0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ALM-42216-TR2G

ALM-42216-TR2G

  • 厂商:

    AVAGO(博通)

  • 封装:

    SMD24

  • 描述:

    IC PWR AMP MODULE 2.5GHZ 24MCOB

  • 数据手册
  • 价格&库存
ALM-42216-TR2G 数据手册
ALM-42216 (3.3 – 5)V Linear Wireless Data Power Amplifier for (2.3 – 2.7)GHz Operation Data Sheet Description Features Avago Technologies’ ALM-42216 is a fully-matched Power amplifier module for use in the (2.3-2.7)GHz band. High linear output power at 3.3V is achieved through the use of Avago Technologies’ proprietary 0.25um GaAs Enhancement-mode pHEMT process. It is housed in a miniature 5.0 x 5.0 x 1.1mm MCOB module. It includes shutdown and switchable gain functions. A detector is also included onchip. The compact footprint and low profile coupled with high gain and high efficiency make the ALM-42216 an ideal choice as a power amplifier for IEEE 802.16 (Wimax) and WLL applications. • High Efficiency of 17.4% at low 3.3V supply voltage Applications • High linearity amplifier for IEEE 802.16 mobile and fixed terminal amplifier • High gain : 30dB • High linearity performance : 23.5dBm at 2.5% EVM (64 QAM ¾ FEC rate OFDMA). • Broadband Fully-matched 50 Ohm input and output impedances • >45dBc 2nd harmonic attenuation • Built-in detector and shutdown switches • Switchable gain : 20 dB attenuation using one single CMOS compatible switch pin • GaAs E-pHEMT Technology[1] • Low cost small package size: 5.0 x 5.0 x 1.1 mm3 • WLL amplifier • Useable at 5V supplies for higher output power Component Image Specifications 5.0 x 5.0 x 1.1 mm3 MCOB 2.5GHz; 3.3V, Iqtotal=240 mA (typ) • 30 dB Gain • 23.5dBm linear Pout (2.5% EVM, 64QAM OFDMA) 42216 WWYY XXXX Top View Pin Configuration Notes: Package marking provides orientation and identification “42216” = Device part number “WWYY” = Work week and Year “XXXX” = Assembly lot number • 25.5dBm linear Pout (2.5% EVM, 64QAM OFDMA) @ Vdd=5V • P1dB : 30dBm • Detector range : 10dB (0.5V – 2.5V) • 20 dB switchable gain attenuation • Shutdown current : < 20uA Notes: 1. Enhancement mode technology employs positive Vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 40 V ESD Human Body Model = 200 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Top View Absolute Maximum Rating [1] TA=25°C Symbol Parameter Units Absolute Max. Vdd, Vddbias Supply voltages, bias supply voltage V 5.5 Vc Control Voltage V (Vdd) Pin,max CW RF Input Power dBm +12 Pdiss Total Power Dissipation [3] W 4.4 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 Thermal Resistance [2,3] (Vdd = 3.3V, Id=240mA), θjc = 28 °C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Thermal resistance measured using Infra-Red Measurement Technique. 3. Board temperature (TB) is 25 °C , for TB >25 °C derate the device power at 30mW per °C rise in Board (package belly) temperature. Electrical Specifications TA = 25 °C, Vdd =3.3V, Iqtotal = 240mA, RF performance at 2.5 GHz, IEEE 802.16e 64-QAM, ¾ rate FEC, OFDMA operation unless otherwise stated. Vbyp = 0V. Symbol Parameter and Test Condition Units Vdd Supply Voltage Iqtotal Quiescent Supply Current (normal high gain mode) [4] mA 240 Quiescent Supply Current (bypass mode, Vbyp = 3.3V) mA 240 freq Input Frequency Range GHz 2.3 Vc Control voltage required for Iqtotal=240mA V 2.1 2.5 2.8 Gain Gain dB 28 30 31.5 OP1dB Output Power at 1dB Gain Compression dBm Plin Linear Output power at 2.5%EVM (normal gain mode) dBm Ilintotal Total current draw at Plin level [5] mA 425 S11 Input Return Loss, 50Ω source dB -16 S22 Output Return Loss, 50Ω load dB -17.5 S12 Reverse Isolation dB -52 2Fc Second harmonic attenuation dBc 45 Atten Gain attenuation in bypass mode dB 20 Vdet Detector output DC voltage at Plin V 2.6 DetR Detector RF dynamic range dB 10 Typ. Max. S Stability under load VSWR of 6:1 (all phase) dBc 3.3 Notes: 4. Iqtotal is defined as the sum of all quiescent currents flowing into pins Vdd1, Vdd2, Vdd3, Vddbias. 5. Current is measured during ON portion of amplifier using 50% downlink ratio, IEEE 802.16e modulation.  Min. 2.7 30 22.0 23.5 485 -55 Product Consistency Distribution Charts[1] Figure 1a. Linear Pout Distribution (normal gain mode) Figure 1b. Gain Distribution (normal gain mode) Figure 1c. Vc Distribution for Iq(total)=240mA Figure 1d. Gain Distribution (bypass mode) Notes: 1. Distribution data sample size are 500 samples taken from 3 different wafers and 3 different lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.  Figure 2. Demo board circuit for ALM-42216 module Notes: C1, C2, C7 : 7.5 pF, 0402 ceramic chip capacitor C3, C4, C8 : 0.1uF 0402 ceramic chip capacitor C5 : 100pF 0402 ceramic chip capacitor C6 : 2.2 uF 0805 ceramic chip capacitor  Vdd3 Vdd2 Vdd1 C6 C3 C4 C5 RFinput RFoutput MATCH MATCH MATCH MATCH C1 C2 Bypass SWITCH & Bias Vbyp C7 Vc C8 Vddbias Vdet Figure 3. Application circuit in demoboard Notes: 1. In normal gain mode operation, Vbyp = 0V. Vc is a bias pin that is used to set the bias conditions to the 3 internal gain stages of the PA. 2. Typical quiescent current distribution with Vdd1=Vdd2=Vdd3 = 3.3V, Vbyp = 0V, Vc = 2.45V is : a. Idd1 = 18 mA b. Idd2 = 75 mA c. Idd3 = 130 mA d. I_Vddbias = 17mA 3. Bypass mode is enabled by setting Vbyp pin to 3.3V. This condition overrides the normal high gain mode operation and bypasses the first gain stage, regardless of the voltage at Vc1 pin. 4. Modulated signal measurements are made with Agilent 89600 VSA and Agilent ESG4438C signal generator with IEEE 802.16e option using the following test conditions : - Signal format : IEEE 802.16e OFDMA, ¾ rate FEC - Modulation : 64-QAM - Numher of Subcarriers : 840 - Modulation bandwidth : 10 MHz - Downlink ratio : 50% Residual distortion of signal generator : (0.6-0.8)%. This distortion is included in the overall EVM data in the datasheet. 5. Typical operating voltages and currents : a. Normal gain mode : Vdd1 = Vdd2 = Vdd3 = Vddbias = 3.3V. Vc = 2.45V. Vbyp = 0V. Iqtotal = 240 mA. b. Bypass mode : Vdd1 = Vdd2 = Vdd3 = Vddbias = 3.3V. Vc = 2.45V. Vbyp = 3.3V. Iqtotal = 240 mA.  S21, S11, S22 / dB Figure 4. Small-signal performance in high-gain mode, Vdd = 3.3V 20 25deg C 15 S21 -30deg C 10 +85 deg C 5 0 -5 S11 -10 -15 S22 -20 -25 30 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 Freq / GHz Figure 6. Small-signal performance in bypass mode, Vdd = 3.3V  S21, S11, S22 / dB 40 35 25deg C S21 30 -30deg C 25 +85 deg C 20 15 10 5 0 -5 S11 -10 -15 S22 -20 -25 30 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 Freq / GHz 40 S21 35 25deg C 30 -30deg C 25 +85 deg C 20 15 10 5 0 S11 -5 -10 -15 S22 -20 -25 -30 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 Freq / GHz Figure 5. Small-signal performance in high-gain mode, Vdd = 5V S21, S11, S22 / dB S21, S11, S22 / dB Unless otherwise stated, all measurements are made at Vdd=+3.3V, Iqtotal=240mA. Vc (typ) = 2.45V 20 25deg C 15 S21 -30deg C 10 +85 deg C 5 0 -5 S11 -10 -15 S22 -20 -25 30 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 Freq / GHz Figure 7. Small-signal performance in bypass mode, Vdd = 5V 8 10 12 14 16 18 20 22 24 26 28 30 32 Pout (dBm) 1000 900 800 700 600 500 400 300 200 100 0 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 1000 900 800 700 600 500 Gain_2.3GHz 400 Gain_2.5GHz Gain_2.7GHz 300 Idd_2.3GHz 200 Idd_2.5GHz Idd_2.7GHz 100 0 8 10 12 14 16 18 20 22 24 26 28 30 32 Pout (dBm) Figure 12. CW Gain vs Pout @ 85°C high-gain mode, Vdd = 3.3V  Gain_2.3GHz Gain_2.5GHz Gain_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Pout (dBm) Gain (dB) Idd_total (mA) 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Figure 11. CW Gain vs Pout @ -30°C high-gain mode, Vdd = 5 V Idd_total (mA) Gain (dB) Figure 10. CW Gain vs Pout @ -30°C high-gain mode, Vdd = 3.3V 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 Idd_total (mA) Gain_2.3GHz Gain_2.5GHz Gain_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz 1100 1000 900 800 700 600 500 Gain_2.3GHz 400 Gain_2.5GHz Gain_2.7GHz 300 Idd_2.3GHz 200 Idd_2.5GHz Idd_2.7GHz 100 0 8 10 12 14 16 18 20 22 24 26 28 30 32 34 Pout (dBm) 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 Gain_2.3GHz Gain_2.5GHz Gain_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz 8 10 12 14 16 18 20 22 24 26 28 30 32 34 Pout (dBm) Figure 13. CW Gain vs Pout @ 85°C high-gain mode, Vdd = 5V 1100 1000 900 800 700 600 500 400 300 200 100 0 Idd_total (mA) 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 Figure 9. CW Gain vs Pout @ 25°C high-gain mode, Vdd = 5V Idd_total (mA) Gain (dB) Figure 8. CW Gain vs Pout @ 25°C high-gain mode, Vdd = 3.3V Gain (dB) 8 10 12 14 16 18 20 22 24 26 28 30 32 Pout (dBm) Gain (dB) Gain_2.3GHz Gain_2.5GHz Gain_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz 1000 900 800 700 600 500 400 300 200 100 0 Idd_total (mA) Gain (dB) 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pout (dBm) 500 450 400 350 300 250 200 150 100 50 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pout (dBm) Figure 18. EVM vs Pout @ 85°C High-gain mode, Vdd = 3.3V  EVM (%) Idd_total (mA) 600 550 500 450 400 350 300 250 200 150 100 50 0 600 550 500 450 400 350 300 250 200 150 100 50 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Figure 17. EVM vs Pout @ -30°C High-gain mode, Vdd = 5V 500 450 400 350 300 250 200 150 100 50 0 Idd_total (mA) EVM (%) EVM_2.3GHz EVM_2.5GHz EVM_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz EVM_2.3GHz EVM_2.5GHz EVM_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz Pout (dBm) Figure 16. EVM vs Pout @ -30°C High-gain mode, Vdd = 3.3V 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Idd_total (mA) EVM_2.3GHz EVM_2.5GHz EVM_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz Idd_total (mA) 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 600 550 500 450 400 350 300 250 200 150 100 50 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pout (dBm) EVM_2.3GHz EVM_2.5GHz EVM_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz Figure 15. EVM vs Pout @ 25°C High-gain mode, Vdd = 5V Idd_total (mA) EVM (%) Figure 14. EVM vs Pout @ 25°C High-gain mode, Vdd = 3.3V 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 EVM (%) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pout (dBm) 550 500 450 400 350 300 250 200 150 100 50 0 EVM (%) EVM_2.3GHz EVM_2.5GHz EVM_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz Idd_total (mA) EVM (%) 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 EVM_2.3GHz EVM_2.5GHz EVM_2.7GHz Idd_2.3GHz Idd_2.5GHz Idd_2.7GHz 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pout (dBm) Figure 19. EVM vs Pout @ 85°C High-gain mode, Vdd = 5V 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 Vdet_2.3GHz_25C Vdet_2.5GHz_25C Vdet_2.7GHz_25C 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Pout (dBm) Figure 22. Detector vs Pout, normal gain mode, Vdd = 3.3V, Temperature = 25°C  Figure 21. Spectral mask at Pout = 24.7 dBm meeting specs, Freq=2.5GHz, normal gain mode, Vdd = 5V, Temperature = 25°C VDet (V) VDet (V) Figure 20. Spectral mask at Pout = 22.2 dBm, Freq= 2.5GHz, normal gain mode, Vdd = 3.3V, Temperature = 25°C 4.50 4.25 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 Vdet_2.3GHz_25C Vdet_2.5GHz_25C Vdet_2.7GHz_25C 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Pout (dBm) Figure 23. Detector vs Pout, normal gain mode, Vdd = 5V, Temperature = 25°C Top View Sde View Bottom View Figure 24. Package Drawing dimensions PCB Layout and Stencil Design PCB Land Pattern (Top View) Combined PCB and Stencil Layout All dimensions are in mm Figure 25. PC board and stencil design 10 Stencil Outline Package Dimensions REEL USER FEED DIRECTION CARRIER TAPE 42216 WWYY XXXX TOP VIEW USER FEED DIRECTION COVER TAPE Tape Dimensions Part Number Ordering Information Part Number No. of Devices Container ALM-42216-BLKG 100 Antistatic Bag ALM-42216-TR1G 1000 7” Reel ALM-42216-TR2G 3000 13” Reel 11 42216 WWYY XXXX 42216 WWYY XXXX END VIEW Reel Dimension - 7 inch Ø178.0±1.0 FRONT BACK SEE DETAIL "X" RECYCLE LOGO FRONT VIEW 65° 7.9 - 10.9* +1.5* 8.4 -0.0 45° R10.65 R5.2 Slot hole ‘b’ BACK 60° Ø55.0±0.5 Ø178.0±1.0 FRONT Slot hole ‘a’ EMBOSSED RIBS RAISED: 0.25mm, WIDTH: 1.25mm BACK VIEW 12 Ø51.2±0.3 14.4* MAX. Reel Dimension - 13 inch 11 12 1 2 3 4 0 2 10 9 7 6 5 DATE CODE 12MM 8 EMBOSSED LETTERING 16.0mm HEIGHT x MIN. 0.4mm THICK. Ø329.0±1.0 HUB Ø100.0±0.5 6 PS 02 12 12 10 911 876534 MP N CPN EMBOSSED LETTERING 7.5mm HEIGHT EMBOSSED LETTERING 7.5mm HEIGHT 1.5 (MI N.) FRONT VIEW EMBOSSED LINE (2x) 89.0mm LENGTH LINES 147.0mm AWAY FROM CENTER POINT +0.5 -0.2 20.2(MIN.) Ø13.0 11.9-15.4** +2.0* 12.4 -0.0 Ø16.0 ESD LOGO 6 PS RECYCLE LOGO Detail "X" SEE DETAIL "X" Ø100.0±0.5 Ø329.0±1.0 6 PS R19.0±0.5 BACK VIEW SLOT 5.0±0.5(3x) Ø12.3±0.5(3x) For product information and a complete list of distributors, please go to our web site: 18.4 MAX.* www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. AV02-1191EN - May 2, 2008
ALM-42216-TR2G 价格&库存

很抱歉,暂时无法提供与“ALM-42216-TR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货