ALM-1912
GPS Filter–LNA Front–End Module
Data Sheet
Description
Features
Avago Technologies’ ALM-1912 is a GPS front-end module
that combines a GPS FBAR filter with high-gain low-noise
amplifier (LNA).The LNA uses Avago Technologies’ proprietary GaAs Enhancement-mode pHEMT process to
achieve high gain with very low noise figure and high
linearity. Noise figure distribution is very tightly controlled.
A CMOS-compatible shutdown pin is included either for
turning the LNA on/off or for current adjustment. The
filter use Avago Technologies’ leading-edge FBAR filter for
low GPS band insertion loss and exceptional rejection at
Cellular, PCS and WLAN band frequencies.
• Very Low Noise Figure
The low noise figure and high gain, coupled with low current
consumption make it suitable for use in critical low-power
GPS applications or during low-battery situations.
Surface Mount 2.9 x 2.0 x 0.95 mm3 9-lead MCOB
Vdd (pin 7)
1912
WWYY
Gnd
(pin 3)
RF Out (pin 6)
NC (pin5)
• Shutdown current : < 1 uA
• CMOS compatible shutdown pin (SD)
• ESD : > 3kV at RFin pin
• 2.9 x 2.0 x 0.95 mm size
• Adjustable bias current via single external resistor/
voltage
• Lead-free and Halogen free
At 1.575GHz, Vdd = 2.7V, Idd = 6mA
• Gain = 19.3 dB
• IIP3 = +1.5 dBm
• IP1dB = -8 dBm
• S11 = -9.5 dB
• S22 =-13.5 dB
• Cell-Band Rejection: > 57dBc
Gnd
(pin 4)
• PCS-Band Rejection: > 53dBc
Top View
Vsd
(pin 8)
• Fully-matched at RF input and RF output
• NF = 1.62 dB
Vsd
(pin 8)
RF In (pin 1)
Gnd (pin 2)
• Low external component count
Specifications (Typical performance @ 25°C)
Component Image
Gnd
(pin 9)
• Exceptional Cell/PCS/WLAN-Band rejection
• WLAN-Band Rejection: > 52dBc
Application
Gnd
(pin 9)
Vdd (pin 7)
RF In (pin 1)
• GPS Front-end Module
Application Circuit
RF Out (pin 6)
Gnd
(pin 4)
+Vdd = 2.7V
VBias
Gnd (pin 2)
NC (pin 5)
Gnd
(pin 3)
RBias
L
Bottom View
Note:
Package marking provides orientation and identification
“1912” = Product Code
“YY” = Year of manufacture
“WW” = Work week of manufacture
RFout
RFin
GPS
Filter
LNA
Absolute Maximum Rating[1] TA=25°C
Symbol
Parameter
Units
Absolute
Max.
Vdd
Device Frain to Source Voltage [2]
V
4.5
Idd
Drain Current [2]
mA
15
Pin,max
CW RF Input Power (Vdd = 2.7V. Idd = 6mA) dBm
13
Pdiss
Total Power Dissipation[4]
mW
54
TL
Operating Temperature
°C
-40 to 85
Tj
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
2
Thermal Resistance [3]
(Vdd = 2.7V, Idd = 6mA), θjc = 82.1°C/W
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage.
2. Assuming DC quiescent conditions.
3. Thermal resistance measured using Infra-Red
measurement technique.
4. Board (module belly) temperature TB is 25°C.
Derate 4.2 mW/°C for TB>145.6°C.
Electrical Specifications
TA = 25°C, Freq = 1.575GHz, measured on demo board[1] unless otherwise specified – Typical Performance[1]
Table 1. Performance at Vdd = Vsd = 2.7V, Idd = 6mA (R2 = 4.7k Ohm, see Fig 7) nominal operating conditions
Symbol
Parameter and Test Condition
Units
Min.
Typ
Max.
G
Gain
dB
17
19.3
–
NF
Noise Figure
dB
–
1.62
2.0
IP1dB
Input 1dB Compressed Power
dBm
–
-8
–
IIP3[2]
Input 3rd Order Intercept Point (2-tone @ Fc +/- 2.5MHz)
dBm
–
+1.5
–
S11
Input Return Loss
dB
–
-9.5
–
S22
Output Return Loss
dB
–
-13.5
–
S12
Reverse Isolation
dB
–
-29
–
Cell Band Rejection
Worst-case relative to 1.575GHz within (827-928)MHz band
dBc
51
57
–
PCS Band Rejection
Worst-case relative to 1.575GHz within (1710-1980)MHz band
dBc
45
53
–
WLAN Band Rejection
Worst-case relative to 1.575GHz within (2400-2500)MHz band
dBc
43
52
–
IP1dB928MHz
Input 1dB gain compression interferer signal level at 928MHz
dBm
–
+39
–
IP1dB1980MHz
Input 1dB gain compression interferer signal level at 1980MHz
dBm
–
+44
–
IP1dB2400MHz
Input 1dB gain compression interferer signal level at 2400MHz
dBm
–
+43
–
Idd
Supply DC current at Shutdown (SD) voltage Vsd=2.7V
mA
–
6
11.5
Ish
Shutdown Current @ VSD = 0V
uA
–
0.5
–
Table 2. Performance at Vdd = Vsd = 1.8V, Idd = 4mA & Vdd = Vsd = 2.8V, Idd = 4mA (for R2 value, see Fig 7) nominal operating
conditions
Symbol
Parameter and Test Condition
Units
Vdd=1.8V
Idd=4mA
Vdd=2.8V
Idd=4mA
G
Gain
dB
17.5
18
NF
Noise Figure
dB
1.68
1.65
IP1dB
Input 1dB Compressed Power
dBm
-9.6
-9.5
IIP3[2]
Input 3rd Order Intercept Point (2-tone @ Fc +/- 2.5MHz)
dBm
0
+1.0
S11
Input Return Loss
dB
-8
-8.5
S22
Output Return Loss
dB
-10
-10
S12
Reverse Isolation
dB
-27
-27
Cell Band Rejection
Worst-case relative to 1.575GHz within (827-928)MHz band
dBc
56
55
PCS Band Rejection
Worst-case relative to 1.575GHz within (1710-1980)MHz band
dBc
52
51
WLAN Band Rejection
Worst-case relative to 1.575GHz within (2400-2500)MHz band
dBc
51
50
IP1dB928MHz
Input 1dB gain compression interferer signal level at 928MHz
dBm
+38
+38
IP1dB1980MHz
Input 1dB gain compression interferer signal level at 1980MHz
dBm
+38
+38
IP1dB2400MHz
Input 1dB gain compression interferer signal level at 2400MHz
dBm
+39
+39
Idd
Supply DC current at Shutdown (SD) voltage Vsd=1.8V
mA
4
4
Ish
Shutdown Current @ VSD = 0V
uA
0.5
0.5
Notes:
1. Measurements at 1.575GHz obtained using schematic described in Figure 7 & 8 below.
2. 1.575GHz IIP3 test condition: FRF1 = 1572.5 MHz, FRF2 = 1577.5 MHz with input power of -30dBm per tone measured at the worst case side band
3
VDD
3
4
GND
INCH
H0.010
W0.022
e3.48
2
GND
SD
1
R1
L1
C1
C2
C3
R2
RF Input
L2
RFIN
RF Output
RFOUT
RDV02
MAY 2009
Avago Technologies
DC Pin Configuration of 4-Pins connector
1
2
3
Pins 2, 4 = GND
Pin 3 = Vdd Supply
Pin 1 = Shutdown (SD)
Circuit
Symbol
Size
Description
Part Number
L1
0402
22nH Inductor
(Taiyo Yuden HK100522NJ-T)
L2
0402
1.8nH Inductor
(Taiyo Yuden HK10051N8S-T)
C1
0402
0.1uF Capacitor
(Kyocera CM05X5R104K10AH)
C2
0402
47pF Capacitor
(Kyocera CM05CH470J50AHF)
C3
0402
330pF Capacitor
(Kyocera CM05CH331J16AHF)
R1
0402
10 Ohm
(KOA RK73B1ETTB100J)
R2
0402
4.7 kOhm
(KOA RK73B1ETTB472J)
Figure 2. Demoboard and application circuit components table
4
4
Vdd (Pin 7)
L1
R1
C2
L2
C1
Vdd
GPS
Filter
50-Ohms TL
RFin (Pin 1)
50-Ohms TL
LNA
RFout (Pin 6)
Vsd
(Pin 2, 3, 4, 5, 9)
R2
Vsd (Pin 8)
C3
Figure 3. Demoboard and application schematic diagram
Notes
• The module is fully matched at the input and output RF pins. Both these pins also have built-in coupling and DC-blocking capacitors. Best noise
performance is obtained using high-Q wirewound inductors. This circuit demonstrates that low noise figures are obtainable with standard 0402
chip inductors.
• C2 and L2 form a matching network that affects the frequency response and linearity of the LNA, these can be tuned to optimize gain and return
loss.
• L1 and R1 isolates the demoboard from external disturbances during measurement. It is not needed in actual application. Likewise, C1 and C3
mitigate the effect of external noise pickup on the Vdd and Vsd lines respectively. These components are not required in actual operation.
• Bias control is achieved by either varying the Vsd voltage with/without R2, or fixing the Vsd voltage to Vdd and adjusting R2 for the desired current.
R2 = 4.7Kohm will result 6mA when Vdd = Vsd = 2.7V. R2 = 2.7Kohm for 4mA when Vdd = Vsd = 1.8V & R2 = 15Kohm for 4mA when Vdd = Vsd =
2.8V.
5
5
-5
-10
0.5
1
1.5
2
2.5
Freq(GHz)
3
3.5
4
0
0
0
-10
-5
-20
-10
-30
-15
Gain
Input Return Loss
Output Return Loss
1.5
1.52
1.54
-20
1.56 1.58
Freq(GHz)
1.6
1.62
1.64
-25
20
10
10
5
0
0
-10
-5
-10
-10
-20
-15
-30
Gain
Input Return Loss
Output Return Loss
0.5
1
1.5
2
2.5
Freq(GHz)
3
3.5
-15
-20
4
-20
Gain
Input Return Loss
Output Return Loss
-40
-50
1.5
1.52
1.54
1.56 1.58
Freq(GHz)
1.6
-25
1.62
1.64
-30
Figure 4b. Passband response of typical S-Parameter Plot @ Vdd = 1.8V,
Idd = 4mA
Return Loss
-5
Return Loss
Gain(dB)
5
Figure 3b. Passband response of typical S-Parameter Plot @ Vdd = 2.7V,
Idd = 6mA
5
Figure 4a. Typical S-Parameter Plot @ Vdd = 1.8V, Idd = 4mA
6
10
-50
-20
Figure 3a. Typical S-Parameter Plot @ Vdd = 2.7V, Idd = 6mA
20
10
0
-10
-20
-30
-40
-50
-60
-70
-80
10
-40
Gain(dB)
-80
-15
Gain
Input Return Loss
Output Return Loss
-70
Gain(dB)
0
20
Return Loss
20
10
0
-10
-20
-30
-40
-50
-60
Return Loss
Gain(dB)
ALM-1912 Typical Performance Curves at 25°
ALM-1912 Typical Performance Curves at 25°C, R2 = 4.7kOhm
16
8
Vdd=2.7V
Vdd=1.8V
7
6
Idd (mA)
Idd (mA)
12
8
4
5
4
3
2
1
0
0
5
10
15
20
25
Rbias (kohm)
30
35
0
40
Figure 5. Idd vs Rbias at 25°C
8
2.4
7
2.2
NF (dB)
Idd (mA)
1
1.5
2
2.5
Vsd (V)
3
3.5
4
4.5
25C
85C
-40C
2
5
4
3
1.8
1.6
2
1.4
1
0
0.5
Figure 6. Idd vs Vsd for Vdd = 2.7V, R2 = 4.7k Ohm
6
0
0.5
1
1.5
2
2.5
Vsd (V)
3
3.5
4
1.2
4.5
Figure 7. Idd vs Vsd for Vdd = 1.8V, R2 = 2.7k Ohm
2.2
3
4
5
6
7
8
Idd (mA)
9
10
11
12
21
25C
85C
-40C
2.4
2
Figure 8. NF vs. Idd at Vdd = 2.7V
2.6
25C
85C
-40C
20
2
Gain (dB)
NF (dB)
0
1.8
19
18
1.6
17
1.4
1.2
2
3
4
Figure 9. NF vs Idd at Vdd = 1.8V
7
5
Idd (mA)
6
7
8
16
2
3
4
5
Figure 10. Gain vs. Idd at Vdd = 2.7V
6
7
Idd (mA)
8
9
10
11
ALM-1912 Typical Performance Curves at 25°C, R2 = 4.7kOhm
20
18
Cell Band Rejection (dBc)
19
Gain (dB)
64
25C
85C
-40C
17
16
15
14
25C
85C
-40C
62
60
13
12
2
3
4
5
6
7
Idd (mA)
8
9
10
Figure 11. Gain vs. Idd at Vdd = 1.8V
PCS Band Rejection (dBc)
Cell Band Rejection (dBc)
62
60
58
3
4
5
6
7
Idd (mA)
8
9
10
5
6
7
Idd (mA)
Figure 15. PCS band rejection vs. Idd at Vdd = 1.8V
8
WLAN Band Rejection (dBc)
PCS Band Rejection (dBc)
54
4
6
7
Idd (mA)
8
9
10
11
25C
85C
-40C
54
2
3
4
5
6
7
Idd (mA)
8
9
58
25C
85C
-40C
3
5
10
11
Figure 14. PCS band rejection vs. Idd at Vdd = 2.7V
56
2
4
56
52
11
Figure 13. Cell band rejection vs. Idd at Vdd = 1.8V
52
3
58
25C
85C
-40C
2
2
Figure 12. Cell band rejection vs. Idd at Vdd = 2.7V
64
56
58
11
8
9
10
11
25C
85C
-40C
56
54
52
2
3
4
5
6
7
Idd (mA)
8
Figure 16. WLAN band rejection vs. Idd at Vdd = 2.7V
9
10
11
ALM-1912 Typical Performance Curves at 25°C, R2 = 4.7kOhm
WLAN Band Rejection (dBc)
58
25C
85C
-40C
56
54
52
2
3
4
5
6
7
Idd (mA)
8
9
10
11
Figure 17. WLAN band rejection vs. Idd at Vdd = 1.8V
Figure 18. IP1dB vs. Vdd at 25°C
Out of Band Gain Compression (dBm)
40
39
38
37
36
35
34
Figure 19. IIP3 vs. Vdd at 25°C
2.7V (6mA)
1.8V (4mA)
44
43
42
41
40
39
38
37
-40
-20
0
20
40
Temperature (°C)
60
80
Figure 21. Input signal required at 1980MHz interference signal to cause 1dB
gain compression at 1.575GHz
9
-40
-20
0
20
40
Temperature (°C)
60
80
Figure 20. Input signal required at 928MHz interference signal to cause 1dB
gain compression at 1.575GHz
Out of Band Gain Compression (dBm)
Out of Band Gain Compression (dBm)
45
2.7V (6mA)
1.8V (4mA)
45
44
43
42
41
40
39
38
37
36
35
34
2.7V (6mA)
1.8V (4mA)
-40
-20
0
20
40
Temperature (°C)
60
80
Figure 22. Input signal required at 2400MHz interference signal to cause 1dB
gain compression at 1.575GHz
ALM-1912 Typical Performance Curves at 25°C, R2 = 4.7kOhm
2.0
2.0
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
Stability_n40C..Mu1
Stability_85C..Mu1
Stability_25C..Mu1
1.0
0.8
0.0
2.5
5.0
7.5
10.0 12.5
freq, GHz
15.0
17.5
0.8
20.0
Figure 23. Edwards-Sinsky Output Stability Factor (Mu) at Vdd = 2.7V
0.0
2.5
5.0
7.5
10.0 12.5
freq, GHz
15.0
17.5
20.0
Figure 24. Edwards-Sinsky Input Stability Factor (Mu’) at Vdd = 2.7V
2.0
2.0
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
Stability_n40C..Mu1
Stability_85C..Mu1
Stability_25C..Mu1
1.0
0.8
0.0
2.5
5.0
7.5
10.0 12.5
freq, GHz
15.0
17.5
Figure 25. Edwards-Sinsky Output Stability Factor (Mu) at Vdd = 1.8V
10
Stability_n40C..MuPrime1
Stability_85C..MuPrime1
Stability_25C..MuPrime1
1.0
Stability_n40C..MuPrime1
Stability_85C..MuPrime1
Stability_25C..MuPrime1
1.0
0.8
20.0
0.0
2.5
5.0
7.5
10.0 12.5
freq, GHz
15.0
17.5
Figure 26. Edwards-Sinsky Input Stability Factor (Mu’) at Vdd = 1.8V
20.0
ALM-1912 Scattering Parameter and Measurement Reference Planes
Vdd (Pin 7)
R1
L1
C2
L2
C1
Vdd
(Pin 1)
GPS
FILTER
(Pin 6)
LNA
Vsd
REFERENCE
PLANE
REFERENCE
PLANE
(Pin 2, 3, 4, 5, 9)
R2
MODULE
Vsd (Pin 8)
C3
Figure 27. Scattering parameter measurement reference planes
11
ALM-1912 Typical Scattering Parameters at 25°C, Vdd = 2.7V, Idd = 6mA
The S- and Noise Parameters are measured using a coplanar waveguide PCB with 10 mils Rogers RO4350.
Figure 33 shows the input and output reference planes. The circuit values are as indicated in Figure 7.
Freq
(GHz)
S11
Mag. (dB)
S11
Ang.
S21
Mag. (dB)
S21
Ang.
S12
Mag. (dB)
S12
Ang.
S22
Mag. (dB)
S22
Ang.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.8275
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.575
1.6
1.7
1.8
1.885
1.9
2.0
2.1
2.2
2.3
2.4
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
0.90
0.91
0.93
0.95
0.95
0.96
0.96
0.97
0.97
0.97
0.97
0.97
0.97
0.98
0.98
0.88
0.38
0.84
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.98
0.96
0.88
0.49
0.86
0.81
0.23
0.33
0.56
0.27
0.46
0.78
0.80
0.64
0.37
0.09
0.75
0.85
127.37
90.38
64.84
46.42
32.35
21.11
11.71
3.52
-3.93
-5.92
-10.83
-18.84
-25.36
-32.32
-41.04
-60.02
-69.26
13.57
-35.68
-37.03
-45.79
-52.79
-58.82
-64.36
-69.90
-75.27
-80.54
-85.75
-110.11
-130.93
-148.37
-165.25
166.07
-73.16
135.14
74.97
-37.83
-46.13
-137.13
-148.23
-129.23
157.89
119.17
102.79
43.63
138.84
68.84
20.64
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
9.45
3.27
0.02
0.02
0.01
0.01
0.03
0.04
0.03
0.03
0.02
0.02
0.01
0.01
0.01
0.01
0.00
0.06
0.05
0.03
0.10
0.17
0.06
0.12
0.13
0.03
0.04
0.15
0.39
0.42
0.40
0.38
120.37
-24.66
17.24
5.69
-8.72
-18.53
-28.54
-36.62
-46.68
-51.00
-62.26
-85.57
-77.54
-85.79
-94.59
1.93
-169.06
-133.28
-177.57
178.80
170.91
-136.49
-149.24
173.27
145.75
129.65
119.00
111.46
100.70
130.14
139.66
128.82
131.65
153.87
47.07
21.54
-58.71
146.14
-8.12
41.00
-65.04
-100.27
-26.10
-49.64
-117.27
-178.97
110.25
83.26
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.03
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.03
0.03
0.07
0.15
0.07
0.06
0.08
0.02
0.04
0.12
0.32
0.36
0.35
0.35
-82.40
123.51
122.67
36.92
138.61
69.29
118.56
41.88
51.42
51.08
42.54
28.75
24.49
15.65
-4.58
-39.52
174.73
-168.71
-74.12
-75.60
-96.42
-116.91
-133.55
-142.26
-148.61
-150.64
-158.09
-163.55
167.80
150.08
136.34
123.10
111.96
145.57
50.50
4.14
-128.81
89.25
-73.43
73.62
-52.72
-66.53
-19.61
-43.23
-109.51
-171.99
116.05
86.56
1.00
1.00
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.97
0.94
0.88
0.92
0.87
0.77
0.57
0.21
0.12
0.38
0.41
0.65
0.85
0.94
0.88
0.85
0.86
0.88
0.89
0.95
0.97
0.98
0.99
0.98
0.96
0.97
0.96
0.64
0.26
0.77
0.87
0.90
0.96
0.95
0.81
0.65
0.75
0.87
0.89
-4.60
-9.24
-13.92
-18.50
-23.40
-28.58
-34.16
-40.25
-47.26
-49.42
-55.63
-58.23
-68.03
-83.31
-104.67
-142.31
150.62
157.09
52.17
46.69
12.47
-12.51
-34.30
-48.83
-55.23
-60.65
-66.20
-71.63
-95.76
-113.19
-125.78
-136.29
-147.49
177.94
141.70
121.26
100.01
97.24
156.59
72.72
47.40
53.91
61.13
43.12
-42.16
-60.43
-34.53
-16.65
12
ALM-1912 Typical Scattering Parameters at 25°C, Vdd = 1.8V, Idd = 4mA
Freq
(GHz)
S11
Mag.
S11
Ang.
S21
Mag.
S21
Ang.
S12
Mag.
S12
Ang.
S22
Mag.
S22
Ang.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.8275
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.575
1.6
1.7
1.8
1.885
1.9
2.0
2.1
2.2
2.3
2.4
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
0.90
0.91
0.93
0.95
0.95
0.96
0.96
0.97
0.97
0.97
0.97
0.97
0.97
0.98
0.98
0.88
0.41
0.84
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.98
0.96
0.88
0.49
0.86
0.81
0.21
0.31
0.56
0.26
0.46
0.78
0.80
0.64
0.33
0.16
0.75
0.81
127.32
90.34
64.81
46.39
32.31
21.09
11.67
3.47
-4.01
-5.99
-10.92
-18.96
-25.52
-32.51
-41.28
-60.32
-78.94
12.43
-35.96
-37.33
-46.13
-53.14
-59.20
-64.79
-70.34
-75.71
-81.00
-86.22
-110.52
-131.22
-148.55
-165.50
165.46
-73.91
133.56
74.08
-41.62
-47.91
-137.43
-146.22
-130.98
155.11
118.23
101.70
40.29
128.82
55.98
13.70
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
7.95
2.64
0.02
0.02
0.01
0.01
0.03
0.03
0.03
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.00
0.06
0.05
0.03
0.09
0.18
0.05
0.11
0.13
0.03
0.04
0.15
0.41
0.43
0.37
0.35
94.14
-2.10
2.89
8.11
-6.89
-16.62
-24.15
-33.86
-44.90
-47.28
-60.49
-83.38
-73.67
-82.53
-89.61
-1.57
-173.45
-136.63
-175.52
-179.18
176.29
-135.27
-150.87
168.18
142.65
128.27
119.57
113.42
110.97
133.62
139.15
127.69
122.42
151.64
44.44
17.50
-91.72
122.11
-23.74
40.59
-65.47
-100.99
-29.47
-52.25
-122.82
171.30
103.58
78.38
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.03
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.03
0.03
0.03
0.06
0.13
0.06
0.07
0.08
0.02
0.04
0.13
0.35
0.38
0.33
0.34
-47.84
-107.15
-156.72
35.92
143.69
82.53
100.57
79.47
51.78
51.83
31.98
31.73
25.78
12.80
-6.47
-41.17
164.64
-174.83
-76.78
-79.98
-102.21
-120.48
-135.87
-144.60
-148.59
-153.56
-159.62
-166.13
168.49
149.39
135.69
122.15
111.77
145.07
49.76
2.66
-143.80
77.64
-80.66
72.65
-50.80
-71.00
-22.84
-45.15
-114.71
178.20
108.95
81.34
1.00
1.00
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.97
0.94
0.88
0.92
0.87
0.76
0.54
0.20
0.12
0.43
0.46
0.69
0.87
0.95
0.87
0.86
0.87
0.89
0.91
0.95
0.98
0.98
0.99
0.98
0.96
0.97
0.96
0.70
0.15
0.78
0.87
0.90
0.96
0.94
0.80
0.62
0.72
0.88
0.89
-4.57
-9.24
-13.94
-18.50
-23.40
-28.60
-34.18
-40.30
-47.35
-49.53
-55.83
-58.44
-68.40
-84.18
-106.73
-147.70
131.33
128.76
43.37
38.58
7.51
-15.66
-36.79
-49.90
-55.46
-61.03
-66.76
-72.29
-96.41
-113.77
-126.29
-136.77
-147.98
177.43
141.51
121.11
104.65
75.36
155.38
72.48
47.11
53.58
60.77
42.62
-43.62
-59.15
-34.50
-16.79
13
ALM-1912 Typical Noise Parameters at 25°C,
Freq = 1.575 GHz, Vdd = 2.7V, Idd = 6mA
Freq
(GHz)
Fmin
(dB)
GAMMA OPT
Mag
Ang
1.575
1.43
0.23
-108
ALM-1912 Typical Noise Parameters at 25°C,
Freq = 1.575 GHz, Vdd = 1.8V, Idd = 4mA
Fmin
(dB)
GAMMA OPT
Rn/50
Freq
(GHz)
Mag
Ang
Rn/50
0.15
1.575
1.57
0.17
-103
0.16
Notes:
The exceptional noise figure performance of the ALM-1912 is due to its highly optimized design. In this regard, the Fmin of the ALM-1912 shown
above is locked down by the internal input pre-match. This allows the use of relatively inexpensive chip inductors for external matching.
Part Number Ordering Information
Part Number
Qty
Container
ALM-1912-BLKG
100
7" Reel
ALM-1912-TR1G
3000
13” Reel
Package Dimensions
2.90 ± 0.10
0.070
(all gaps)
0.95 ± 0.10
0.600
Pin 1 Orientation
1912
WWYY
2.00 ± 0.10
0.55
0.750 0.310
Side View
Notes:
1. All dimensions are in millimeters.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash and metal burr.
4. Y refers to Year, W refers to Work Week.
14
0.300sq -9x
0.30
0.800
0.750 0.310
0.340
Top View
0.530
0.160
1.000
0.55
0.185
0.100
1.031
0.600
0.830
Bottom View
0.100 all edges
0.530
PCB Land Patterns and Stencil Design
1.00
0.60
0.80
0.90
0.75
0.55
1.80
0.30
0.20
0.30-9x
0.64
0.43
0.75
0.27-9x
0.53
0.60
0.53
Land Pattern
2.70
0.60
1.00
0.35
0.80
0.75
0.75
0.35
0.53
0.60
Combination of Land Pattern & Stencil Opening
Dimensions are in mm
0.60
Stencil Opening
0.53
15
0.60
0.495
0.75
0.30
2.67
0.53
0.395
2.70
0.53
1.77
0.75
Device Orientation
REEL
USER FEED DIRECTION
CARRIER
TAPE
USER
FEED
DIRECTION
1912
WWYY
1912
WWYY
1912
WWYY
TOP VIEW
END VIEW
COVER TAPE
Tape Dimensions
0.30 ± 0.05
Ø 1.5 +0.1/0.0
8.00
Ø 1.50 MIN.
2.00 ± 0.05 SEE NOTE 3
4.00 SEE NOTE 1
A
5.50 ± 0.05
SEE NOTE 3
R0.20 MAX.
Bo
12.0 +0.3/0.1
0.12
Ko
SECTION A A
Ao
Ao = 3.20
Bo = 2.30
Ko = 1.30
0.12
R0.25
(All dimensions in mm)
Notes:
1. 10 sprocket hole pitch cumulative tolerance ±0.2
2. Camber in compliance with EIA 481
3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole
4. Ao and Bo are calculated on a plane at a distance "R" above the bottom of the pocket.
16
1.75 ± 0.10
A
Reel Dimensions - 13 Inch x 12mm
11
12 1
2
3
4
0 2
10
9
7
6
5
DATE CODE
HUB
Ø100.0±0.5
12MM
8
EMBOSSED LETTERING
16.0mm HEIGHT x MIN. 0.4mm THICK.
Ø329.0±1.0
6
PS
0 2
1
1112 2
3
10
4
9
8 7 6 5
MP
N
CPN
EMBOSSED LETTERING
7.5mm HEIGHT
EMBOSSED LETTERING
7.5mm HEIGHT
1.5
(MI
N.)
FRONT VIEW
EMBOSSED LINE (2x)
89.0mm LENGTH LINES 147.0mm
AWAY FROM CENTER POINT
+0.5
-0.2
20.2(MIN.)
Ø13.0
11.9-15.4**
+2.0*
12.4
-0.0
Ø16.0
ESD LOGO
6
PS
RECYCLE LOGO
Detail "X"
SEE DETAIL "X"
Ø100.0±0.5
Ø329.0±1.0
6
PS
R19.0±0.5
BACK VIEW
SLOT
5.0±0.5(3x)
Ø12.3±0.5(3x)
For product information and a complete list of distributors, please go to our web site:
18.4 MAX.*
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved.
AV02-2218EN - June 17, 2014