0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ACML-7410-000E

ACML-7410-000E

  • 厂商:

    AVAGO(博通)

  • 封装:

    SOIC16

  • 描述:

    General Purpose Digital Isolator 5600Vrms 4 Channel 100MBd 25kV/µs CMTI 16-SOIC (0.295", 7.50mm Widt...

  • 数据手册
  • 价格&库存
ACML-7410-000E 数据手册
ACML-7400, ACML-7410 and ACML-7420 3.3 V/5 V 100 MBd High Speed CMOS Digital Isolator Data Sheet Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product Description Features ACML-7400, ACML-7410 and ACML-7420 are multi-channel high speed CMOS digital isolators. Using magnetic coupling through a thick insulation barrier, the isolators enable high speed transmissions without compromise in isolation performance. These isolators consume low power even at high data rates, yet provide excellent transient immunity performance in compact surface mount packages. The devices are qualified to a maximum propagation delay of 36 ns and a maximum pulse width distortion of 3 ns. They are capable of running at a 100 MBaud data rate  Dual supply voltage compatible – 3.3 V & 5 V ACML-7400, ACML-7410 and ACML-7420 are available in 16-pin SOIC wide-body packages. They operate at dual 3.3 V/5 V supply voltages. The DC and timing specifications are specified over the temperature range of -40° C to +105° C. ACML-7400, ACML-7410 and ACML-7420 are built using CMOS input buffers and CMOS output drivers to eliminate the need for both input limiters and output pull-up resistors. Refresh circuitry is built in to ensure DC-correctness.  Safety and Regulatory Approvals Applications  Isolated data interfaces  Data acquisition  Digital oscilloscopes  Power meters  High speed video transmission  Wide operating temperature range (-40° C to +105° C)  Support high speed data rate of at least 100 MBd  Lower power consumption – 15 mA per channel typical  Low propagation delay: 36 ns max  Low propagation delay skew – Channel-to-channel: 4 ns max – Part-to-part: 8 ns max  Low pulse width distortion: 3 ns max UL Recognised – 5600 VRMS for 1 min. per UL1577 – CSA Component Acceptance Notice #5 IEC 60950-1 – Basic Insulation, 800 VRMS max. working voltage – Reinforced Insulation, 400 VRMS max. working voltage IEC 61010-1 – Basic Insulation, 800 VRMS max. working voltage – Reinforced Insulation, 400 VRMS max. working voltage IEC 60601-1 – 2 Means of Patient Protection, 250 VRMS max. working voltage – 2 Means of Operator Protectioin, 400 VRMS max. working voltage  High Common Mode Transient Immunity – 25 kV/s min  CMOS buffer input and output  DC correctness  Lead-free CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Device Selection Guide Device Number Channel Configuration Package ACML-7400 Quad, All-in-One 16-pin Small Outline, Wide Body ACML-7410 Quad, Bi-directional, 3/1 16-pin Small Outline, Wide Body ACML-7420 Quad, Bi-directional, 2/2 16-pin Small Outline, Wide Body Ordering Information ACML-7400, ACML-7410 and ACML-7420 are UL Recognized with 5600 VRMS for 1 minute per UL1577. Option Part number RoHS Compliant Package Surface Mount ACML-7400 ACML-7410 ACML-7420 -000E Wide Body SO-16 X -500E X Tape & Reel X UL 5600 VRMS / 1 Minute rating Quantity X 45 per tube X 850 per reel To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: ACML-7420-500E to order product of Wide Body SO-16 package in Tape and Reel in RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. 2 Functional Diagram Quad Channel ACML-7410 ACML-7400 ACML-7420 VDD2 VDD1 11 16 VDD2 VDD1 1 16 VDD2 GND1 22 15 15 GND2 GND1 22 15 GND2 GND1 2 15 GND2 VIN1 33 14 14 VO1 VIN1 33 14 VO1 VIN1 3 14 VO1 VIN2 44 13 13 VO2 VIN2 44 13 VO2 VIN2 4 13 VO2 VIN3 55 12 12 VO3 VIN3 55 12 VO3 VO3 5 12 VIN3 VIN4 66 11 11 VO4 VO4 66 11 VIN4 VO4 6 11 VIN4 NC 77 10 10 VOE2 VOE1 77 10 VOE2 VOE1 7 10 VOE2 GND1 88 99 GND2 GND1 88 9 GND2 GND1 8 9 GND2 Galvanic Isolation 16 16 Galvanic Isolation Galvanic Isolation 11 Galvanic Isolation Galvanic Isolation VDD1 Pin Description Pin Description VDD1, VDD2 Power supply at primary and secondary side GND1, GND2 Ground at primary and secondary side VIN1, VIN2, VIN3, VIN4 Input for channel 1, 2, 3 and 4 VO1, VO2, VO3, VO4 Output for channel 1, 2, 3 and 4 VOE1, VOE2 Output enable at VDD1 and VDD2 side, these pins should be connected to the respective VDD when not in use. No connectivity NC Truth Table (ACML-7410) VDD1 VIN1,IN2,IN3 VOE1 VO4 VDD2 VIN4 VOE2 VO1, O2, O3 Remark H H X X H X H H L X X H X H X X X H X H or NC H or NC L Z L X X X H X H H H X H H H X X H X L H L X X H X H or NC H or NC L Z H X X X H X H H L X X X Input (VIN1, IN2, IN3) logic High during normal operation. The default state for VOE2 is High state. Input (VIN1, IN2, IN3) logic Low during normal operation. The default state for VOE2 is High state. Output (VO1, O2, O3) is disabled to high impedance state when VOE2 is set to Low. When VDD1 is not powered, the output (VO1, O2, O3) default state is High. Output (VO1, O2, O3) typically restored 100 s after VDD1 is restored. Input (VIN4) logic High during normal operation. The default state for VOE1 is High state. Input (VIN4) logic Low during normal operation. The default state for VOE1 is High state. Output (VO4) is disabled to high impedance state when VOE1 is set to Low. When VDD2 is not powered, the output (VO4) default state is High. Output (VO4) typically restored 100 s after VDD2 is restored. X means don’t care NC means not connection. 3 L Package Outline Drawings ACML-7400, ACML-7410 and ACML-7420 16-Lead Surface Mount (SOIC-16) Package 0.457 (0.018) LAND PATTERN RECOMMENDATION 0.64 (0.025) 1.270 (0.050) 16 15 14 13 12 11 10 9 TYPE NUMBER DATE CODE A 7400 YYWW 7.493 ± 0.254 (0.295 ± 0.010) 11.63 (0.458) 2.16 (0.085) 1 2 3 4 5 6 7 8 10.312 ± 0.254 (0.406 ± 0.10) 3.505 ± 0.127 (0.138 ± 0.005) 0.457 (0.018) ALL LEADS TO BE COPLANAR ± 0.002 8.986 ± 0.254 (0.345 ± 0.010) 9° 0-8° 0.025 MIN. 10.160 ± 0.254 (0.408 ± 0.010) 0.203 ± 0.076 (0.008 ± 0.003) STANDOFF DIMENSIONS IN MILLIMETERS AND (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX. Recommended Pb-Free IR Profile Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used. Regulatory Information The ACML-7400, ACML-7410 and ACML-7420 are approved by the following organizations: UL UL1577, component recognition program. CSA Component Acceptance Service Notice #5A. TUV Rheinland IEC 60950-1 Insulation Category Working Voltage 4 IEC 61010-1 IEC 60601-1 Reinforced Basic Reinforced Basic 2 Means of Patient Protection 2 Means of Operator Protection 400 VRMS (567 VPEAK) 800 VRMS (1132 VPEAK) 400 VRMS (567 VPEAK) 800 VRMS (1132 VPEAK) 250 VRMS (354 VPEAK) 400 VRMS (567 VPEAK) Insulation and Safety Related Specifications Parameter Symbol ACML-7400 ACML-7410 ACML-7420 Minimum External Air Gap (Clearance) L(101) 8.1 mm Measured from input terminals to output terminals, shortest distance through air. Minimum External Tracking (Creepage) L(102) 8.1 mm Measured from input terminals to output terminals, shortest distance path along body. 0.05 mm Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector. >175 V DIN IEC 112/VDE 0303 Part 1 Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) CTI Isolation Group Units Conditions IIIa Material Group (DIN VDE 0110, 1/89, Table 1) All creepage and clearance pertain to the isolation component itself. These dimensions are needed as a starting point for the designer when determining the circuit insulation requirements, and not reflective of the equipment standard requirements. Absolute Maximum Ratings Parameter Symbol Min. Max. Units Storage Temperature TS -55 +125 °C Ambient Operating Temperature TA -40 +125 °C Supply Voltages VDD1, VDD2 0 6.5 Volts Input Voltage VI -0.5 VDD +0.5 Volts Output Voltage VO -0.5 VDD +0.5 Volts IO ±15 mA Human Body Model HBM ±4 kV Charge Device Model CDM ±1 kV Average Output Current Electrostatic Discharge Solder Reflow Temperature Profile Please refer to Solder Reflow Temperature Profile Recommended Operating Conditions Parameter Symbol Min. Max. Units Ambient Operating Temperature TA -40 +105 °C Supply Voltages ( 3.3 V operation) VDD1, VDD2 3.0 3.6 V Supply Voltages ( 5 V operation) VDD1, VDD2 4.5 5.5 V Logic High Input Voltage VIH 0.7 x VDD VDD V Logic Low Input Voltage VIL 0.0 0.3 x VDD V 5 Notes Electrical Specifications The following specifications apply to ACML-7400 and are applicable to ambient temperature of -40° C ≤ TA ≤ 105° C, input supply of 3.0 V ≤ VDD1 ≤ 3.6 V or 4.5 V ≤ VDD1 ≤ 5.5 V, and output supply of 3.0 V ≤ VDD2 ≤ 3.6 V or 4.5 V ≤ VDD2 ≤ 5.5 V. All typical specifications at TA = +25° C. Parameter Symbol Input Supply Current, No data Min. Typ. Max. Unit IDD1(0) 5.9* 10 mA Input Supply Current, 25 MBd data rate IDD1(25) 16 Input Supply Current, 100 MBd data rate IDD1(100) Output Supply Current, No data Test Conditions Fig. Notes No Input 1,7 1 12.5 MHz logic signal 1,7 2 50 MHz logic signal 1,7 2 No Input 2,8 3 12.5 MHz logic signal 2,8 4 50 MHz logic signal 2,8 4 VDD1 = 5.5 V 6.8** mA VDD1 = 3.3 V VDD1 = 5.0 V 17 30* 40 31** 40 IDD2(0) 12* 16 Output Supply Current, 25 MBd IDD2(25) 15 Output Supply Current, 100 MBd data rate IDD2(100) Logic Input Current IIN -10 Logic High Output Voltage VOH VDD-0.1 VDD-0.02 0.8*VDD VDD-0.25 Logic Low Output Voltage VOL mA VDD1 = 3.6 V VDD1 = 5.5 V mA VDD1 = 5.5 V 13** mA VDD1 = 3.3 V VDD1 = 5.0 V 17 23* 32 30** 40 10 mA VDD1 = 3.6 V VDD1 = 5.5 V A V IOUT = -20 A, VIN = VDD1 V IOUT = -4 mA, VIN = VDD1 0.02 0.1 V IOUT = 20 A, VIN = 0 V 0.25 0.8 V IOUT = 4 mA, VIN = 0 V * Typical data based on 3.3 V supply, ** Typical data based on 5.0 V supply The following specifications apply to ACML-7410 and are applicable to ambient temperature of -40° C ≤ TA ≤ 105° C, input supply of 3.0 V ≤ VDD1 ≤ 3.6 V or 4.5 V ≤ VDD1 ≤ 5.5 V, and output supply of 3.0 V ≤ VDD2 ≤ 3.6 V or 4.5 V ≤ VDD2 ≤ 5.5 V. All typical specifications at TA = +25° C. Parameter Symbol Input Supply Current, No data Min. Typ. Max. Unit IDD1(0) 8.4* 11.5 mA Input Supply Current, 25 MBd data rate IDD1(25) 15.5* Input Supply Current, 100 MBd data rate IDD1(100) Output Supply Current, No data Fig. Notes No Input 3,7 1 12.5 MHz logic signal 3,7 2 50 MHz logic signal 3,7 2 No Input 4,8 3 12.5 MHz logic signal 4,8 4 50 MHz logic signal 4,8 4 VDD1 = 5.5 V 9.4** mA VDD1 = 3.3 V VDD1 = 5.0 V 17** 28.5* 38 30.5** 40 IDD2(0) 9.5* 14.5 Output Supply Current, 25 MBd IDD2(25) 15* Output Supply Current, 100 MBd data rate IDD2(100) Logic Input Current IIN -10 Logic High Output Voltage VOH VDD-0.1 VDD-0.02 0.8*VDD VDD-0.25 Logic Low Output Voltage VOL mA VDD1 = 3.6 V VDD1 = 5.5 V mA VDD1 = 5.5 V 10.4** mA VDD1 = 3.3 V VDD1 = 5.0 V 17** 25* 34 30** 40 10 mA VDD1 = 3.6 V VDD1 = 5.5 V A V IOUT = -20 A, VIN = VDD1 V IOUT = -4 mA, VIN = VDD1 0.02 0.1 V IOUT = 20 A, VIN = 0 V 0.25 0.8 V IOUT = 4 mA, VIN = 0 V * Typical data based on 3.3 V supply, ** Typical data based on 5.0 V supply 6 Test Conditions The following specifications apply to ACML-7420 and are applicable to ambient temperature of -40° C ≤ TA ≤ 105° C, input supply of 3.0 V ≤ VDD1 ≤ 3.6 V or 4.5 V ≤ VDD1 ≤ 5.5 V, and output supply of 3.0 V ≤ VDD2 ≤ 3.6 V or 4.5 V ≤ VDD2 ≤ 5.5 V. All typical specifications at TA = +25° C. Parameter Symbol Input Supply Current, No data Min. Typ. Max. Unit IDD1(0) 9.0* 13 mA Input Supply Current, 25 MBd data rate IDD1(25) 15* Input Supply Current, 100 MBd data rate IDD1(100) Output Supply Current, No data mA 27* 36 30** 40 IDD2(0) 9.0* 13 Output Supply Current, 25 MBd IDD2(25) 15* Output Supply Current, 100 MBd data rate IDD2(100) Logic Input Current IIN -10 Logic High Output Voltage VOH VDD-0.1 VDD-0.02 0.8*VDD VDD-0.25 Logic Low Output Voltage VOL mA VDD1 = 3.6 V VDD1 = 5.5 V mA Notes No Input 5,7 1 12.5 MHz logic signal 5,7 2 50 MHz logic signal 5,7 2 No Input 6,8 3 12.5 MHz logic signal 6,8 4 50 MHz logic signal 6,8 4 VDD1 = 5.5 V 9.9** mA VDD1 = 3.3 V VDD1 = 5.0 V 17** 36 mA VDD1 = 3.6 V VDD1 = 5.5 V 40 10 A V IOUT = -20 A, VIN = VDD1 V IOUT = -4 mA, VIN = VDD1 0.02 0.1 V IOUT = 20 A, VIN = 0 V 0.25 0.8 V IOUT = 4 mA, VIN = 0 V * Typical data based on 3.3 V supply, ** Typical data based on 5.0 V supply 7 VDD1 = 3.3 V VDD1 = 5.0 V 17** 30** Fig. VDD1 = 5.5 V 9.9** 27* Test Conditions Switching Specifications The following specifications apply to ACML-7400, ACML-7410 and ACML-7420 and are applicable to ambient temperature of -40° C ≤ TA ≤ 105° C, input supply of 3.0 V ≤ VDD1 ≤ 3.6 V or 4.5 V ≤ VDD1 ≤ 5.5 V, and output supply of 3.0 V ≤ VDD2 ≤ 3.6 V or 4.5 V ≤ VDD2 ≤ 5.5 V, unless further specified. All typical specifications are at TA = +25° C. Parameter Symbol Maximum Data Rate Min. Typ. Max. 100 Minimum Pulse Width Unit Test Conditions MBd 50 MHz Logic Signal Fig. Notes 10 ns 50 MHz Logic Signal Propogation Delay Time to Logic Low Output tPHL 18 27 32 ns 4.5 V ≤ VDD1 = VDD2 ≤ 5.5 V, 9 CL = 15 pF 5 Propogation Delay Time to Logic High Output tPLH 18 27 32 ns 9 5 Pulse Width Distortion PWD -2 0 2 ns 11 6 Propagation Delay Channel Skew tCSK 0 3 ns 12 7 Propagation Delay Part Skew tPSK 1 5 ns Propogation Delay Time to Logic Low Output tPHL 20 28 36 ns Propogation Delay Time to Logic High Output tPLH 20 27.5 36 Pulse Width Distortion PWD -3 0.5 Propagation Delay Channel Skew tCSK Propagation Delay Part Skew tPSK 8 CL = 15 pF 9,10 5 ns 9,10 5 3 ns 11 6 0 4 ns 12 7 1 8 ns 8 Output Rise Time (10% – 90%) tR 3 ns CL = 15 pF Output Fall Time (90% - 10%) tF 3 ns CL = 15 pF Output Enable time tENABLE 10 ns VIN = 0 V or VDD 9 Output Disable time tDISABLE 10 ns VIN = 0 V or VDD 10 Common Mode Transient Immunity at Logic High Output | CMH | 25 >40 kV/s VCM = 1000 V, TA = 25° C, VIN = VDD VO > 0.8 x VDD 11 Common Mode Transient Immunity at Logic Low Output | CML | 25 >40 kV/s VCM = 1000 V, TA = 25° C, VIN = 0 V, VO < 0.8 V 11 8 Package Characteristics All Typicals at TA = 25° C. Parameters Symbol Min. Input-Output Momentary With-stand Voltage VISO 5600 Input-Output Resistance RI-O Input-Output Capacitance Typ. Max. Unit Test Conditions Notes VRMS RH ≤ 50%, t = 1 min, TA = 25°C 12, 13, 14 1014  VI-O = 500 V dc 12 CI-O 1.9 pF f = 1 MHz 12 Input Capacitance CI 4.3 pF Package Power Dissipation PPD 750 mW 15 TA = 25° C Notes: 1. IDD1(0) is the supply current consumption at VDD1 of ACML-7400, ACML-7410 and ACML-7420 when there is no signal to all inputs. 2. IDD1(F) is the supply current consumption at VDD1 of ACML-7400, ACML-7410 and ACML-7420 when inputs are switching at the specified data rate, and outputs are switching at same data rate with no load. 3. IDD2(0) is the supply current consumption at VDD2 of ACML-7400, ACML-7410 and ACML-7420 when there is no signal to all inputs. 4. IDD2(F) is the supply current consumption at VDD2 of ACML-7400, ACML-7410 and ACML-7420 when inputs are switching at the specified data rate, and outputs are switching at same data rate with no load. 5. tPHL propagation delay is measured from the 50% level on the falling edge of the VIN signal to the 50% level of the falling edge of the VOUT signal. tPLH propagation delay is measured from the 50% level on the rising edge of the VIN signal to the 50% level of the rising edge of the VOUT signal. 6. PWD is defined as tPHL -tPLH. 7. tCSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between channels of the same unit at any given temperature and supply voltages within the recommended operating conditions. 8. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature and supply voltages within the recommended operating conditions. 9. tENABLE is the duration when VOE is set to High state and output is restored per input signal (VO = VIN). 10. tDISABLE is the duration when VOE is set to Low and VO is switched to high impedance state. 11. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VOUT > 0.8 VDD2. CML is the maximum common mode input voltage that can be sustained while maintaining VOUT < 0.8 V. The common mode voltage slew rates apply to both rising and falling common mode voltage edges. 12. Device considered a two-terminal device: pins 1, 2, 3, 4, 5, 6, 7, 8 shorted together and pins 9, 10, 11, 12, 13, 14, 15 and 16 shorted together. 13. In accordance with UL1577, each ACML-7400, ACML-7410 AND ACML-7420 device is proof tested by applying an insulation test voltage 6800 VRMS for 1 second. 14. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specification. 15. CI is the capacitance measured at input pin. 9 Characteristic Curves 30 Idd1 5 V (0) Idd1 5 V (25) Idd1 5 V (100) 25 20 Idd1 3.3 V (0) Idd1 3.3 V (25) Idd1 3.3 V (100) 15 10 5 0 -40 -20 0 20 40 60 TA - TEMPERATURE - °C 80 IDD1 - SUPPLY CURRENT - mA 25 20 15 10 0 100 35 35 30 30 Idd1 5 V (0) Idd1 5 V (25) Idd1 5 V (100) 25 20 Idd1 3.3 V (0) Idd1 3.3 V (25) Idd1 3.3 V (100) 15 10 0 -40 -20 0 20 40 60 TA - TEMPERATURE - °C 80 10 IDD2 - SUPPLY CURRENT - mA 25 20 15 10 0 20 40 60 TA - TEMPERATURE - °C Figure 5. Typical IDD1 of ACML-7420 vs Temperature 80 100 -40 -20 0 20 40 60 TA - TEMPERATURE - °C Idd2 3.3V(0) Idd2 3.3V(25) Idd2 3.3V(100) 80 100 Figure 4. Typical IDD2 of ACML-7410 vs Temperature 30 -20 20 40 60 TA - TEMPERATURE - °C Idd2 5V(0) Idd2 5V(25) Idd2 5V(100) 5 30 -40 0 15 35 5 -20 20 35 Idd1 5 V (0) Idd1 5 V (25) Idd1 5 V (100) -40 Idd2 3.3 V (0) Idd2 3.3 V (25) Idd2 3.3 V (100) 25 0 100 Figure 3. Typical IDD1 of ACML-7410 vs Temperature 0 Idd2 5 V (0) Idd2 5 V (25) Idd2 5 V (100) Figure 2. Typical IDD2 of ACML-7400 vs Temperature 5 IDD1 - SUPPLY CURRENT - mA 30 5 Figure 1. Typical IDD1 of ACML-7400 vs Temperature 10 IDD2 - SUPPLY CURRENT - mA 35 IDD2 - SUPPLY CURRENT - mA IDD1 - SUPPLY CURRENT - mA 35 Idd1 3.3 V (0) Idd1 3.3 V (25) Idd1 3.3 V (100) 80 100 25 20 15 10 Idd2 5V(0) Idd2 5V(25) Idd2 5V(100) 5 0 -40 -20 0 20 40 60 TA - TEMPERATURE - °C Figure 6. Typical IDD2 of ACML-7420 vs Temperature Idd2 3.3V(0) Idd2 3.3V(25) Idd2 3.3V(100) 80 100 8 8 6 4 2 0 Vdd (5 V) Vdd (3.3 V) 0 20 40 60 DATA RATE - MBd 80 IRX - SUPPLY CURRENT - mA 10 ITX - SUPPLY CURRENT - mA 10 TP - PROPAGATION DELAY - ns TP - PROPAGATION DELAY - ns 30 28 26 -40 -20 1 0 20 40 60 TA - TEMPERATURE - °C 80 0 20 40 60 DATA RATE - MBd 80 100 0.5 0 -0.25 -20 0 20 40 60 TA - TEMPERATURE - °C Figure 11. Typical Pulse Width Distortion vs Temperature 26 -40 -20 0 2 0.25 -0.5 -40 28 20 40 60 TA - TEMPERATURE - °C 80 100 80 100 Figure 10. Typical Propagation Delay vs Temperature PWD (5 V) PWD (3.3 V) PWD (5 V/3.3 V) PWD (3.3 V/5 V) 0.75 Tphl (5 V/3.3 V) Tplh (5 V/3.3 V) Tphl (3.3 V/5 V) Tplh (3.3 V/5 V) 30 24 100 TPSK - PROPAGATION DELAY SKEW - ns PWD - PULSE WIDTH DISTORTION - ns Vdd (5 V) Vdd (3.3 V) 32 Tphl (5 V) Tplh (5 V) Tphl (3.3 V) Tplh (3.3 V) Figure 9. Typical Propagation Delay vs Temperature 11 2 Figure 8. Typical Supply Current per Receive Channel vs Data Rate 32 24 4 0 100 Figure 7. Typical Supply Current per Transmit Channel vs Data Rate 6 80 100 Tpsk (5 V) Tpsk (3.3 V) Tpsk (5 V/3.3 V) Tpsk (3.3 V/5 V) 1.5 1 0.5 0 -40 -20 0 20 40 60 TA - TEMPERATURE - °C Figure 12. Typical Channel-Channel Delay Skew vs Temperature Supply Current Consumption It should be noted that the output supply current is specified under no load conditions. Additional supply current consumption from board or components loading can be computed based on: IDD = CVF Where IDD is the additional supply current consumption per output channel, C is the load capacitance, V is the supply voltage and F is the frequency of the signal Bypassing and PC Board Layout The ACML-7400 series digital isolators are extremely easy to use. No external interface circuitry is required because ACML-7400 series use high speed CMOS IC technology allowing CMOS logic to be connected directly to the inputs and outputs. As shown in Figure 13, the only external components required for proper operation are two bypass capacitors for decoupling the power supply. Capacitor values should typically be 0.1 F. For each capacitor, the total lead length between both ends of the capacitor and the power supply pins should be as short as possible. VDD1 VDD2 16 16 22 15 15 VIN1 33 14 14 VO1 VIN2 44 13 13 VO2 VIN3 55 12 12 VO3 VO4 66 11 11 VIN4 0.1 F GND1 VOE1 77 88 GND1 Galvanic Isolation 11 0.1 F GND2 10 10 VOE2 99 GND2 Figure 13. Typical Schematic of ACML-7410 on PC Board 12 Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew Propagation Delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propagation delay from a low to high (tPLH) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low (tPHL) is the amount of time required for the input signal to propagate to the output, causing the output to change from high to low. Please see Figure 14. VDD INPUT 50% VIN tPHL tPLH OUTPUT 90% VOUT 10% Figure 14. Threshold Levels of AC Parameters 0V VOH 90% 10% 50% VOL Pulse-width distortion (PWD) is the difference between tPHL and tPLH and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of 20-30% of the minimum pulse width is tolerable. The PWD specification for ACML-7400 series is 3 ns maximum across recommended operating conditions. Propagation delay skew, tPSK, is an important parameter to consider in parallel data applications where synchronization of signals on parallel data lines is a concern. If the parallel data is sent through a group of isolators, differences in propagation delays will cause the data to arrive at the outputs of the isolators at different times. If this difference in propagation delay is large enough it will determine the maximum rate at which parallel data can be sent through the isolators. Propagation delay skew is defined as the difference between the minimum and maximum propagation delays, either tPLH or tPHL for any given group of optocouplers which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and operating temperature). As illustrated in Figure 15, if the inputs of a group of isolators are switched either ON or OFF at the same time, tPSK is the difference between the shortest propagation delay, either tPLH or tPHL and the longest propagation delay, either tPLH and tPHL. The ACML-7400 series isolators offer the advantage of guaranteed specifications for propagation delays, pulsewidth distortion, and propagation delay skew over the recommended temperature and power supply ranges. 50% VIN 50% VDD2 VOUT tPSK VIN 50% VOUT 50% VDD2 Figure 15. Illustration of TPSK For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-2675EN - May 16, 2011
ACML-7410-000E 价格&库存

很抱歉,暂时无法提供与“ACML-7410-000E”相匹配的价格&库存,您可以联系我们找货

免费人工找货