0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ACPL-K43T-560E

ACPL-K43T-560E

  • 厂商:

    AVAGO(博通)

  • 封装:

    SOIC8_5.85X6.8MM_SM

  • 描述:

    单向光耦 Viso=5000Vrms VF(typ)=1.55V IF=20mA SOIC8

  • 数据手册
  • 价格&库存
ACPL-K43T-560E 数据手册
Data Sheet ACPL-K43T, ACPL-K44T Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package Description The Broadcom® ACPL-K43T is a single-channel, high-temperature, high-CMR, high-speed digital optocoupler in an eight-lead miniature footprint specifically used in the automotive applications. The ACPL-K44T is a dual-channel equivalent of the ACPL-K43T. Both products are available in the stretched SO-8 package outline designed to be compatible with standard surface-mount processes. This digital optocoupler uses an insulating layer between the light-emitting diode and an integrated photo detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance. Broadcom R2Coupler™ isolation products provide with reinforced insulation and reliability that deliver safe signal isolation, which is critical in automotive and high-temperature industrial applications. Features          High temperature and reliability low-speed digital interface for automotive applications Ultra-low drive for status feedback at IF = 0.8 mA or 1.5 mA 30 kV/µs (typ.) high common-mode rejection at VCM = 1500V Compact, auto-insertable stretched SO8 packages Qualified to AEC Q100 Grade 1 test guidelines Wide operating temperature range: –40°C to +125°C High speed: 1 MBd Low propagation delay: 1 µs max. at IF = 10 mA Worldwide safety approval: – UL 1577 approval, 5 kVRMS/1 min. – CSA approval – IEC/EN/DIN EN 60747-5-5 Applications     Automotive IPM driver for DC-DC converters and motor inverters Status feedback and wake-up signal isolation CANBus and SPI communications interface High-temperature digital/analog signal isolation CAUTION! Take normal static precautions in handling and assembly of this component to prevent damage, degradation, or both, which may be induced by ESD. Broadcom AV02-3179EN September 26, 2018 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Functional Diagram ACPL-K43T Truth Table ACPL-K44T VO LED ANODE 1 8 VCC ANODE1 1 8 VCC ON LOW CATHODE 2 7 VO CATHODE1 2 7 VO1 OFF HIGH NC 3 6 NC CATHODE2 3 6 VO2 NC 4 5 GND NOTE: ANODE2 4 5 GND The connection of a 0.1-µF bypass capacitor between pins 5 and 8 is recommended. Ordering Information Specify part number followed by option number (if desired). Part Number ACPL-K43T Option (RoHS Compliant) -000E -060E Package Stretched SO-8 -500E -560E ACPL-K44T -000E -060E Stretched SO-8 Surface Mount Tape and Reel X UL 5000 Vrms / 1-Minute Rating IEC/EN/DIN EN 60747-5-5 X X X X X X X X X X 80 per tube X X X X X X -560E X X X 80 per tube 1000 per reel X X -500E Quantity 1000 per reel 80 per tube X 80 per tube 1000 per reel X 1000 per reel To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: ACPL-K43T-560E to order product of SSO-8 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant. Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information. Broadcom AV02-3179EN 2 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Schematic ACPL-K43T ACPL-K44T ICC + 8 VCC IF ICC 1 IF1 + 8 VF1 IO1 – 2 ANODE 1 VF IO 7 VO – CATHODE 2 3 – 7 VO1 IF2 IO2 6 VF2 SHIELD VCC VO2 + 5 GND 4 5 GND USE OF 0.1 PF BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS RECOMMENDED. Broadcom AV02-3179EN 3 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Package Outline Dimensions (Stretched SO8) RECOMMENDED LAND PATTERN 5.850 ± 0.254 (0.230 ± 0.010) 8 7 6 5 12.650 (0.498) 6.807 ± 0.127 (0.268 ± 0.005) RoHS-COMPLIANCE INDICATOR 1.905 (0.075) 1 2 3 4 0.64 (0.025) 7° 1.590 ± 0.127 (0.063 ± 0.005) 45° 0.450 (0.018) 3.180 ± 0.127 (0.125 ± 0.005) 0.200 ± 0.100 (0.008 ± 0.004) 0.381 ± 0.127 (0.015 ± 0.005) 1.270 (0.050) BSG 0.750 ± 0.250 (0.0295 ± 0.010) 11.50 ± 0.250 (0.453 ± 0.010) 0.254 ± 0.100 (0.010 ± 0.004) Dimensions in millimeters and (inches). Note: Lead coplanarity = 0.1 mm (0.004 inches). Floating lead protrusion = 0.25 mm (10 mils) max. Recommended Pb-Free IR Profile Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). NOTE: Use non-halide flux. Regulatory Information The ACPL-K43T and ACPL-K44T are approved by the following organizations. UL UL 1577, component recognition program up to VISO = 5 kVRMS. CSA CSA Component Acceptance Notice #5. IEC/EN/DIN EN 60747-5-5 IEC 60747-5-5 EN 60747-5-5 DIN EN 60747-5-5 Broadcom AV02-3179EN 4 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Insulation and Safety-Related Specifications Symbol ACPL-K43T ACPL-K44T Units Minimum External Air Gap (Clearance) L(101) 8 mm Measured from input terminals to output terminals, shortest distance through air. Minimum External Tracking (Creepage) L(102) 8 mm Measured from input terminals to output terminals, shortest distance path along body. 0.08 mm Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector. 175 V Parameter Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) CTI Isolation Group (DIN VDE0109) IIIa Conditions DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0109) IEC/EN/DIN EN 60747-5-5 Insulation-Related Characteristics (Options 060E and 560E) Description Symbol Characteristic Units Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage ≤ 150 Vrms I-IV for rated mains voltage ≤ 300 Vrms I-IV for rated mains voltage ≤ 450 Vrms I-IV for rated mains voltage ≤ 600 Vrms I-IV for rated mains voltage ≤ 1000 Vrms I-III Climatic Classification 55/100/21 Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage 2 VIORM 1140 Vpeak Input to Output Test Voltage, Method b VIORM × 1.875 = VPR, 100% Production Test with tm = 1s, Partial discharge < 5 pC VPR 2137 Vpeak Input to Output Test Voltage, Method a VIORM × 1.6 = VPR, Type and Sample Test, tm = 10s, Partial discharge < 5 pC VPR 1824 Vpeak VIOTM 8000 Vpeak TS 175 °C Input Current IS, INPUT 230 mA Output Power PS, OUTPUT 600 mW RS >109 Ω Highest Allowable Overvoltage (Transient Overvoltage tini = 60s) Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Insulation Resistance at TS, VIO = 500V Broadcom AV02-3179EN 5 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Absolute Maximum Ratings Parameter Symbol Min. Max. Units TSTG –55 150 °C Operating Ambient Temperature TA –40 125 °C Average Forward Input Current IF(avg) — 20 mA Peak Forward Input Current (50% duty cycle, 1-ms pulse width) IF(peak) — 40 mA Peak Transient Input Current (≤ 1-µs pulse width, 300 ps) IF(trans) — 100 mA Reversed Input Voltage VR — 5 V Input Power Dissipation (per channel) PIN — 30 mW Output Power Dissipation PO — 100 mW Average Output Current IO — 8 mA 16 mA 30 V Storage Temperature Peak Output Current IO(pk) Supply Voltage VCC –0.5 VO Output Voltage Lead Soldering Cycle –0.5 20 V Temperature — 260 °C Time — 10 s Notes Recommended Operating Conditions Parameter Supply Voltage Operating Temperature Broadcom Symbol Min. Max. Units VCC — 20 V TA –40 125 °C Notes AV02-3179EN 6 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Electrical Specifications (DC) Over recommended operating TA = –40°C to 125°C, unless otherwise specified. Parameter Current Transfer Ratio Logic Low Output Voltage Symbol Min. Typ. Max. Units CTR 32 65 100 % VOL Logic High Output Current IOH Logic Low Supply Current (per Channel) ICCL Logic High Supply Current (per Channel) ICCH Input Forward Voltage Input Reversed Breakdown Voltage Temperature Coefficient of Forward Voltage Input Capacitance VF Figure Notes VCC = 4.5V, VO = 0.4V, IF = 10 mA 1, 2, 4 a 24 65 — 33 160 — VCC = 4.5V, VO = 0.4V, IF = 1.5 mA 25 165 — VCC = 4.5V, VO = 0.4V, IF = 0.8 mA — 0.1 0.5 — 0.1 — VCC = 4.5V, IO = 0.5 mA, IF = 1.5 mA — 0.1 — VCC = 4.5V, IO = 0.2 mA, IF = 0.8 mA — 3×10-5 0.5 — 8×10-5 5 — 85 200 — 15 — — 0.02 1 — — 2.5 1.45 1.55 1.75 1.25 1.55 1.85 BVR 5 — — ∆VF/∆TA — –1.5 — — –1.8 — — 90 — CIN TA = 25°C Test Conditions V µA VCC = 4.5V, IO = 2.4 mA, IF = 10 mA TA = 25°C VO = VCC = 5.5V, IF = 0 mA 13, 14 VO = VCC = 20V, IF = 0 mA µA IF = 10 mA, VO = open, VCC = 20V IF = 1.5 mA, VO = open, VCC = 20V µA TA = 25°C IF = 0 mA, VO = open, VCC = 20V V TA = 25°C IF = 10 mA V IR = 10 µA 3 mV/°C IF =10 mA IF =1.5 mA pF F = 1 MHz, VF = 0 a. Current transfer ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100. Broadcom AV02-3179EN 7 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Switching Specifications (AC) Over recommended operating (TA = –40°C to 125°C), VCC = 5.0V unless otherwise specified. Test Conditions Parameter Symbol Min Typ Max Units Propagation Delay Time to Logic Low at Output tPHL 0.07 0.15 0.8 µs TA = 25°C a b 0.06 — 1.0 — 0.7 5 — 1 10 IF = 10 mA, Pulse: f = 10 kHz, 5, 6, 7, RL = 1.9 kΩ Duty cycle = 50%, 8, 9, 10, VCC = 5.0V, 11, 12, IF = 1.5 mA, 15 CL = 15 pF, RL = 10 kΩ VTHHL = 1.5V IF = 0.8 mA, RL = 27 kΩ 0.15 0.5 0.8 µs TA = 25°C a b 0.03 — 1.0 — 0.9 5 — 2 10 IF = 10 mA, Pulse: f = 10 kHz, 5, 6, 7, RL = 1.9 kΩ Duty cycle = 50%, 8, 9, 10, VCC = 5.0V, 11, 12, IF = 1.5 mA, 15 CL = 15 pF, RL = 10 kΩ VTHHL = 2.0V IF = 0.8 mA, RL = 27 kΩ — 0.35 0.45 µs TA = 25°C a, b, c — — 0.85 Pulse: f = 10 kHz, Duty cycle = 50%, IF = 10 mA, VCC = 5.0V, RL = 1.9 kΩ, CL = 15 pF, VTHHL = 1.5V, VTHLH = 2.0V — 0.35 0.5 µs TA = 25°C a, b, d — — 0.9 Pulse: f = 10 kHz, Duty cycle = 50%, IF = 10 mA, VCC = 5.0V, RL = 1.9 kΩ, CL = 15 pF, VTHHL = 1.5V, VTHLH = 2.0V VCM = 1500 Vp-p, RL = 1.9 kΩ, VCC = 5 V, TA = 25°C 16 e VCM = 1500 Vp-p, RL = 10 kΩ, VCC = 5 V, TA = 25°C 16 e Propagation Delay Time to Logic High at Output tPLH Pulse Width Distortion PWD Propagation Delay Difference Between Any 2 Parts PDD Common Mode Transient Immunity at Logic High Output |CMH| 15 30 — kV/µs IF = 0 mA Common Mode Transient Immunity at Logic Low Output |CML| 15 30 — kV/µs IF = 10 mA Common Mode Transient Immunity at Logic High Output |CMH| — 5 — kV/µs IF = 0 mA Common Mode Transient Immunity at Logic Low Output |CML| — 5 — kV/µs IF = 1.5 mA Figure Note , , a. Use of a 0.1-µF bypass capacitor connected between pins 5 and 8 is recommended. b. The 1.9-kΩ load represents one TTL unit load of 1.6 mA and the 5.6-kΩ pull-up resistor. c. Pulse Width Distortion (PWD) is defined as |tPHL – tPLH| for any given device. d. The difference between tPLH and tPHL between any two parts under the same test condition. e. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (that is, VO > 2.0V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode pulse signal, VCM to assure that the output will remain in a Logic Low state (that is, VO < 0.8 V). Broadcom AV02-3179EN 8 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Package Characteristics Parameter Symbol Min. Typ. Max. Units Test Conditions Figure Input-Output Momentary Withstand Voltagea VISO 5000 — — Input-Output Resistance RI-O — 1014 — Ω VI-O = 500 Vdc b Input-Output Capacitance CI-O — 0.6 — pF f = 1 MHz, VI-O = 0 Vdc b VRMS RH ≤ 50%, t = 1 minute, TA = 25°C Note b c , a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. b. The device is considered a two terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 are shorted together. c. In accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage ≥ 6000 VRMS for 1 second. Broadcom AV02-3179EN 9 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet IO - OUTPUT CURRENT - mA 30 VCC = 5.0 V TA = 25° C 25 Figure 2: Current Transfer Ratio vs. Input Current. VO = 0.4V, VCC = 5 V, TA = 25°C. 40 mA 35 mA 30 mA 25 mA 20 mA 20 15 mA 15 10 mA 10 IF = 5 mA 5 0 0 10 VO - OUTPUT VOLTAGE - V 20 Figure 3: Input Current vs. Forward Voltage 2.5 2.0 1.5 1.0 0.5 0.0 0.1 1.0 10.0 IF - INPUT CURRENT - mA 100.0 1.1 NORMALIZED CURRENT TRANSFER RATIO IF - FORWARD CURRENT - mA TA = 125° C TA = 25° C TA = -40° C 1.20 1.30 1.40 1.50 1.60 1.70 VF - FORWARD VOLTAGE - V 1.80 1.90 Figure 5: Propagation Delay Time vs. Temperature. IF = 10 mA, RL = 1.9 kΩ, CL = 15 pF. 1.0 0.9 Normalized IF = 10 mA, VO = 0.4 V VCC = 5.0 V TA = 25° C 0.8 0.7 0.6 -60 -20 20 60 TA - TEMPERATURE - °C 100 140 Figure 6: Propagation Delay Time vs. Temperature. IF = 10 mA, RL = 20 kΩ, CL = 100 pF. 1.2 TLH, Vcc = 5 V TLH, Vcc = 3.3 V THL, Vcc = 5 V THL, Vcc = 3.3 V 1.2 1.0 0.8 0.6 0.4 0.2 Propagation Delay Time - Ps 1.4 Propagation Delay Time - Ps 3.0 Figure 4: Current Transfer Ratio vs. Temperature 10.0 1.0 NORMALIZED CURRENT TRANSFER RATIO Figure 1: DC and Pulsed Transfer Characteristics TLH, Vcc = 20 V TLH, Vcc = 15 V THL, Vcc = 20 V THL, Vcc = 15 V 1.0 0.8 0.6 0.4 0.2 0.0 0.0 -55 Broadcom -35 -15 5 25 45 65 85 105 125 145 Ambient Temperature TA - °C -55 -35 -15 5 25 45 65 85 105 125 145 Ambient Temperature TA - °C AV02-3179EN 10 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Figure 7: Propagation Delay Time vs. Load Resistance Figure 8: Propagation Delay Time vs. Load Resistance TLH, Vcc = 5 V TLH, Vcc = 3.3 V THL, Vcc = 5 V THL, Vcc = 3.3 V 2.5 2.0 Propagation Delay TP - Ps Propagation Delay TP - Ps 3.0 1.5 1.0 0.5 0.0 1 2 3 4 5 6 7 Load Resistance RL - k: 8 9 10 11 12 13 14 Input Current IF - mA Propagation Delay TP - Ps Propagation Delay TP - Ps TLH, Vcc = 5 V TLH, Vcc = 3.3 V THL, Vcc = 5 V THL, Vcc = 3.3 V 10 15 16 TLH, Vcc = 5 V TLH, Vcc = 3.3 V THL, Vcc = 5 V THL, Vcc = 3.3 V Propagation Delay Tp (Ps) Propagation Delay Tp (Ps) 3 2 1.5 1 0.5 0 1.5 Broadcom 2 2.5 3 3.5 4 Input Current IF (mA) 4.5 5 10 15 20 25 30 35 Load Resistance RL - k: 40 45 50 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 TLH, Vcc = 20 V TLH, Vcc = 15 V THL, Vcc = 20 V THL, Vcc = 15 V 10 11 12 13 14 Input Current IF - mA 15 16 Figure 12: Propagation Delay Time vs. Input Current. RL = 27 kΩ, CL = 15 pF, TA = 25°C. Figure 11: Propagation Delay Time vs. Input Current. RL = 10 kΩ, CL = 15 pF, TA = 25°C. 2.5 TLH, Vcc = 20 V TLH, Vcc = 15 V THL, Vcc = 20 V THL, Vcc = 15 V Figure 10: Propagation Delay Time vs. Input Current. RL = 20 kΩ, CL = 15 pF, TA = 25°C. Figure 9: Propagation Delay Time vs. Input Current. RL = 1.9 kΩ, CL = 15 pF, TA = 25°C. 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 TLH, Vcc = 5 V TLH, Vcc = 3.3 V THL, Vcc = 5 V THL, Vcc = 3.3 V 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 Input Current IF (mA) 3 AV02-3179EN 11 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Figure 14: Logic High Output Current vs Temperature 1000 1000 100 100 10 TA = 125° C IF = 0 mA VCC = VO 1 IOH - LOGIC HIGH OUTPUT - nA IOH - LOGIC HIGH OUTPUT - nA Figure 13: Logic High Output Current vs Supply Voltage TA = 25° C 0.1 0.01 TA = -40° C 0.001 0.0001 2 4 6 8 10 12 14 VCC - SUPPLY VOLTAGE - V 16 18 IF = 0 mA VCC = VO = 5 V 10 1 0.1 0.01 0.001 0.0001 -50 20 0 50 100 TA - TEMPERATURE - °C 150 Figure 15: Switching Test Circuit 10% DUTY CYCLE 1/f < 100 Ps PULSE GEN. ZO = 50 : tr = 5 ns IF 0 1.5 V +5 V IF MONITOR 5V VO IF 2 7 RL VO 3 6 4 5 CL = 15 pF VOL tPHL 8 0.1 PF 100 : 2.0 V 1 tPLH Figure 16: Test Circuit for Transient Immunity and Typical Waveforms IF 1500 V VCM 0V VCC tr, tf = 80 ns 10% 90% tr 90% B 10% 1 8 2 7 tf 5V SWITCH AT A: IF = 0 mA VO VOL SWITCH AT B: IF = 10 mA VO 0.1 PF VFF VO RL A 3 6 4 5 + - VCM PULSE GEN. Broadcom AV02-3179EN 12 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Thermal Resistance Model for ACPL-K43T The diagram of ACPL-K43T for measurement is shown in Figure 17. Here, one die is heated first and the temperatures of all the dice are recorded after thermal equilibrium is reached. Then, the second die is heated and all the dice temperatures are recorded. With the known ambient temperature, the die junction temperature and power dissipation, the thermal resistance can be calculated. The thermal resistance calculation can be cast in matrix form. This yields a 2 by 2 matrix for the case of two heat sources. R11 R12 R21 R22 × P1 P2 = T1 T2 Figure 17: Diagram of ACPL-K43T for Measurement 1 2 8 Die1: LED Die2: Detector 7 3 6 4 5 R11 : Thermal Resistance of Die1 due to heating of Die1 (°C/W) R12 : Thermal Resistance of Die1 due to heating of Die2 (°C/W) R21 : Thermal Resistance of Die2 due to heating of Die1 (°C/W) R22 : Thermal Resistance of Die2 due to heating of Die2 (°C/W) P1 : Power dissipation of Die1 (W) P2 : Power dissipation of Die2 (W) T1 : Junction temperature of Die1 due to heat from all dice (°C) T2 : Junction temperature of Die2 due to heat from all dice (°C) Ta : Ambient temperature (°C) T1 : Temperature difference between Die1 junction and ambient (°C) T2 : Temperature deference between Die2 junction and ambient (°C) T1 = (R11 × P1 + R12 × P2) + Ta T2 = (R21 × P1 + R22 × P2) + Ta Measurement data on a low K board: R11 = 160°C/W, R12= R21 = 74°C/W, R22 = 115°C/W Broadcom AV02-3179EN 13 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet Thermal Resistance Model for ACPL-K44T The diagram of ACPL-K44T for measurement is shown in Figure 18. Here, one die is heated first and the temperatures of all the dice are recorded after thermal equilibrium is reached. Then, the second, third, and fourth die are heated and all the dice temperatures are recorded. With the known ambient temperature, the die junction temperature and power dissipation, the thermal resistance can be calculated. The thermal resistance calculation can be cast in matrix form. This yields a 4 by 4 matrix for the case of two heat sources. T1 R11 R12 R13 R14 R21 R22 R23 R24 R31 R32 R33 R34 P3 T3 R41 R42 R43 R44 P4 T4 P1 × P2 = T2 Figure 18: Diagram of ACPL-K44T for Measurement 1 Die2: Detector 1 2 3 4 R11 : Thermal Resistance of Die1 due to heating of Die1 (°C/W) R12 : Thermal Resistance of Die1 due to heating of Die2 (°C/W) R13 : Thermal Resistance of Die1 due to heating of Die3 (°C/W) R14 : Thermal Resistance of Die1 due to heating of Die4 (°C/W) R21 : Thermal Resistance of Die2 due to heating of Die1 (°C/W) R22 : Thermal Resistance of Die2 due to heating of Die2 (°C/W) R23 : Thermal Resistance of Die2 due to heating of Die3 (°C/W) R24 : Thermal Resistance of Die2 due to heating of Die4 (°C/W) R31 : Thermal Resistance of Die3 due to heating of Die1 (°C/W) R32 : Thermal Resistance of Die3 due to heating of Die2 (°C/W) R33 : Thermal Resistance of Die3 due to heating of Die3 (°C/W) R34 : Thermal Resistance of Die3 due to heating of Die4 (°C/W) R41 : Thermal Resistance of Die4 due to heating of Die1 (°C/W) R42 : Thermal Resistance of Die4 due to heating of Die2 (°C/W) R43 : Thermal Resistance of Die4 due to heating of Die3 (°C/W) R44 : Thermal Resistance of Die4 due to heating of Die4 (°C/W) P1 : Power dissipation of Die1 (W) P2 : Power dissipation of Die2 (W) P3 : Power dissipation of Die3 (W) P4 : Power dissipation of Die4 (W) Broadcom 8 Die1: LED 1 7 Die3: LED 1 Die4: Detector 2 6 5 AV02-3179EN 14 Automotive R2Coupler™ Wide Operating Temperature 1-MBd Digital Optocoupler in a Stretched 8-Pin Surface-Mount Plastic Package ACPL-K43T, ACPL-K44T Data Sheet T1 : Junction temperature of Die1 due to heat from all dice (°C) T2 : Junction temperature of Die2 due to heat from all dice (°C) T3 : Junction temperature of Die3 due to heat from all dice (°C) T4 : Junction temperature of Die4 due to heat from all dice (°C) Ta : Ambient temperature (°C) T1 : Temperature difference between Die1 junction and ambient (°C) T2 : Temperature deference between Die2 junction and ambient (°C) T3 : Temperature difference between Die3 junction and ambient (°C) T4 : Temperature deference between Die4 junction and ambient (°C) T1 = (R11 × P1 + R12 × P2 + R13 × P3 + R14 × P4) + Ta -- (1) T2 = (R21 × P1 + R22 × P2 + R23 × P3 + R24 × P4) + Ta -- (2) T3 = (R31 × P1 + R32 × P2 + R33 × P3 + R34 × P4) + Ta -- (3) T4 = (R41 × P1 + R42 × P2 + R43 × P3 + R44 × P4) + Ta -- (4) Measurement data on a low K board: R11 R12 R13 R14 R21 R22 R23 R24 R31 R32 R33 R34 R41 R42 R43 R44 160 76 76 76 76 115 76 76 76 76 160 76 76 76 76 115 Broadcom AV02-3179EN 15 Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, the A logo, and R2Coupler are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU. Copyright © 2012–2018 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
ACPL-K43T-560E 价格&库存

很抱歉,暂时无法提供与“ACPL-K43T-560E”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ACPL-K43T-560E
  •  国内价格 香港价格
  • 1+33.842001+4.08090
  • 10+23.9296010+2.88560
  • 25+21.6673025+2.61280
  • 100+19.64980100+2.36950
  • 250+18.21540250+2.19660
  • 500+17.97050500+2.16700
  • 1000+15.195101000+1.83230
  • 2000+14.437102000+1.74090
  • 5000+14.192205000+1.71140

库存:0

ACPL-K43T-560E
  •  国内价格
  • 1+16.20000
  • 10+15.60000
  • 100+13.80000
  • 500+13.44000

库存:14

ACPL-K43T-560E

    库存:2000

    ACPL-K43T-560E

      库存:1000

      ACPL-K43T-560E
        •  国内价格 香港价格
        • 1+24.812241+2.99200
        • 10000+24.7666310000+2.98650

        库存:1348000