0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA64_08

ATMEGA64_08

  • 厂商:

    ATMEL(爱特梅尔)

  • 封装:

  • 描述:

    ATMEGA64_08 - 8-bit Microcontroller with 64K Bytes In-System Programmable Flash - ATMEL Corporation

  • 数据手册
  • 价格&库存
ATMEGA64_08 数据手册
Features • High-performance, Low-power AVR® 8-bit Microcontroller • Advanced RISC Architecture – 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers + Peripheral Control Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier High Endurance Non-volatile Memory segments – 64K Bytes of In-System Reprogrammable Flash program memory – 2K Bytes EEPROM – 4K Bytes Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C(1) – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – Up to 64K Bytes Optional External Memory Space – Programming Lock for Software Security – SPI Interface for In-System Programming JTAG (IEEE std. 1149.1 Compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Two 8-bit PWM Channels – 6 PWM Channels with Programmable Resolution from 1 to 16 Bits – 8-channel, 10-bit ADC 8 Single-ended Channels 7 Differential Channels 2 Differential Channels with Programmable Gain (1x, 10x, 200x) – Byte-oriented Two-wire Serial Interface – Dual Programmable Serial USARTs – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with On-chip Oscillator – On-chip Analog Comparator Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby – Software Selectable Clock Frequency – ATmega103 Compatibility Mode Selected by a Fuse – Global Pull-up Disable I/O and Packages – 53 Programmable I/O Lines – 64-lead TQFP and 64-pad QFN/MLF Operating Voltages – 2.7 - 5.5V for ATmega64L – 4.5 - 5.5V for ATmega64 Speed Grades – 0 - 8 MHz for ATmega64L – 0 - 16 MHz for ATmega64 • • 8-bit Microcontroller with 64K Bytes In-System Programmable Flash ATmega64 ATmega64L • • • • • Pin Configuration Figure 1. Pinout ATmega64 TQFP/MLF PEN RXD0/(PDI) PE0 (TXD0/PDO) PE1 (XCK0/AIN0) PE2 (OC3A/AIN1) PE3 (OC3B/INT4) PE4 (OC3C/INT5) PE5 (T3/INT6) PE6 (ICP3/INT7) PE7 (SS) PB0 (SCK) PB1 (MOSI) PB2 (MISO) PB3 (OC0) PB4 (OC1A) PB5 (OC1B) PB6 Note: The bottom pad under the QFN/MLF package should be soldered to ground. Disclaimer Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. 2 ATmega64(L) 2490N–AVR–05/08 (OC2/OC1C) PB7 TOSC2/PG3 TOSC1/PG4 RESET VCC GND XTAL2 XTAL1 (SCL/INT0) PD0 (SDA/INT1) PD1 (RXD1/INT2) PD2 (TXD1/INT3) PD3 (ICP1) PD4 (XCK1) PD5 (T1) PD6 (T2) PD7 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AVCC GND AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) GND VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PA3 (AD3) PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PG2(ALE) PC7 (A15) PC6 (A14) PC5 (A13) PC4 (A12) PC3 (A11) PC2 (A10 PC1 (A9) PC0 (A8) PG1(RD) PG0(WR) ATmega64(L) Overview The ATmega64 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega64 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed. Block Diagram Figure 2. Block Diagram PF0 - PF7 PA0 - PA7 PC0 - PC7 VCC GND PORTF DRIVERS AVCC DATA REGISTER PORTF DATA DIR. REG. PORTF DATA REGISTER PORTA DATA DIR. REG. PORTA DATA REGISTER PORTC DATA DIR. REG. PORTC 8-BIT DATA BUS PORTA DRIVERS PORTC DRIVERS XTAL1 AREF ADC INTERNAL OSCILLATOR XTAL2 OSCILLATOR JTAG TAP PROGRAM COUNTER STACK POINTER WATCHDOG TIMER CALIB. OSC OSCILLATOR ON-CHIP DEBUG PROGRAM FLASH SRAM MCU CONTROL REGISTER TIMING AND CONTROL RESET BOUNDARYSCAN INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS X Y Z TIMER/ COUNTERS PEN PROGRAMMING LOGIC INSTRUCTION DECODER INTERRUPT UNIT CONTROL LINES ALU EEPROM STATUS REGISTER USART0 SPI USART1 2-WIRE SERIAL INTERFACE ANALOG COMPARATOR DATA REGISTER PORTE DATA DIR. REG. PORTE DATA REGISTER PORTB DATA DIR. REG. PORTB DATA REGISTER PORTD DATA DIR. REG. PORTD DATA REG. DATA DIR. PORTG REG. PORTG + - PORTE DRIVERS PORTB DRIVERS PORTD DRIVERS PORTG DRIVERS PE0 - PE7 PB0 - PB7 PD0 - PD7 PG0 - PG4 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. 3 2490N–AVR–05/08 The ATmega64 provides the following features: 64K bytes of In-System Programmable Flash with Read-While-Write capabilities, 2K bytes EEPROM, 4K bytes SRAM, 53 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM, two USARTs, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the asynchronous timer continue to run. The device is manufactured using Atmel’s high-density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot Program can use any interface to download the Application Program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega64 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications. The ATmega64 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits. ATmega103 and ATmega64 Compatibility The ATmega64 is a highly complex microcontroller where the number of I/O locations supersedes the 64 I/O location reserved in the AVR instruction set. To ensure backward compatibility with the ATmega103, all I/O locations present in ATmega103 have the same location in ATmega64. Most additional I/O locations are added in an Extended I/O space starting from 0x60 to 0xFF (i.e., in the ATmega103 internal RAM space). These location can be reached by using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the increased number of Interrupt Vectors might be a problem if the code uses absolute addresses. To solve these problems, an ATmega103 compatibility mode can be selected by programming the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the internal RAM is located as in ATmega103. Also, the extended Interrupt Vectors are removed. The ATmega64 is 100% pin compatible with ATmega103, and can replace the ATmega103 on current printed circuit boards. The application notes “Replacing ATmega103 by ATmega128” and “Migration between ATmega64 and ATmega128” describes what the user should be aware of replacing the ATmega103 by an ATmega128 or ATmega64. 4 ATmega64(L) 2490N–AVR–05/08 ATmega64(L) ATmega103 Compatibility Mode By programming the M103C Fuse, the ATmega64 will be compatible with the ATmega103 regards to RAM, I/O pins and Interrupt Vectors as described above. However, some new features in ATmega64 are not available in this compatibility mode, these features are listed below: • • • • • • • • • • • • • • One USART instead of two, asynchronous mode only. Only the eight least significant bits of the Baud Rate Register is available. One 16 bits Timer/Counter with two compare registers instead of two 16 bits Timer/Counters with three compare registers. Two-wire serial interface is not supported. Port G serves alternate functions only (not a general I/O port). Port F serves as digital input only in addition to analog input to the ADC. Boot Loader capabilities is not supported. It is not possible to adjust the frequency of the internal calibrated RC Oscillator. The External Memory Interface can not release any Address pins for general I/O, neither configure different wait states to different External Memory Address sections. Only EXTRF and PORF exist in the MCUCSR Register. No timed sequence is required for Watchdog Timeout change. Only low-level external interrupts can be used on four of the eight External Interrupt sources. Port C is output only. USART has no FIFO buffer, so Data OverRun comes earlier. The user must have set unused I/O bits to 0 in ATmega103 programs. Pin Descriptions VCC GND Port A (PA7..PA0) Digital supply voltage. Ground. Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega64 as listed on page 73. Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATmega64 as listed on page 74. 5 2490N–AVR–05/08 Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the ATmega64 as listed on page 77. In ATmega103 compatibility mode, Port C is output only, and the port C pins are not tri-stated when a reset condition becomes active. Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega64 as listed on page 78. Port E (PE7..PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega64 as listed on page 81. Port F (PF7..PF0) Port F serves as the analog inputs to the A/D Converter. Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even if a reset occurs. The TDO pin is tri-stated unless TAP states that shift out data are entered. Port F also serves the functions of the JTAG interface. In ATmega103 compatibility mode, Port F is an input port only. Port G (PG4..PG0) Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port G also serves the functions of various special features. In ATmega103 compatibility mode, these pins only serves as strobes signals to the external memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PG0 = 1, PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock is not running. PG3 and PG4 are Oscillator pins. 6 ATmega64(L) 2490N–AVR–05/08 ATmega64(L) RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 19 on page 52. Shorter pulses are not guaranteed to generate a reset. Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. Output from the inverting Oscillator amplifier. AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. AREF is the analog reference pin for the A/D Converter. This is a programming enable pin for the SPI Serial Programming mode. By holding this pin low during a Power-on Reset, the device will enter the SPI Serial Programming mode. PEN is internally pulled high. The pullup is shown in Figure 22 on page 52 and its value is given in Section “DC Characteristics” on page 325. PEN has no function during normal operation. XTAL1 XTAL2 AVCC AREF PEN 7 2490N–AVR–05/08 Resources A comprehensive set of development tools, application notes and datasheetsare available for download on http://www.atmel.com/avr. Note: 1. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 8 ATmega64(L) 2490N–AVR–05/08 ATmega64(L) About Code Examples This datasheet contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. 9 2490N–AVR–05/08 AVR CPU Core Introduction This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. Figure 3. Block Diagram of the AVR MCU Architecture Architectural Overview Data Bus 8-bit Flash Program Memory Program Counter Status and Control Instruction Register 32 x 8 General Purpose Registrers Interrupt Unit SPI Unit Watchdog Timer Indirect Addressing Instruction Decoder Direct Addressing ALU Control Lines Analog Comparator I/O Module1 Data SRAM I/O Module 2 I/O Module n EEPROM I/O Lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing – enabling efficient address calculations. One of the these address pointers 10 ATmega64(L) 2490N–AVR–05/08 ATmega64(L) can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot program section and the Application program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses which can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega64 has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description. 11 2490N–AVR–05/08 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. SREG – AVR Status Register The AVR Status Register – SREG – is defined as: Bit 0x3F (0x5F) Read/Write Initial Value 7 I R/W 0 6 T R/W 0 5 H R/W 0 4 S R/W 0 3 V R/W 0 2 N R/W 0 1 Z R/W 0 0 C R/W 0 SREG • Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared in software with the SEI and CLI instructions, as described in the instruction set reference. • Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. • Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD arithmetic. See the “Instruction Set Description” for detailed information. • Bit 4 – S: Sign Bit, S = N ⊕V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See the “Instruction Set Description” for detailed information. • Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set Description” for detailed information. • Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information. • Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information. 12 ATmega64(L) 2490N–AVR–05/08 ATmega64(L) • Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information. General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: • • • • One 8-bit output operand and one 8-bit result input. Two 8-bit output operands and one 8-bit result input. Two 8-bit output operands and one 16-bit result input. One 16-bit output operand and one 16-bit result input. Figure 4 shows the structure of the 32 general purpose working registers in the CPU. Figure 4. AVR CPU General Purpose Working Registers 7 R0 R1 R2 … R13 General Purpose Working Registers R14 R15 R16 R17 … R26 R27 R28 R29 R30 R31 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F X-register Low Byte X-register High Byte Y-register Low Byte Y-register High Byte Z-register Low Byte Z-register High Byte 0x0D 0x0E 0x0F 0x10 0x11 0 Addr. 0x00 0x01 0x02 Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 4, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file. 13 2490N–AVR–05/08 X-, Y-, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 5. Figure 5. The X-, Y-, and Z-Registers 15 X - register 7 R27 (0x1B) XH 0 7 R26 (0x1A) XL 0 0 15 Y - register 7 R29 (0x1D) YH 0 7 R28 (0x1C) YL 0 0 15 Z - register 7 R31 (0x1F) ZH 0 7 R30 (0x1E) ZL 0 0 In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the Instruction Set Reference for details). Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack Pointer. If software reads the Program Counter from the Stack after a call or an interrupt, unused bits (bit 15) should be masked out. The Stack Pointer points to the data SRAM Stack area where the subroutine and interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. Bit 0x3E (0x5E) 0x3D (0x5D) 15 SP15 SP7 7 Read/Write R/W R/W Initial Value 0 0 14 SP14 SP6 6 R/W R/W 0 0 13 SP13 SP5 5 R/W R/W 0 0 12 SP12 SP4 4 R/W R/W 0 0 11 SP11 SP3 3 R/W R/W 0 0 10 SP10 SP2 2 R/W R/W 0 0 9 SP9 SP1 1 R/W R/W 0 0 8 SP8 SP0 0 R/W R/W 0 0 SPH SPL Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. 14 ATmega64(L) 2490N–AVR–05/08 ATmega64(L) Figure 6 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 6. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 7 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 7. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section “Memory Programming” on page 290 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 61. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 61 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see “Boot Loader Support – Read-While-Write Self-programming” on page 277. 15 2490N–AVR–05/08 When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. Assembly Code Example in cli r16, SREG ; store SREG value ; start EEPROM write ; restore SREG value (I-bit) ; disable interrupts during timed sequence sbi EECR, EEMWE sbi EECR, EEWE out SREG, r16 C Code Example char cSREG; cSREG = SREG; _CLI(); EECR |= (1
ATMEGA64_08 价格&库存

很抱歉,暂时无法提供与“ATMEGA64_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货