERASE: Data written into the buffer can be programmed into the main memory. An 8-bit opcode of 83H is followed by the six reserved bits, nine address bits (PA8PA0) that specify the page in the main memory to be written, and nine additional don’t care bits. When a low-to-high transition occurs on the CS pin, the part will first erase the selected page in main memory to all 1s and then program
4
AT45DB011
AT45DB011
Block Erase Addressing
PA8 0 0 0 0 • • • 1 1 1 1 PA7 0 0 0 0 • • • 1 1 1 1 PA6 0 0 0 0 • • • 1 1 1 1 PA5 0 0 0 0 • • • 1 1 1 1 PA4 0 0 1 1 • • • 0 0 1 1 PA3 0 1 0 1 • • • 0 1 0 1 PA2 X X X X • • • X X X X PA1 X X X X • • • X X X X PA0 X X X X • • • X X X X Block 0 1 2 3 • • • 60 61 62 63
MAIN MEMORY PAGE PROGRAM: T his operation is a combination of the Buffer Write and Buffer to Main Memory Page Program with Built-in Erase operations. Data is first shifted into the buffer from the SI pin and then programmed into a specified page in the main memory. An 8-bit opcode of 82H is followed by the six reserved bits and 18 address bits. The nine most significant address bits (PA8-PA0) select the page in the main memory where data is to be written, and the next nine address bits (BFA8-BFA0) select the first byte in the buffer to be written. After all address bits are shifted in, the part will take data from the SI pin and store it in the data buffer. If the end of the buffer is reached, the device will wrap around back to the beginning of the buffer. When there is a low-to-high transition on the CS pin, the part will first erase the selected page in main memory to all 1s and then program the data stored in the buffer into the specified page in the main memory. Both the erase and the programming of the page are internally self timed and should take place in a maximum of time tEP. During this time, the status register will indicate that the part is busy. AUTO PAGE REWRITE: This mode is only needed if multiple bytes within a page or multiple pages of data are modified in a random fashion. This mode is a combination of two operations: Main Memory Page to Buffer Transfer and Buffer to Main Memory Page Program with Built-in Erase. A page of data is first transferred from the main memory to the data buffer, and then the same data (from the buffer) is programmed back into its original page of main memory. An 8-bit opcode of 58H is followed by the six reserved bits, nine address bits (PA8-PA0) that specify the page in main memory to be rewritten, and nine additional don’t care bits. When a low-to-high transition occurs on the CS pin, the part will first transfer data from the page in main memory to the buffer and then program the data from the buffer back into same page of main memory. The operation
is internally self-timed and should take place in a maximum time of tEP. During this time, the status register will indicate that the part is busy. If a sector is programmed or reprogrammed sequentially page by page, then the programming algorithm shown in Figure 1 on page 16 is recommended. Otherwise, if multiple bytes in a page or several pages are programmed randomly in a sector, then the programming algorithm shown in Figure 2 on page 17 is recommended. STATUS REGISTER: The status register can be used to determine the device’s ready/busy status, the result of a Main Memory Page to Buffer Compare operation, or the device density. To read the status register, an opcode of 57H must be loaded into the device. After the last bit of the opcode is shifted in, the eight bits of the status register, starting with the MSB (bit 7), will be shifted out on the SO pin during the next eight clock cycles. The five most significant bits of the status register will contain device information, while the remaining three least significant bits are reserved for future use and will have undefined values. After bit 0 of the status register has been shifted out, the sequence will repeat itself (as long as CS remains low and SCK is being toggled) starting again with bit 7. The data in the status register is constantly updated, so each repeating sequence will output new data. Ready/Busy status is indicated using bit 7 of the status register. If bit 7 is a 1, then the device is not busy and is ready to accept the next command. If bit 7 is a 0, then the device is in a busy state. The user can continuously poll bit 7 of the status register by stopping SCK once bit 7 has been output. The status of bit 7 will continue to be output on the SO pin, and once the device is no longer busy, the state of SO will change from 0 to 1. There are eight operations which can cause the device to be in a busy state: Main Memory Page to Buffer Transfer, Main Memory Page to Buffer Compare, 5
Buffer to Main Memory Page Program with Built-in Erase, Buffer to Main Memory Page Program without Built-in Erase, Page Erase, Block Erase, Main Memory Page Program, and Auto Page Rewrite. The result of the most recent Main Memory Page to Buffer Compare operation is indicated using bit 6 of the status register. If bit 6 is a 0, then the data in the main memory page matches the data in the buffer. If bit 6 is a 1, then at least one bit of the data in the main memory page does not match the data in the buffer. The device density is indicated using bits 5, 4, and 3 of the status register. For the AT45DB011, the three bits are 0, 0, and 1. The decimal value of these three binary bits does not equate to the device density; the three bits represent a combinational code relating to differing densities of Serial DataFlash devices, allowing a total of eight different density configurations. HARDWARE PAGE WRITE PROTECT: If the WP p in is held low, the first 256 pages of the main memory cannot be reprogrammed. The only way to reprogram the first 256 pages is to first drive the protect pin high and then use the program commands previously mentioned. The WP pin is internally pulled high; therefore, in low pin count applications, connection of the WP pin is not necessary if this pin and feature will not be utilized. However, it is recommended that the WP p in be driven high externally whenever possible. RESET: A low state on the reset pin (RESET) will terminate the operation in progress and reset the internal state
machine to an idle state. The device will remain in the reset condition as long as a low level is present on the RESET pin. Normal operation can resume once the RESET pin is brought back to a high level. The device incorporates an internal power-on reset circuit, so there are no restrictions on the RESET p in during power-on sequences. The RESET p in is also internally pulled high; therefore, in low pin count applications, connection of the RESET pin is not necessary if this pin and feature will not be utilized. However, it is recommended that the RESET p in be driven high externally whenever possible. READY/BUSY: This open drain output pin will be driven low when the device is busy in an internally self-timed operation. This pin, which is normally in a high state (through an external pull-up resistor), will be pulled low during programming operations, compare operations, and during page-tobuffer transfers. The busy status indicates that the Flash memory array and the buffer cannot be accessed.
Power-on/Reset State
When power is first applied to the device, or when recovering from a reset condition, the device will default to SPI Mode 3. In addition, the SO pin will be in a high-impedance state, and a high-to-low transition on the CS p in will be required to start a valid instruction. The SPI mode will be automatically selected on every falling edge of CS by sampling the inactive clock state.
Status Register Format
Bit 7 RDY/BUSY Bit 6 COMP Bit 5 0 Bit 4 0 Bit 3 1 Bit 2 X Bit 1 X Bit 0 X
Absolute Maximum Ratings*
Temperature under Bias ................................ -55°C to +125°C Storage Temperature ..................................... -65°C to +150°C All Input Voltages (including NC Pins) with Respect to Ground ...................................-0.6V to +6.25V All Output Voltages with Respect to Ground .............................-0.6V to VCC + 0.6V *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC and AC Operating Range
AT45DB011 Com. Operating Temperature (Case) Ind. VCC Power Supply(1) 0°C to 70°C -40°C to 85°C 2.7V to 3.6V
Note:
1. After power is applied and VCC is at the minimum specified datasheet value, the system should wait 20 ms before an operational mode is started.
6
AT45DB011
AT45DB011
DC Characteristics
Symbol ISB ICC1 ICC2 ILI ILO VIL VIH VOL VOH Parameter Standby Current Active Current, Read Operation Active Current, Program/Erase Operation Input Load Current Output Leakage Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 1.6 mA; VCC = 2.7V IOH = -100 µA VCC - 0.2V 2.0 0.4 Condition CS, RESET, WP = VIH, all inputs at CMOS levels f = 13 MHz; IOUT = 0 mA; VCC = 3.6V VCC = 3.6V VIN = CMOS levels VI/O = CMOS levels Min Typ 2 4 10 Max 10 10 25 1 1 0.6 Units µA mA mA µA µA V V V V
AC Characteristics
Symbol fSCK tWH tWL tCS tCSS tCSH tCSB tSU tH tHO tDIS tV tXFR tEP tP tPE tBE tRST tREC Parameter SCK Frequency SCK High Time SCK Low Time Minimum CS High Time CS Setup Time CS Hold Time CS High to RDY/BUSY Low Data In Setup Time Data In Hold Time Output Hold Time Output Disable Time Output Valid Page to Buffer Transfer/Compare Time Page Erase and Programming Time Page Programming Time Page Erase Time Block Erase Time RESET Pulse Width RESET Recovery Time 10 1 120 10 7 6 7 10 20 0 25 30 200 20 15 10 15 35 35 250 250 250 200 Min Typ Max 13 Units MHz ns ns ns ns ns ns ns ns ns ns ns µs ms ms ms ms µs µs
Input Test Waveforms and Measurement Levels
AC DRIVING LEVELS 2.4V 2.0 0.8 0.45V AC MEASUREMENT LEVEL
Output Test Load
DEVICE UNDER TEST 30 pF
tR, tF < 5 ns (10% to 90%)
7
AC Waveforms
Two different timing diagrams are shown below. Waveform 1 shows the SCK signal being low when CS makes a highto-low transition, and Waveform 2 shows the SCK signal being high when CS makes a high-to-low transition. Both waveforms show valid timing diagrams. The setup and hold times for the SI signal are referenced to the low-to-high transition on the SCK signal. Waveform 1 shows timing that is also compatible with SPI Mode 0, and Waveform 2 shows timing that is compatible with SPI Mode 3.
Waveform 1 – Inactive Clock Polarity Low
tCS CS tCSS SCK tV SO HIGH IMPEDANCE tSU SI VALID IN tH tHO VALID OUT tDIS HIGH IMPEDANCE tWH tWL tCSH
Waveform 2 – Inactive Clock Polarity High
tCS CS tCSS SCK tV SO HIGH Z tSU SI VALID IN tHO VALID OUT tH tDIS HIGH IMPEDANCE tWL tWH tCSH
8
AT45DB011
AT45DB011
Reset Timing (Inactive Clock Polarity Low Shown)
CS
tREC tCSS
SCK
tRST
RESET
HIGH IMPEDANCE HIGH IMPEDANCE
SO SI
Command Sequence for Read/Write Operations (Except Status Register Read)
SI CMD 8 bits 8 bits 8 bits
MSB
rrrr
r r XX
XXXX XXXX Page Address (PA8-PA0)
XXXX XXXX
LSB
Reserved for larger densities
Notes:
Byte/Buffer Address (BA8-BA0/BFA8-BFA0)
1. “r” designates bits reserved for larger densities. 2. It is recommended that “r” be a logical “0”. 3. For densities larger than 1M bit, the “r” bits become the most significant Page Address bit for the appropriate density.
9
Write Operations
The following block diagram and waveforms illustrate the various write sequences available.
FLASH MEMORY ARRAY
PAGE (264 BYTES)
BUFFER TO MAIN MEMORY PAGE PROGRAM
BUFFER (264 BYTES)
BUFFER WRITE MAIN MEMORY PAGE PROGRAM THROUGH BUFFER
I/O INTERFACE
SI
Main Memory Page Program through Buffer
· Completes writing into buffer · Starts self-timed erase/program operation
CS SI
CMD r ···r , PA8-7
PA6-0, BFA8
BFA7-0
n
n+1
Last Byte
Buffer Write
· Completes writing into buffer
CS SI
CMD X
X···X, BFA8 BFA7-0
n
n+1
Last Byte
Buffer to Main Memory Page Program (Data from Buffer Programmed into Flash Page)
Starts self-timed erase/program operation
CS SI
CMD r ···r , PA8-7 PA6-0, X X
Each transition represents 8 bits and 8 clock cycles
n = 1st byte written n+1 = 2nd byte written
10
AT45DB011
AT45DB011
Read Operations
The following block diagram and waveforms illustrate the various read sequences available.
FLASH MEMORY ARRAY
PAGE (264 BYTES)
MAIN MEMORY PAGE TO BUFFER
BUFFER (264 BYTES)
BUFFER READ
MAIN MEMORY PAGE READ
I/O INTERFACE
SO
Main Memory Page Read
CS SI SO
CMD r ···r , PA8-7 PA6-0, BA8 BA7-0 X X X X n n+1
Main Memory Page to Buffer Transfer (Data from Flash Page Read into Buffer)
Starts reading page data into buffer
CS SI SO
CMD r ···r , PA8-7 PA6-0, X X
Buffer Read
CS SI SO
CMD X
X···X, BFA8 BFA7-0
X n n+1
Each transition represents 8 bits and 8 clock cycles
n = 1st byte read n+1 = 2nd byte read
11
Detailed Bit-level Read Timing – Inactive Clock Polarity Low
Main Memory Page Read
CS
SCK tSU
1
2
3
4
5
60
61
62
63
64
65
66
67
COMMAND OPCODE SI
0 1 0 1 0 X X X X X
tV SO HIGH-IMPEDANCE
DATA OUT
D7 MSB D6 D5
Buffer Read
CS
SCK tSU
1
2
3
4
5
36
37
38
39
40
41
42
43
COMMAND OPCODE SI
0 1 0 1 0 X X X X X
tV SO HIGH-IMPEDANCE
DATA OUT
D7 MSB D6 D5
Status Register Read
CS
SCK tSU
1
2
3
4
5
6
7
8
9
10
11
12
16
17
COMMAND OPCODE SI
0 1 0 1 0 1 1 1
tV SO HIGH-IMPEDANCE
D7 MSB
STATUS REGISTER OUTPUT
D6 D5 D1 D0 LSB D7 MSB
12
AT45DB011
AT45DB011
Detailed Bit-level Read Timing – Inactive Clock Polarity High
Main Memory Page Read
CS
SCK tSU
1
2
3
4
5
61
62
63
64
65
66
67
68
COMMAND OPCODE SI
0 1 0 1 0 X X X X X
tV SO HIGH-IMPEDANCE
D7 MSB
DATA OUT
D6 D5 D4
Buffer Read
CS
SCK tSU
1
2
3
4
5
37
38
39
40
41
42
43
44
COMMAND OPCODE SI
0 1 0 1 0 X X X X X
tV SO HIGH-IMPEDANCE
D7 MSB
DATA OUT
D6 D5 D4
Status Register Read
CS
SCK tSU
1
2
3
4
5
6
7
8
9
10
11
12
17
18
COMMAND OPCODE SI
0 1 0 1 0 1 1 1
tV SO HIGH-IMPEDANCE
D7 MSB
STATUS REGISTER OUTPUT
D6 D5 D4 D0 LSB D7 MSB D6
13
Table 1.
Main Memory Page Read 52H 0 1 0 1 0 0 1 0 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 BA8 BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0 X X X X X X X X • • • X (64th bit) Buffer Read 54H 0 1 0 1 0 1 0 0 X X X X X X X X X X X X X X X BFA8 BFA7 BFA6 BFA5 BFA4 BFA3 BFA2 BFA1 BFA0 X X X X X X X X Main Memory Page to Buffer Transfer Opcode 53H 0 1 0 1 0 0 1 1 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 X X X X X X X X X 60H 0 1 1 0 0 0 0 0 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 X X X X X X X X X 84H 1 0 0 0 0 1 0 0 X X X X X X X X X X X X X X X BFA8 BFA7 BFA6 BFA5 BFA4 BFA3 BFA2 BFA1 BFA0 Main Memory Page to Buffer Compare Buffer Write
X (Don’t Care) r (reserved bits)
14
AT45DB011
AT45DB011
Table 2.
Buffer to Main Memory Page Program with Built-in Erase Buffer to Main Memory Page Program without Built-in Erase
Page Erase
Block Erase Opcode
Main Memory Page Program through Buffer
Auto Page Rewrite through Buffer
Status Register
83H 1 0 0 0 0 0 1 1 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 X X X X X X X X X
88H 1 0 0 0 1 0 0 0 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 X X X X X X X X X
81H 1 0 0 0 0 0 0 1 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 X X X X X X X X X
50H 0 1 0 1 0 0 0 0 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 X X X X X X X X X X X X
82H 1 0 0 0 0 0 1 0 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 BFA8 BFA7 BFA6 BFA5 BFA4 BFA3 BFA2 BFA1 BFA0
58H 0 1 0 1 1 0 0 0 r r r r r r PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 X X X X X X X X X
57H 0 1 0 1 0 1 1 1
X (Don’t Care) r (reserved bits)
15
Figure 1. Algorithm for Sequentially Programming or Reprogramming the Entire Array
START provide address and data
BUFFER WRITE (84H) MAIN MEMORY PAGE PROGRAM (82H) BUFFER to MAIN MEMORY PAGE PROGRAM (83H)
END
Notes:
1. This type of algorithm is used for applications in which the entire array is programmed sequentially, filling the array page-bypage. 2. A page can be written using either a Main Memory Page Program operation or a Buffer Write operation followed by a Buffer to Main Memory Page Program operation. 3. The algorithm above shows the programming of a single page. The algorithm will be repeated sequentially for each page within the entire array.
16
AT45DB011
AT45DB011
Figure 2. Algorithm for Randomly Modifying Data
START provide address of page to modify MAIN MEMORY PAGE to BUFFER TRANSFER (53H) If planning to modify multiple bytes currently stored within a page of the Flash array
BUFFER WRITE (84H)
MAIN MEMORY PAGE PROGRAM (82H) BUFFER to MAIN MEMORY PAGE PROGRAM (83H)
Auto Page Rewrite (58H)
(2)
INCREMENT PAGE (2) ADDRESS POINTER
END
Notes:
1. To preserve data integrity, each page of a DataFlash sector must be updated/rewritten at least once within every 10,000 cumulative page erase/program operations within that sector. 2. A Page Address Pointer must be maintained to indicate which page is to be rewritten. The Auto Page Rewrite command must use the address specified by the Page Address Pointer. 3. Other algorithms can be used to rewrite portions of the Flash array. Low-power applications may choose to wait until 10,000 cumulative page erase/program operations have accumulated before rewriting all pages of the sector. See application note AN-4 (“Using Atmel’s Serial DataFlash”) for more details.
Sector Addressing
PA8 0 0 1 PA7 0 X X PA6 0 X X PA5 0 X X PA4 0 X X PA3 0 X X PA2-PA0 X X X Sector 0 1 2
17
Ordering Information
fSCK (MHz) 13 ICC (mA) Active 10 Standby 0.01 Ordering Code AT45DB011-JC AT45DB011-SC AT45DB011-XC AT45DB011-JI AT45DB011-SI AT45DB011-XI Package 32J 8S2 14X 32J 8S2 14X Operation Range Commercial (0°C to 70°C) Industrial (-40°C to 85°C)
13
10
0.01
Package Type 32J 8S2 14X 32-lead, Plastic J-leaded Chip Carrier (PLCC) 8-lead, 0.210" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC) 14-lead, 0.170" Wide, Plastic Thin Shrink Small Outline Package (TSSOP)
18
AT45DB011
AT45DB011
Packaging Information
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-016 AE
8S2, 8-lead, 0.210" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC) Dimensions in Inches and (Millimeters)
.045(1.14) X 45˚
PIN NO. 1 IDENTIFY
.025(.635) X 30˚ - 45˚ .012(.305) .008(.203) .530(13.5) .490(12.4) .021(.533) .013(.330) .030(.762) .015(.381) .095(2.41) .060(1.52) .140(3.56) .120(3.05)
.020 (.508) .012 (.305)
.032(.813) .026(.660)
.553(14.0) .547(13.9) .595(15.1) .585(14.9)
PIN 1
.213 (5.41) .205 (5.21)
.330 (8.38) .300 (7.62)
.050 (1.27) BSC
.050(1.27) TYP
.300(7.62) REF .430(10.9) .390(9.90) AT CONTACT POINTS
.212 (5.38) .203 (5.16) .080 (2.03) .070 (1.78)
.022(.559) X 45˚ MAX (3X) .453(11.5) .447(11.4) .495(12.6) .485(12.3)
0 REF 8
.013 (.330) .004 (.102) .010 (.254) .007 (.178)
.035 (.889) .020 (.508)
14X, 14-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP) Dimensions in Millimeters and (Inches)*
INDEX MARK
PIN 1
4.50 (.177) 4.30 (.169)
6.50 (.256) 6.25 (.246)
5.10 (.201) 4.90 (.193)
1.20 (.047) MAX
.650 (.026) BSC 0.30 (.012) 0.19 (.007)
0.15 (.006) 0.05 (.002)
SEATING PLANE
0 REF 8
0.20 (.008) 0.09 (.004)
0.75 (.030) 0.45 (.018)
*Controlling dimension: millimeters 19
Atmel Headquarters
Corporate Headquarters
2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600
Atmel Operations
Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759
Europe
Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500
Atmel Rousset
Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001
Atmel Smart Card ICs
Scottish Enterprise Technology Park East Kilbride, Scotland G75 0QR TEL (44) 1355-357-000 FAX (44) 1355-242-743
Asia
Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369
Atmel Grenoble
Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex France TEL (33) 4-7658-3000 FAX (33) 4-7658-3480
Japan
Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581
Fax-on-Demand
North America: 1-(800) 292-8635 International: 1-(408) 441-0732
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309
© A tmel Corporation 2001. Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company ’s standard warranty which is detailed in Atmel ’s Terms and Conditions located on the Company ’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel ’s products are not authorized for use as critical components in life suppor t devices or systems. Marks bearing
®
a nd/or
™
a re registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.
Printed on recycled paper.
1103E–01/01/xM