0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ACPL-T350-500E

ACPL-T350-500E

  • 厂商:

    AVAGO(博通)

  • 封装:

    OC_9.65X6.35MM_SM

  • 描述:

    单向光耦 Viso=3750Vrms VF(typ)=1.5V IF=25mA

  • 数据手册
  • 价格&库存
ACPL-T350-500E 数据手册
ACPL-T350 2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC Data Sheet Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product Description Features The ACPL-T350 contains a GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the ACPL-T350 series can be used to drive a discrete power stage whichs drives the IGBT gate. The ACPL-T350 has an insulation voltage of VIORM = 630 Vpeak (Option 060).  2.5A Absolute Maximum Peak Output Current Functional Diagram ACPL-T350 8 VCC N/C 1 ANODE 2 7 VO CATHODE 3 6 VO N/C 4 SHIELD  15 kV/μs minimum Common Mode Rejection (CMR) at VCM = 1500 V  1.5 V maximum low level output voltage (VOL)  ICC = 4 mA maximum supply current  Under Voltage Lock-Out protection (UVLO) with hysteresis  Wide operating VCC range: 15 to 30 Volts  500 ns maximum switching speeds  Industrial temperature range: -40°C to 100°C  Safety Approval - UL Recognized 3750 Vrms for 1 min. - CSA Approval - IEC/EN/DIN EN 60747-5-5 Approved VIORM = 630 Vpeak (Option 060) Applications  IGBT/MOSFET gate drive  Inverter for Home Appliances  Industrial Inverters 5 VEE  Switching Power Supplies (SPS) Note: A 0.1 μF bypass capacitor must be connected between pins VCC and VEE. UVLO Truth Table LED VCC – VEE “POSITIVE GOING” (i.e., TURN-ON) VCC – VEE “NEGATIVE GOING” (i.e., TURN-OFF) VO OFF 0 - 30 V 0 - 30 V LOW ON 0 - 11 V 0 - 9.5 V LOW ON 11 - 13.5 V 9.5 - 12 V TRANSITION ON 13.5 - 30 V 12 - 30 V HIGH CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Ordering Information ACPL-T350 is UL Recognized with 3750 Vrms for 1 minute per UL1577. Part number ACPL-T350 Option RoHS Compliant Package Surface Mount Gull Wing -300E -000E 300mil DIP-8 X X -500E/500ME X X Tape& Reel IEC/EN/DIN EN 60747-5-5 Quantity 50 per tube 50 per tube X -060E 1000 per reel X -360E X X -560E/560ME X X X 50 per tube X 50 per tube X 1000 per reel To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: ACPL-T350-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant. Example 2: ACPL-T350-000E to order product of 300mil DIP package in tube packaging and RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use ‘-XXXE‘. Regulatory Information The ACPL-T350 is approved by the following organizations: IEC/EN/DIN EN 60747-5-5 (ACPL-T350 Option 060 only) UL Approval under: DIN EN 60747-5-5 (VDE 0884-5):2011-11 EN 60747-5-5:2011 Approval under UL 1577, component recognition program, File E55361. CSA Approval under CSA Component Acceptance Notice #5, File CA 88324. Recommended Pb-Free IR Profile Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used. 2 Package Outline Drawings ACPL-T350 Outline Drawing 7.62 – 0.25 (0.300 – 0.010) 9.65 – 0.25 (0.380 – 0.010) 8 TYPE NUMBER 7 6 5 6.35 – 0.25 (0.250 – 0.010) OPTION CODE* DATE CODE A XXXXZ YYWW 1 2 3 4 1.78 (0.070) MAX. 1.19 (0.047) MAX. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 5° TYP. 3.56 – 0.13 (0.140 – 0.005) 4.70 (0.185) MAX. 0.51 (0.020) MIN. 2.92 (0.115) MIN. DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED. 0.65 (0.025) MAX. 1.080 – 0.320 (0.043 – 0.013) 2.54 – 0.25 (0.100 – 0.010) NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. ACPL-T350 Outline Drawing LAND PATTERN RECOMMENDATION 9.65 – 0.25 (0.380 – 0.010) 8 7 6 1.016 (0.040) 5 6.350 – 0.25 (0.250 – 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 9.65 – 0.25 (0.380 – 0.010) 1.780 (0.070) MAX. 1.19 (0.047) MAX. 7.62 – 0.25 (0.300 – 0.010) 3.56 – 0.13 (0.140 – 0.005) 1.080 – 0.320 (0.043 – 0.013) 0.635 – 0.25 (0.025 – 0.010) 2.54 (0.100) BSC 0.635 – 0.130 (0.025 – 0.005) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 3 2.0 (0.080) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 12° NOM. Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-T350 Option 060) Description ACPL-T350 Option 060 Symbol Installation classification per DIN VDE 0110/39, Table 1 for rated mains voltage ≤ 150 Vrms for rated mains voltage ≤ 300 Vrms for rated mains voltage ≤ 450 Vrms I – IV I – IV I – III Climatic Classification 55/100/21 Pollution Degree (DIN VDE 0110/39) Unit 2 Maximum Working Insulation Voltage VIORM 630 Vpeak Input to Output Test Voltage, Method b* VIORM x 1.875=VPR, 100% Production Test with tm=1 sec, Partial discharge < 5 pC VPR 1181 Vpeak Input to Output Test Voltage, Method a* VIORM x 1.6=VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC VPR 1008 Vpeak Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec) VIOTM 6000 Vpeak Case Temperature TS 175 °C Input Current IS, INPUT 230 mA Output Power PS, OUTPUT 600 mW Insulation Resistance at TS, VIO = 500 V RS >109  * Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles. Note: These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802. OUTPUT POWER - PS, INPUT CURRENT - IS Safety-limiting values – maximum values allowed in the event of a failure ACPL-T350 Option 060 1000 PS (mW) IS (mA) 800 600 400 200 0 0 25 50 75 100 125 TS - CASE TEMPERATURE - qC 150 175 Table 2. Insulation and Safety Related Specifications Parameter Symbol ACPL-T350 Units Conditions Minimum External Air Gap (Clearance) L(101) 7.1 mm Measured from input terminals to output terminals, shortest distance through air. Minimum External Tracking (Creepage) L(102) 7.4 mm Measured from input terminals to output terminals, shortest distance path along body. 0.08 mm Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector. > 175 V DIN IEC 112/VDE 0303 Part 1 Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group CTI IIIa Material Group (DIN VDE 0110, 1/89, Table 1) All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level. 4 Table 3. Absolute Maximum Ratings Parameter Symbol Min. Max. Units Storage Temperature TS -55 125 °C Operating Temperature TA -40 100 °C Note Average Input Current IF(AVG) 25 mA Peak Transient Input Current ( 5 V Threshold Input Voltage High to Low VFHL 0.8 V IO = 0 mA, VO > 5 V Input Forward Voltage VF 1.2 V IF = 10 mA Temperature Coefficient of Input Forward Voltage VF/TA mV/°C IF = 10 mA Input Reverse Breakdown Voltage BVR V IR = 10 μA Input Capacitance CIN pF f = 1 MHz, VF = 0 V UVLO Threshold VUVLO+ 11.0 V IF = 10 mA, VO > 5 V 14, 20 VUVLO– 9.5 UVLO Hysteresis 1.5 1.8 -2.0 5 60 12.3 13.5 10.7 12.0 1.6 UVLOHYS V IF = 10 mA, VO > 5 V V IF = 10 mA, VO > 5 V 5 2 6, 7 9, 19 Table 6. Switching Specifications (AC) Over recommended operating conditions (TA = -40 to 100°C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specified. All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted. Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note Propagation Delay Time to High Output Level tPLH 0.05 0.25 0.5 μs 10, 11, 12, 21 8 Propagation Delay Time to Low Output Level tPHL 0.05 0.25 0.5 μs Rg = 10 , Cg = 10 nF, f = 10 kHz, Duty Cycle = 50% Pulse Width Distortion PWD 0.3 μs 9 Propagation Delay Difference Between Any Two Parts or Channels PDD (tPHL – tPLH) 0.35 μs 10 Rise Time tR 15 ns Fall Time tF 20 ns Output High Level Common Mode Transient Immunity |CMH| 15 20 kV/μs TA = 25°C, IF = 10 to 16 mA, VCM = 1500 V, VCC = 30 V 22 11, 12 Output Low Level Common Mode Transient Immunity |CML| 15 20 kV/μs TA = 25°C, VF = 0 V, VCM = 1500 V , VCC = 30 V 22 11, 13 6 -0.35 21 Table 7. Package Characteristics Over recommended temperature (TA = -40 to 100°C) unless otherwise specified. All typicals at TA = 25°C. Parameter Symbol Min. Input-Output Momentary Withstand Voltage** VISO 3750 Resistance Input-Output) RI-O Capacitance Input-Output) Typ. Max. Units Test Conditions Fig. Note Vrms RH < 50%, t = 1 min., TA = 25°C 14, 15 1012  VI-O = 500 V 15 CI-O 0.6 pF Freq=1 MHz LED-to-Case Thermal Resistance LC 467 °C/W LED-to-Detector Thermal Resistance LD 442 °C/W Detector-to-Case Thermal Resistance DC 126 °C/W Thermocouple located at center underside of package ** The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.” Notes: 1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA /°C. 2. Maximum pulse width = 10 μs. 3. Derate linearly above 70° C free-air temperature at a rate of 4.8 mW /°C. 4. Derate linearly above 70° C free-air temperature at a rate of 5.4 mW /°C. The maximum LED junction temperature should not exceed 125°C. 5. Maximum pulse width = 50 μs 6. In this test VOH is measured with a dc load current. When driving capacitive loads VOH will approach VCC as IOH approaches zero amps. 7. Maximum pulse width = 1 ms 8. This load condition approximates the gate load of a 1200 V/100A IGBT. 9. Pulse Width Distortion (PWD) is defined as |tPHL - tPLH| for any given device. 10. The difference between tPHL and tPLH between any two ACPL-T350 parts under the same test condition. 11. Pins 1 and 4 need to be connected to LED common. 12. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15.0 V). 13. Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 2.0 V). 14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 Vrms for 1 second (leakage detection current limit, II-O ≤ 5 μA). 15. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. 7 -3 -4 -40 -20 0 20 40 60 80 100 1.6 1.4 1.2 1.0 -40 -20 TA - TEMPERATURE - ° C IOL - OUTPUT LOW CURRENT - A VOL - OUTPUT LOW VOLTAGE - V 0.15 0.10 0.05 -20 0 20 40 60 80 100 100 80 -2 -3 -4 100 ° C 25 ° C -40 ° C -5 -6 0 4 VF (OFF) = -3.0 TO 0.8 V VOUT = 2.5 V VCC = 15 TO 30 V VEE = 0 V 3 2 1 0 -40 -20 0 20 40 60 80 100 1.50 --------- I CcH I CCL 1.00 -40 -20 0 20 40 60 80 100 TA - TEMPERATURE - oC Icc - SUPPLY CURRENT - mA 2.00 2.00 1.50 --------- I CcH I CCL 20 25 Vcc - SUPPLY VOLTAGE - V Figure 8. ICC vs. VCC 1.5 2.0 2.5 VF(OFF) = -3.0 to 0.8 V VCC = 15 to 30 V VEE = 0 V 3 2 1 0 100 ° C 25 ° C -40 ° C 0 0.5 Figure 6. VOL vs. IOL. 2.50 1.00 15 1.0 1.0 1.5 2.0 IOL - OUTPUT LOW CURRENT - A 3.00 2.50 0.5 Figure 3. VOH vs. IOH. Figure 5. IOL vs. temperature. 3.00 Figure 7. ICC vs. Temperature IF = 7 to 16 mA VCC = 15 to 30 V VEE = 0 V IOH - OUTPUT HIGH CURRENT - A TA - TEMPERATURE - ° C Figure 4. VOL vs. temperature. Icc - SUPPLY CURRENT - mA 60 4 VF (OFF) = -3.0 TO 0.8 V IOUT = 100 mA VCC = 15 TO 30 V VEE = 0 V TA - TEMPERATURE - ° C 8 40 Figure 2. IOH vs. temperature. 0.25 0 -40 20 -1 TA - TEMPERATURE - ° C Figure 1. VOH vs. temperature. 0.20 0 (VOH - V CC ) - OUTPUT HIGH VOLTAGE DROP - V -2 1.8 IF = 7 to 16 mA VOUT = (VCC - 4 V) VCC = 15 to 30 V VEE = 0 V VOL - OUTPUT LOW VOLTAGE - V -1 2.0 IF = 7 to 16 mA IOUT = -100 mA VCC = 15 to 30 V VEE = 0 V IOH - OUTPUT HIGH CURRENT - A (V OH - V CC ) - HIGH OUTPUT VOLTAGE DROP - V 0 30 2.5 2 1 0 -40 -20 0 20 40 60 80 - - - - - - TpHL TpLH 20 25 Vcc-SUPPLY VOLTAGE-V 1000 I F = 7mA VCC =30V, VEE = 0V 400 Rg= 10Ω , Cg = 10nF Duty Cycle = 50%, f = 10kHz 300 200 -------- TpHL TpLH 100 -40 -20 0 20 40 60 80 TA - TEMPERATURE - oC Figure 12. Propagation delay vs. Temperature 100 300 200 - - - - - - TpHL TpLH 30 Figure 10. Propagation delay vs. VCC. IF 1.0 0.1 0.01 1.20 1.30 1.40 8 9 10 11 12 13 14 15 IF - FORWARD LED CURRENT - mA 14 TA = 25° C 10 0.001 1.10 7 Figure 11. Propagation delay vs. IF. + VF - 100 VCC =30V, VEE =0V Rg= 10Ω, Cg = 10nF Duty = 50% f = 10kHz TA= 25 o C 400 100 100 15 IF - FORWARD CURRENT - mA Tp - PROPAGATION DELAY - ms 200 TA - TEMPERATURE - ° C 500 9 300 100 Figure 9. IFLH vs. temperature. Tp - PROPAGATION DELAY - ms 3 400 500 I F =7mA, TA =25 o C Rg = 10Ω, Cg = 10nF Duty = 50% f = 10kHz VO - OUTPUT VOLTAGE - V 4 VCC = 15 TO 30 V VEE = 0 V OUTPUT = OPEN Tp - PROPAGATION DELAY - ms I FLH - LOW TO HIGH CURRENT THRESHOLD - mA 500 5 1.50 1.60 VF - FORWARD VOLTAGE - VOLTS Figure 13. Input current vs. forward voltage. 12 (12.3, 10.8) 10 (10.7, 9.2) 8 6 4 2 0 (10.7, 0.1) 0 5 10 (12.3, 0.1) 15 20 (VCC - VEE ) - SUPPLY VOLTAGE - V Figure 14. Under voltage lock out. 16 1 8 0.1 2 F + - 7 IF = 7 to 16 mA 4V + VCC = 15 to 30 V 3 6 IOH 4 5 Figure 15. IOH test circuit. 1 8 2 7 0.1 3 F 8 2 7 0.1 IOL + VCC = 15 to 30 V F VOH IF = 7 to 16 mA + VCC = 15 to 30 V 2.5 V + - 6 1 6 3 100 mA 4 5 4 Figure 17. VOH Test circuit. Figure 16. IOL Test circuit. 1 8 0.1 2 F 3 6 4 5 10 1 8 2 7 0.1 100 mA 7 + VCC = 15 to 30 V Figure 18. VOL Test circuit. 5 VOL IF 3 6 4 5 Figure 19. IFLH Test circuit. F VO > 5 V + VCC = 15 to 30 V 1 8 2 7 0.1 IF = 10 mA 3 6 4 5 F + - VO > 5 V VCC Figure 20. UVLO Test Circuit 1 8 0.1 IF = 7 to 16 mA + 10 KHz - 500 Ω 50% DUTY CYCLE 2 F 7 IF VCC = 15 + to 30 V - tr tf VO 6 3 90% 10 Ω 50% VOUT 10 nF 4 10% 5 tPLH tPHL Figure 21. tPLH, tPHL, tr, and tf test circuit and waveforms. VCM 5V 0.1 A B V 8 1 IF 2 t F VO 3 6 4 5 VCC = 30 V VO - Figure 22. CMR test circuit and waveforms. 11 VOH SWITCH AT A: IF = 10 mA SWITCH AT B: IF = 0 mA + t t + - VO VCM = 1500 V VCM 0V 7 + - = VOL Typical Application Circuit ACPL-T350 +5 V 8 1 270 Ω 0.1 2 F + - VCC = 18 V + HVDC 7 Rg CONTROL INPUT 74XXX OPEN COLLECTOR 3 6 4 5 Q1 3-PHASE AC Q2 - HVDC Figure 23. Recommended LED drive and application circuit. ACPL-T350 +5 V 1 270 Ω 8 0.1 2 F + - VCC = 15 V + HVDC 7 Rg CONTROL INPUT 74XXX OPEN COLLECTOR 3 Q1 6 + - 4 VEE = -5 V 3-PHASE AC 5 Q2 Figure 24. Typical application circuit with negative IGBT gate drive. For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2012-2016 Avago Technologies Limited. All rights reserved. AV02-0308EN - September 23, 2016 - HVDC
ACPL-T350-500E 价格&库存

很抱歉,暂时无法提供与“ACPL-T350-500E”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ACPL-T350-500E
  •  国内价格
  • 1+6.38409
  • 30+6.16395
  • 100+5.72367
  • 500+5.28339
  • 1000+5.06325

库存:1019