0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATTINY13A-SF

ATTINY13A-SF

  • 厂商:

    ATMEL(爱特梅尔)

  • 封装:

  • 描述:

    ATTINY13A-SF - 8-bit Microcontroller with 1K Bytes In-System Programmable Flash - ATMEL Corporation

  • 数据手册
  • 价格&库存
ATTINY13A-SF 数据手册
Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture – 120 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 20 MIPS Througput at 20 MHz High Endurance Non-volatile Memory segments – 1K Bytes of In-System Self-programmable Flash program memory – 64 Bytes EEPROM – 64 Bytes Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 Years at 85°C/100 Years at 25°C (see page 6) – Programming Lock for Self-Programming Flash & EEPROM Data Security Peripheral Features – One 8-bit Timer/Counter with Prescaler and Two PWM Channels – 4-channel, 10-bit ADC with Internal Voltage Reference – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator Special Microcontroller Features – debugWIRE On-chip Debug System – In-System Programmable via SPI Port – External and Internal Interrupt Sources – Low Power Idle, ADC Noise Reduction, and Power-down Modes – Enhanced Power-on Reset Circuit – Programmable Brown-out Detection Circuit with Software Disable Function – Internal Calibrated Oscillator I/O and Packages – 8-pin PDIP/SOIC: Six Programmable I/O Lines – 10-pad MLF: Six Programmable I/O Lines – 20-pad MLF: Six Programmable I/O Lines Operating Voltage: – 1.8 – 5.5V Speed Grade: – 0 – 4 MHz @ 1.8 – 5.5V – 0 – 10 MHz @ 2.7 – 5.5V – 0 – 20 MHz @ 4.5 – 5.5V Industrial Temperature Range Low Power Consumption – Active Mode: • 190 µA at 1.8 V and 1 MHz – Idle Mode: • 24 µA at 1.8 V and 1 MHz • • • 8-bit Microcontroller with 1K Bytes In-System Programmable Flash ATtiny13A Summary • • • • • Rev. 8126ES–AVR–07/10 1. Pin Configurations Figure 1-1. Pinout of ATtiny13A 8-PDIP/SOIC (PCINT5/RESET/ADC0/dW) PB5 (PCINT3/CLKI/ADC3) PB3 (PCINT4/ADC2) PB4 GND 1 2 3 4 8 7 6 5 VCC PB2 (SCK/ADC1/T0/PCINT2) PB1 (MISO/AIN1/OC0B/INT0/PCINT1) PB0 (MOSI/AIN0/OC0A/PCINT0) 20-QFN/MLF DNC DNC DNC DNC DNC (PCINT5/RESET/ADC0/dW) PB5 (PCINT3/CLKI/ADC3) PB3 DNC DNC (PCINT4/ADC2) PB4 1 2 3 4 5 20 19 18 17 16 15 14 13 12 11 NOTE: Bottom pad should be soldered to ground. DNC: Do Not Connect 10-QFN/MLF (PCINT5/RESET/ADC0/dW) PB5 (PCINT3/CLKI/ADC3) PB3 DNC (PCINT4/ADC2) PB4 GND 1 2 3 4 5 10 9 8 7 6 VCC PB2 (SCK/ADC1/T0/PCINT2) DNC PB1 (MISO/AIN1/OC0B/INT0/PCINT1) PB0 (MOSI/AIN0/OC0A/PCINT0) NOTE: Bottom pad should be soldered to ground. DNC: Do Not Connect 2 ATtiny13A 8126ES–AVR–07/10 DNC DNC GND DNC DNC 6 7 8 9 10 VCC PB2 (SCK/ADC1/T0/PCINT2) DNC PB1 (MISO/AIN1/OC0B/INT0/PCINT1) PB0 (MOSI/AIN0/OC0A/PCINT0) ATtiny13A 1.1 1.1.1 Pin Description VCC Supply voltage. 1.1.2 GND Ground. 1.1.3 Port B (PB5:PB0) Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATtiny13A as listed on page 55. 1.1.4 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 18-4 on page 120. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 3 8126ES–AVR–07/10 2. Overview The ATtiny13A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny13A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 2.1 Block Diagram Figure 2-1. Block Diagram 8-BIT DATABUS STACK POINTER WATCHDOG OSCILLATOR CALIBRATED INTERNAL OSCILLATOR SRAM VCC WATCHDOG TIMER MCU CONTROL REGISTER MCU STATUS REGISTER TIMER/ COUNTER0 TIMING AND CONTROL PROGRAM COUNTER GND PROGRAM FLASH INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS INTERRUPT UNIT PROGRAMMING LOGIC INSTRUCTION DECODER X Y Z CONTROL LINES ALU DATA EEPROM STATUS REGISTER ADC / ANALOG COMPARATOR DATA REGISTER PORT B DATA DIR. REG.PORT B PORT B DRIVERS RESET CLKI PB[0:5] 4 ATtiny13A 8126ES–AVR–07/10 ATtiny13A The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATtiny13A provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core. The ATtiny13A AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Evaluation kits. 5 8126ES–AVR–07/10 3. About 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. 3.3 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 6 ATtiny13A 8126ES–AVR–07/10 ATtiny13A 4. Register Summary Address 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39 0x38 0x37 0x36 0x35 0x34 0x33 0x32 0x31 0x30 0x2F 0x2E 0x2D 0x2C 0x2B 0x2A 0x29 0x28 0x27 0x26 0x25 0x24 0x23 0x22 0x21 0x20 0x1F 0x1E 0x1D 0x1C 0x1B 0x1A 0x19 0x18 0x17 0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 Name SREG Reserved SPL Reserved GIMSK GIFR TIMSK0 TIFR0 SPMCSR OCR0A MCUCR MCUSR TCCR0B TCNT0 OSCCAL BODCR TCCR0A DWDR Reserved Reserved Reserved Reserved OCR0B GTCCR Reserved CLKPR PRR Reserved Reserved Reserved WDTCR Reserved Reserved EEARL EEDR EECR Reserved Reserved Reserved PORTB DDRB PINB PCMSK DIDR0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved ACSR ADMUX ADCSRA ADCH ADCL ADCSRB Reserved Reserved Reserved Bit 7 I – – – – – – – – – FOC0A Bit 6 T – – INT0 INTF0 – – – PUD – FOC0B Bit 5 H – – PCIE PCIF – – – SE – – Bit 4 S – SP[7:0] – – – – – CTPB SM1 – – Bit 3 V – – – – OCIE0B OCF0B RFLB SM0 WDRF WGM02 Bit 2 N – – – – OCIE0A OCF0A PGWRT – BORF CS02 Bit 1 Z – – – – TOIE0 TOV0 PGERS ISC01 EXTRF CS01 Bit 0 C – Page page 9 page 11 – – – – – SELFPRISC00 PORF CS00 page 47 page 48 page 75 page 76 page 98 page 75 pages 33, 47, 57 page 42 page 73 page 74 page 27 Timer/Counter – Output Compare Register A Timer/Counter (8-bit) Oscillator Calibration Register – COM0A1 – COM0A0 – COM0B1 – COM0B0 DWDR[7:0] – – – – Timer/Counter – Output Compare Register B TSM CLKPCE – – – – – – – – – – – – – – WDTIF WDTIE WDP3 WDCE – – – – – – EEPM1 EEPM0 – – – – – – – – – – – – – PORTB5 DDB5 PINB5 PCINT5 ADC0D PORTB4 DDB4 PINB4 PCINT4 ADC2D – – – – – – – – – – – ACD – ADEN ACBG REFS0 ADSC ACO ADLAR ADATE ACI – ADIF ACIE – ADIE – – ADPS2 ACIS1 MUX1 ADPS1 ACIS0 MUX0 ADPS0 PORTB3 DDB3 PINB3 PCINT3 ADC3D PORTB2 DDB2 PINB2 PCINT2 ADC1D PORTB1 DDB1 PINB1 PCINT1 AIN1D PORTB0 DDB0 PINB0 PCINT0 AIN0D EEPROM Address Register EEPROM Data Register EERIE EEMPE EEPE EERE WDE WDP2 WDP1 WDP0 CLKPS3 – CLKPS2 – CLKPS1 PRTIM0 CLKPS0 PRADC – – – PSR10 – – – – BODS WGM01 BODSE WGM00 page 33 page 70 page 97 page 75 page 78 page 28 page 34 page 42 page 20 page 20 page 21 page 57 page 57 page 58 page 48 pages 81, 95 page 80 page 92 page 93 page 94 page 94 ADC Data Register High Byte ADC Data Register Low Byte – ACME – – – – – – ADTS2 ADTS1 ADTS0 pages 80, 95 7 8126ES–AVR–07/10 Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.ome of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 8 ATtiny13A 8126ES–AVR–07/10 ATtiny13A 5. Instruction Set Summary Mnemonics ADD ADC ADIW SUB SUBI SBC SBCI SBIW AND ANDI OR ORI EOR COM NEG SBR CBR INC DEC TST CLR SER RJMP IJMP RCALL ICALL RET RETI CPSE CP CPC CPI SBRC SBRS SBIC SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS BRHC BRTS BRTC BRVS BRVC BRIE BRID SBI CBI LSL LSR ROL Rd,Rr Rd,Rr Rd,Rr Rd,K Rr, b Rr, b P, b P, b s, k s, k k k k k k k k k k k k k k k k k k k P,b P,b Rd Rd Rd k Operands Rd, Rr Rd, Rr Rdl,K Rd, Rr Rd, K Rd, Rr Rd, K Rdl,K Rd, Rr Rd, K Rd, Rr Rd, K Rd, Rr Rd Rd Rd,K Rd,K Rd Rd Rd Rd Rd BRANCH INSTRUCTIONS k Description Add two Registers Add with Carry two Registers Add Immediate to Word Subtract two Registers Subtract Constant from Register Subtract with Carry two Registers Subtract with Carry Constant from Reg. Subtract Immediate from Word Logical AND Registers Logical AND Register and Constant Logical OR Registers Logical OR Register and Constant Exclusive OR Registers One’s Complement Two’s Complement Set Bit(s) in Register Clear Bit(s) in Register Increment Decrement Test for Zero or Minus Clear Register Set Register Relative Jump Indirect Jump to (Z) Relative Subroutine Call Indirect Call to (Z) Subroutine Return Interrupt Return Compare, Skip if Equal Compare Compare with Carry Compare Register with Immediate Skip if Bit in Register Cleared Skip if Bit in Register is Set Skip if Bit in I/O Register Cleared Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared Branch if T Flag Set Branch if T Flag Cleared Branch if Overflow Flag is Set Branch if Overflow Flag is Cleared Branch if Interrupt Enabled Branch if Interrupt Disabled Operation Rd ← Rd + Rr Rd ← Rd + Rr + C Rdh:Rdl ← Rdh:Rdl + K Rd ← Rd - Rr Rd ← Rd - K Rd ← Rd - Rr - C Rd ← Rd - K - C Rdh:Rdl ← Rdh:Rdl - K Rd ← Rd • Rr Rd ← Rd • K Rd ← Rd v Rr Rd ← Rd v K Rd ← Rd ⊕ Rr Rd ← 0xFF − Rd Rd ← 0x00 − Rd Rd ← Rd v K Rd ← Rd • (0xFF - K) Rd ← Rd + 1 Rd ← Rd − 1 Rd ← Rd • Rd Rd ← Rd ⊕ Rd Rd ← 0xFF PC ← PC + k + 1 PC ← Z PC ← PC + k + 1 PC ← Z PC ← STACK PC ← STACK if (Rd = Rr) PC ← PC + 2 or 3 Rd − Rr Rd − Rr − C Rd − K if (Rr(b)=0) PC ← PC + 2 or 3 if (Rr(b)=1) PC ← PC + 2 or 3 if (P(b)=0) PC ← PC + 2 or 3 if (P(b)=1) PC ← PC + 2 or 3 if (SREG(s) = 1) then PC←PC+k + 1 if (SREG(s) = 0) then PC←PC+k + 1 if (Z = 1) then PC ← PC + k + 1 if (Z = 0) then PC ← PC + k + 1 if (C = 1) then PC ← PC + k + 1 if (C = 0) then PC ← PC + k + 1 if (C = 0) then PC ← PC + k + 1 if (C = 1) then PC ← PC + k + 1 if (N = 1) then PC ← PC + k + 1 if (N = 0) then PC ← PC + k + 1 if (N ⊕ V= 0) then PC ← PC + k + 1 if (N ⊕ V= 1) then PC ← PC + k + 1 if (H = 1) then PC ← PC + k + 1 if (H = 0) then PC ← PC + k + 1 if (T = 1) then PC ← PC + k + 1 if (T = 0) then PC ← PC + k + 1 if (V = 1) then PC ← PC + k + 1 if (V = 0) then PC ← PC + k + 1 if ( I = 1) then PC ← PC + k + 1 if ( I = 0) then PC ← PC + k + 1 I/O(P,b) ← 1 I/O(P,b) ← 0 Rd(n+1) ← Rd(n), Rd(0) ← 0 Rd(n) ← Rd(n+1), Rd(7) ← 0 Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Flags Z,C,N,V,H Z,C,N,V,H Z,C,N,V,S Z,C,N,V,H Z,C,N,V,H Z,C,N,V,H Z,C,N,V,H Z,C,N,V,S Z,N,V Z,N,V Z,N,V Z,N,V Z,N,V Z,C,N,V Z,C,N,V,H Z,N,V Z,N,V Z,N,V Z,N,V Z,N,V Z,N,V None None None None None None I None Z, N,V,C,H Z, N,V,C,H Z, N,V,C,H None None None None None None None None None None None None None None None None None None None None None None None None None None Z,C,N,V Z,C,N,V Z,C,N,V #Clocks 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 1/2/3 1 1 1 1/2/3 1/2/3 1/2/3 1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2 2 1 1 1 ARITHMETIC AND LOGIC INSTRUCTIONS BIT AND BIT-TEST INSTRUCTIONS Set Bit in I/O Register Clear Bit in I/O Register Logical Shift Left Logical Shift Right Rotate Left Through Carry 9 8126ES–AVR–07/10 Mnemonics ROR ASR SWAP BSET BCLR BST BLD SEC CLC SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLV SET CLT SEH CLH MOV MOVW LDI LD LD LD LD LD LD LDD LD LD LD LDD LDS ST ST ST ST ST ST STD ST ST ST STD STS LPM LPM LPM SPM IN OUT PUSH POP NOP SLEEP WDR BREAK Operands Rd Rd Rd s s Rr, b Rd, b Description Rotate Right Through Carry Arithmetic Shift Right Swap Nibbles Flag Set Flag Clear Bit Store from Register to T Bit load from T to Register Set Carry Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG Clear T in SREG Set Half Carry Flag in SREG Clear Half Carry Flag in SREG Operation Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Rd(n) ← Rd(n+1), n=0..6 Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) SREG(s) ← 1 SREG(s) ← 0 T ← Rr(b) Rd(b) ← T C←1 C←0 N←1 N←0 Z←1 Z←0 I←1 I←0 S←1 S←0 V←1 V←0 T←1 T←0 H←1 H←0 Rd ← Rr Rd+1:Rd ← Rr+1:Rr Rd ← K Rd ← (X) Rd ← (X), X ← X + 1 X ← X - 1, Rd ← (X) Rd ← (Y) Rd ← (Y), Y ← Y + 1 Y ← Y - 1, Rd ← (Y) Rd ← (Y + q) Rd ← (Z) Rd ← (Z), Z ← Z+1 Z ← Z - 1, Rd ← (Z) Rd ← (Z + q) Rd ← (k) (X) ← Rr (X) ← Rr, X ← X + 1 X ← X - 1, (X) ← Rr (Y) ← Rr (Y) ← Rr, Y ← Y + 1 Y ← Y - 1, (Y) ← Rr (Y + q) ← Rr (Z) ← Rr (Z) ← Rr, Z ← Z + 1 Z ← Z - 1, (Z) ← Rr (Z + q) ← Rr (k) ← Rr R0 ← (Z) Rd ← (Z) Rd ← (Z), Z ← Z+1 (z) ← R1:R0 Rd ← P P ← Rr STACK ← Rr Rd ← STACK Flags Z,C,N,V Z,C,N,V None SREG(s) SREG(s) T None C C N N Z Z I I S S V V T T H H None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None #Clocks 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 1 1 2 2 1 1 1 N/A DATA TRANSFER INSTRUCTIONS Rd, Rr Rd, Rr Rd, K Rd, X Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd,Y+q Rd, Z Rd, Z+ Rd, -Z Rd, Z+q Rd, k X, Rr X+, Rr - X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr k, Rr Rd, Z Rd, Z+ Rd, P P, Rr Rr Rd Move Between Registers Copy Register Word Load Immediate Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Direct from SRAM Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Direct to SRAM Load Program Memory Load Program Memory Load Program Memory and Post-Inc Store Program Memory In Port Out Port Push Register on Stack Pop Register from Stack MCU CONTROL INSTRUCTIONS No Operation Sleep Watchdog Reset Break (see specific descr. for Sleep function) (see specific descr. for WDR/Timer) For On-chip Debug Only None None None 10 ATtiny13A 8126ES–AVR–07/10 ATtiny13A 6. Ordering Information Speed (MHz) Power Supply (V) Ordering Code(1) ATtiny13A-PU ATtiny13A-SU ATtiny13A-SH ATtiny13A-SHR ATtiny13A-SSU ATtiny13A-SSH ATtiny13A-SSHR ATtiny13A-MU ATtiny13A-MUR ATtiny13A-MMU(3) ATtiny13A-MMUR(3) ATtiny13A-SN ATtiny13A-SNR ATtiny13A-SS7 ATtiny13A-SS7R ATtiny13A-SF ATtiny13A-SFR Notes: 1. Code indicators: – H or 7: NiPdAu lead finish – U, N or F: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 3. Topside marking for ATtiny13A: – 1st Line: T13 – 2nd Line: Axx – 3rd Line: xxx 4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 5. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny13A Specification at 105°C. 6. For typical and Electrical characteristics for this device please consult Appendix B, ATtiny13A Specification at 125°C. Package(2) 8P3 8S2 8S2 8S2 8S1 8S1 8S1 20M1 20M1 10M1(3) 10M1(3) 8S2 8S2 8S1 8S1 8S2 8S2 Operation Range Industrial (-40°C to +85°C)(4) 20 1.8 - 5.5 Industrial (-40°C to +105°C)(5) Industrial (-40°C to +125°C)(6) Package Type 8P3 8S2 8S1 20M1 10M1 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC) 8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC) 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) 10-pad, 3 x 3 x 1 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) 11 8126ES–AVR–07/10 7. Packaging Information 7.1 8P3 1 E E1 N Top View c eA End View D e D1 A2 A SYMBOL COMMON DIMENSIONS (Unit of Measure = inches) MIN NOM MAX NOTE A A2 b b2 b3 c D 0.115 0.014 0.045 0.030 0.008 0.355 0.005 0.300 0.240 0.310 0.250 0.100 BSC 0.300 BSC 0.115 0.130 0.130 0.018 0.060 0.039 0.010 0.365 0.210 0.195 0.022 0.070 0.045 0.014 0.400 2 5 6 6 3 3 b2 b3 4 PLCS L D1 E E1 e eA L b 0.325 0.280 4 3 Side View 4 0.150 2 Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information. 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3. 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch. 4. E and eA measured with the leads constrained to be perpendicular to datum. 5. Pointed or rounded lead tips are preferred to ease insertion. 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm). 01/09/02 2325 Orchard Parkway San Jose, CA 95131 TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP) DRAWING NO. 8P3 REV. B R 12 ATtiny13A 8126ES–AVR–07/10 ATtiny13A 7.2 8S2 C 1 E E1 L N TOP VIEW e A SYMBOL θ END VIEW b COMMON DIMENSIONS (Unit of Measure = mm) MIN NOM MAX NOTE A1 A A1 b C 1.70 0.05 0.35 0.15 5.13 5.18 7.70 0.51 0° 1.27 BSC 2.16 0.25 0.48 0.35 5.35 5.40 8.26 0.85 8° 3 2 4 4 D D E1 E SIDE VIEW Notes: 1. 2. 3. 4. L θ e This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information. Mismatch of the upper and lower dies and resin burrs aren't included. Determines the true geometric position. Values b,C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm. Package Drawing Contact: packagedrawings@atmel.com TITLE 8S2, 8-lead, 0.208” Body, Plastic Small Outline Package (EIAJ) GPC STN 4/15/08 DRAWING NO. REV. 8S2 F 13 8126ES–AVR–07/10 7.3 8S1 3 2 1 H N Top View e B A D Side View SYMBOL A COMMON DIMENSIONS (Unit of Measure = mm) MIN – – – – – NOM – – – – – 1.27 BSC – – – – 6.20 1.27 MAX 1.75 0.51 0.25 5.00 4.00 NOTE A2 B C C D E L E e H L End View Note: This drawing is for general information only. Refer to JEDEC Drawing MS-012 for proper dimensions, tolerances, datums, etc. 10/10/01 2325 Orchard Parkway San Jose, CA 95131 TITLE 8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC) DRAWING NO. 8S1 REV. A R 14 ATtiny13A 8126ES–AVR–07/10 ATtiny13A 7.4 20M1 D 1 Pin 1 ID 2 3 E SIDE VIEW TOP VIEW A2 D2 A1 A 1 Pin #1 Notch (0.20 R) 2 3 0.08 C E2 SYMBOL A A1 COMMON DIMENSIONS (Unit of Measure = mm) MIN 0.70 – NOM 0.75 0.01 0.20 REF 0.18 0.23 4.00 BSC 2.45 2.60 4.00 BSC 2.45 2.60 0.50 BSC 0.35 0.40 0.55 2.75 2.75 0.30 MAX 0.80 0.05 NOTE b L e BOTTOM VIEW A2 b D D2 E E2 e Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5. L 10/27/04 2325 Orchard Parkway San Jose, CA 95131 TITLE 20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, 2.6 mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 20M1 REV. A R 15 8126ES–AVR–07/10 7.5 10M1 D Pin 1 ID y E SIDE VIEW TOP VIEW A A1 D1 K 1 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN 0.80 0.00 0.18 2.90 1.40 2.90 2.20 NOM 0.90 0.02 0.25 3.00 – 3.00 – 0.50 0.30 – 0.20 – – – 0.50 0.08 – MAX 1.00 0.05 0.30 3.10 1.75 3.10 2.70 NOTE 2 A A1 b E1 b D D1 e E E1 e L BOTTOM VIEW L y K Notes: 1. This package conforms to JEDEC reference MO-229C, Variation VEED-5. 2. The terminal #1 ID is a Lasser-marked Feature. 7/7/06 DRAWING NO. 10M1 REV. A R TITLE 2325 Orchard Parkway 10M1, 10-pad, 3 x 3 x 1.0 mm Body, Lead Pitch 0.50 mm, San Jose, CA 95131 1.64 x 2.60 mm Exposed Pad, Micro Lead Frame Package 16 ATtiny13A 8126ES–AVR–07/10 ATtiny13A 8. Errata The revision letters in this section refer to the revision of the ATtiny13A device. 8.1 ATtiny13A Rev. G – H • EEPROM can not be written below 1.9 Volt 1. EEPROM can not be written below 1.9 Volt Writing the EEPROM at VCC below 1.9 volts might fail. Problem Fix/Workaround Do not write the EEPROM when VCC is below 1.9 volts. 8.2 8.3 ATtiny13A Rev. E – F These device revisions were not sampled. ATtiny13 Rev. A – D These device revisions were referred to as ATtiny13/ATtiny13V. 17 8126ES–AVR–07/10 9. Datasheet Revision History Please note that page numbers in this section refer to the current version of this document and may not apply to previous versions. 9.1 Rev. 8126E – 07/10 1. Updated description in Section 6.4.2 “CLKPR – Clock Prescale Register” on page 28. 2. Adjusted notes in Table 18-1, “DC Characteristics, TA = -40°C to +85°C,” on page 117. 3. Updated plot order in Section 19. “Typical Characteristics” on page 124, added some plots, also some headers and figure titles adjusted. 4. Updated Section 6. “Ordering Information” on page 11, added extended temperature part numbers, as well tape & reel part numbers. Notes adjusted. 5. Updated bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0]. 9.2 Rev. 8126D – 11/09 1. Added note “If the RSTDISPL fuse is programmed...” in Startup-up Times Table 6-5 and Table 6-6 on page 26. 2. Added addresses in all Register Description tables and cross-references to Register Summary. 3. Updated naming convention for -COM bits in tables from Table 11-2 on page 70 to Table 11-7 on page 72. 4. Updated value for tWD_ERASE in Table 17-8, “Minimum Wait Delay Before Writing the Next Flash or EEPROM Location,” on page 108. 5. Added NiPdAU note for -SH and -SSH in Section 6. “Ordering Information” on page 11. 9.3 Rev. 8126C – 09/09 1. Added EEPROM errata for rev. G - H on page 17. 2. Added a note about topside marking in Section 6. “Ordering Information” on page 11. 9.4 Rev. 8126B – 11/08 1. Updated order codes on page 11 to reflect changes in material composition. 2. Updated sections: – “DIDR0 – Digital Input Disable Register 0” on page 81 – “DIDR0 – Digital Input Disable Register 0” on page 95 3. Updated “Register Summary” on page 7. 9.5 Rev. 8126A – 05/08 1. Initial revision, created from document 2535I – 04/08. 2. Updated characteristic plots of section “Typical Characteristics” , starting on page 124. 3. Updated “Ordering Information” on page 11. 4. Updated section: – “Speed” on page 118 5. Update tables: – “DC Characteristics, TA = -40°C to +85°C” on page 117 – “Calibration Accuracy of Internal RC Oscillator” on page 119 18 ATtiny13A 8126ES–AVR–07/10 ATtiny13A – “Reset, Brown-out, and Internal Voltage Characteristics” on page 120 – “ADC Characteristics, Single Ended Channels. TA = -40°C to +85°C” on page 121 – “Serial Programming Characteristics, TA = -40°C to +85°C” on page 122 6. Added description of new function, “Power Reduction Register”: – Added functional description on page 31 – Added bit description on page 34 – Added section “Supply Current of I/O Modules” on page 124 – Updated Register Summary on page 7 7. Added description of new function, “Software BOD Disable”: – Added functional description on page 31 – Updated section on page 32 – Added register description on page 33 – Updated Register Summary on page 7 8. Added description of enhanced function, “Enhanced Power-On Reset”: – Updated Table 18-4 on page 120, and Table 18-5 on page 120 19 8126ES–AVR–07/10 Headquarters Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 International Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Product Contact Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts Literature Requests www.atmel.com/literature Disclaimer: T he information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. A tmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2010 Atmel Corporation. All rights reserved. A tmel ®, logo and combinations thereof, AVR ® a nd others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8126ES–AVR–07/10
ATTINY13A-SF 价格&库存

很抱歉,暂时无法提供与“ATTINY13A-SF”相匹配的价格&库存,您可以联系我们找货

免费人工找货