ALM-42316
(3.3 – 5)V Linear Wireless Data Power Amplifier
for (3.3 - 3.8)GHz Operation
Data Sheet
Description
Features
Avago Technologies’ ALM-42316 is a fully-matched Power
amplifier module for use in the (3.3-3.8)GHz band. High
linear output power at 3.3V is achieved through the use of
Avago Technologies’ proprietary 0.25um GaAs Enhancement-mode pHEMT process. It is housed in a miniature 5.0
x 5.0 x 1.1mm MCOB module. It includes shutdown and
switchable gain functions. A detector is also included onchip. The compact footprint and low profile coupled with
high gain and high efficiency make the ALM-42316 an
ideal choice as a power amplifier for IEEE 802.16 (Wimax)
and WLL applications.
• High Efficiency of 14.5% at low 3.3V supply voltage
Applications
• High linearity amplifier for IEEE 802.16 mobile and fixed
terminal amplifier
• High gain : 30dB
• High linearity performance : 23dBm at 2.5% EVM (64
QAM ¾ FEC rate OFDMA).
• Broadband Fully-matched 50 Ohm input and output
impedances
• 45dBc 2nd harmonic attenuation
• Built-in detector and shutdown switches
• Switchable gain : 18 dB attenuation using one single
CMOS compatible switch pin
• GaAs E-pHEMT Technology[1]
• Low cost small package size: 5.0 x 5.0 x 1.1 mm3
• WLL amplifier
• Useable at 5V supplies for higher output power
Component Image
Specifications
5.0 x 5.0 x 1.1 mm3 MCOB
3.5GHz; 3.3V, Iqtotal=240 mA (typ)
Notes:
Package marking provides
orientation and identification
"42316” = Device Part Number
“WWYY” = Work week and Year
“XXXX” = Assembly lot number
42316
WWYY
XXXX
• 30 dB Gain
• 23dBm linear Pout (2.5% EVM, 64QAM OFDMA)
• 24.5dBm linear Pout (2.5% EVM, 64QAM OFDMA)
@ Vdd=5V
• P1dB : 30.5dBm
• Detector range : 10dB (0.3V – 2.0V)
TOP VIEW
• 18 dB switchable gain attenuation
Pin Configuration
• Shutdown current : < 20uA
VDD3
VDD2
VDD1
Notes:
1. Enhancement mode technology employs positive Vgs, thereby
eliminating the need of negative gate voltage associated with
conventional depletion mode devices.
1
RFIN
RFOUT
VBYPS
VDET
VBIAS
VCTRL
TOP VIEW
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 40 V
ESD Human Body Model = 250 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Absolute Maximum Rating [1] TA=25°C
Symbol
Parameter
Units
Absolute Max.
Vdd, Vddbias
Supply voltages, bias supply voltage
V
5.5
Vc
Control Voltage
V
(Vdd)
Pin,max
CW RF Input Power
dBm
+12
Pdiss
Total Power Dissipation [3]
W
4.4
Tj
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
Thermal Resistance [2,3] (Vdd = 3.3V, Id=240mA), θjc = 28 °C/W
Notes:
1. Operation of this device in excess of any of these limits may cause permanent damage.
2. Thermal resistance measured using Infra-Red Measurement Technique.
3. Board temperature (TB) is 25 °C , for TB >25 °C derate the device power at 30mW per °C rise in Board (package belly) temperature.
Electrical Specifications
TA = 25 °C, Vdd =3.3V, Iqtotal = 240mA, RF performance at 3.5 GHz, IEEE 802.16e 64-QAM, ¾ rate FEC, OFDMA operation
unless otherwise stated. Vbyp = 0V.
Symbol
Parameter and Test Condition
Units
Vdd
Supply Voltage
Iqtotal
Quiescent Supply Current (normal high gain mode) [5]
mA
240
Quiescent Supply Current (bypass mode, Vbyp = 3.3V)
mA
200
freq
Input Frequency Range
GHz
3.3
Vc
Control voltage required for Iqtotal=240mA
V
1.6
2
Gain
Gain
dB
27.5
29.7
OP1dB
Output Power at 1dB Gain Compression
dBm
Plin
Linear Output power at 2.5%EVM (normal gain mode)
dBm
Ilintotal
Total current draw at Plin level [4]
mA
417
S11
Input Return Loss, 50Ω source
dB
-15
S22
Output Return Loss, 50Ω load
dB
-11
S12
Reverse Isolation
dB
45
2Fc
Second harmonic attenuation
dBc
45
Atten
Gain attenuation in bypass mode
dB
18
Vdet
Detector output DC voltage at Plin
V
1.6
DetR
Detector RF dynamic range
dB
10
S
Stability under load VSWR of 6:1 (all phase)
dBc
Typ.
Max.
3.3
Notes:
4. Current is measured during ON portion of amplifier using 50% downlink ratio, IEEE 802.16e modulation.
5. Iq(total) is defined as the sum of all quiescent currents flowing into pins Vdd1, Vdd2, Vdd3, Vddbias.
Min.
3.8
2.5
30.5
21.5
23
490
-55
Product Consistency Distribution Charts [ 1]
Figure 1a. Linear Pout Distribution (normal gain mode)
Figure 1b . Gain Distribution (normal gain mode)
Figure 1c. Vc Distribution for Iq(total)=240mA
Figure 1d. Gain Distribution (bypass mode)
Notes:
1. Distribution data sample size are 500 samples taken from 3 different wafers and 3 different lots. Future wafers allocated to this product may have
nominal values anywhere between the upper and lower limits.
Figure 2. Demo board circuit for ALM-42316 module
Notes:
C1, C2, C7 : 3.9 pF, 0402 ceramic chip capacitor
C3, C4 : 0.1uF 0402 ceramic chip capacitor
C5 : 100pF 0402 ceramic chip capacitor
C6 : 2.2 uF 0805 ceramic chip capacitor
Vdd3
Vdd2
Vdd1
C6
C3
C4
C5
RFinput
RFoutput
MATCH
MATCH
MATCH
MATCH
C1
C2
Bypass
SWITCH
& Bias
Vbyp
C7
Vc
Vddbias
Vdet
Figure 3. Application circuit in demoboard
Notes:
1. In normal gain mode operation, Vbyp = 0V. Vc is a bias pin that is used to set the bias conditions to the 3 internal gain stages of the PA.
2. Typical quiescent current distribution with Vdd1=Vdd2=Vdd3 = 3.3V, Vbyp = 0V, Vc = 2.0V is :
a. Idd1 = 40 mA
b. Idd2 = 118 mA
c. Idd3 = 65 mA
d. I_Vddbias = 17mA
3. Bypass mode is enabled by setting Vbyp pin to 3.3V. This condition overrides the normal high gain mode operation and bypasses the first gain
stage, regardless of the voltage at Vc1 pin. The first gain stage is also shut down to reduce current consumption in this mode.
4. Modulated signal measurements are made with Agilent 89600 VSA and Agilent ESG4438C signal generator with IEEE 802.16e option using the
following test conditions :
- Signal format : IEEE 802.16e OFDMA, ¾ rate FEC
- Modulation : 64-QAM
- Numher of Subcarriers : 840
- Modulation bandwidth : 10 MHz
- Downlink ratio : 50%
Residual distortion of signal generator : (0.6-0.8)%. This distortion is included in the overall EVM data in the datasheet.
5. Typical operating voltages and currents : a. Normal gain mode : Vdd1 = Vdd2 = Vdd3 = Vddbias = 3.3V. Vc = 2.0V. Vbyp = 0V. Iq(total) = 240 mA.
b. Bypass mode : Vdd1 = Vdd2 = Vdd3 = Vddbias = 3.3V. Vc = 2.0V. Vbyp = 3.3V. Iq(total) = 200 mA.
Unless otherwise stated, all measurements are made at Vdd=+3.3V, Iq(total)=240mA. Vc (typ) = 2.0V
Figure 4. Small-signal performance in high-gain mode, Vdd = 3.3V
Figure 5. Small-signal performance in high-gain mode, Vdd = 5V)
Figure 6. Small-signal performance in bypass mode, Vdd = 3.3V
Figure 7. Small-signal performance in bypass mode, Vdd = 5V
Gain (dB)
.
1000
900
29
800
28
700
27
600
500
26
400
25
Gain_3.3GHz_85C
300
Gain_3.5GHz_85C
24
Gain_3.8GHz_85C
200
Idd_3.3GHz_85C
23
Idd_3.5GHz_85C
100
Idd_3.8GHz_85C
22
0
10 12 14 16 18 20 22 24 26 28 30 32
Pout (dBm)
.
Idd_total (mA)
Gain (dB)
.
30
Figure 12. CW Gain vs Pout @ 85°C, high-gain mode, Vdd = 3.3V
.
Idd_total (mA)
Figure 11. CW Gain vs Pout @ -30°C, high-gain mode, Vdd = 5 V
1200
34
33
1000
32
31
800
30
29
600
28
400
Gain_3.3GHz_-30C
27
Gain_3.5GHz_-30C
Gain_3.8GHz_-30C
26
200
Idd_3.3GHz_-30C
Idd_3.5GHz_-30C
25
Idd_3.8GHz_-30C
24
0
10 12 14 16 18 20 22 24 26 28 30 32 34 36
Pout (dBm)
Figure 13. CW Gain vs Pout @ 85°C, high-gain mode, Vdd = 5V
.
Idd_total (mA)
Figure 10. CW Gain vs Pout @ -30°C, high-gain mode, Vdd = 3.3V
34
1200
33
1000
32
31
800
30
29
600
28
400
27
Gain_3.3GHz_-30C
Gain_3.5GHz_-30C
Gain_3.8GHz_-30C
26
200
Idd_3.3GHz_-30C
Idd_3.5GHz_-30C
25
Idd_3.8GHz_-30C
24
0
10 12 14 16 18 20 22 24 26 28 30 32 34 36
Pout (dBm)
.
Idd_total (mA)
1000
900
800
700
600
500
400
300
Gain_3.3GHz_-30C
Gain_3.5GHz_-30C
Gain_3.8GHz_-30C
200
Idd_3.3GHz_-30C
Idd_3.5GHz_-30C
100
Idd_3.8GHz_-30C
0
10 12 14 16 18 20 22 24 26 28 30 32
Pout (dBm)
Gain (dB)
.
32
31
30
29
28
27
26
25
24
23
22
1200
34
33
1000
32
31
800
30
29
600
28
400
Gain_3.3GHz_25C
27
Gain_3.5GHz_25C
Gain_3.8GHz_25C
26
Idd_3.3GHz_25C
200
Idd_3.5GHz_25C
25
Idd_3.8GHz_25C
24
0
10 12 14 16 18 20 22 24 26 28 30 32 34 36
Pout (dBm)
Figure 9. CW Gain vs Pout @ 25°C, high-gain mode, Vdd = 5V
.
Idd_total (mA)
Gain (dB)
.
Figure 8 .CW Gain vs Pout @ 25°C, high-gain mode, Vdd = 3.3V
Gain (dB)
.
1000
900
800
700
600
500
400
Gain_3.3GHz_25C
300
Gain_3.5GHz_25C
Gain_3.8GHz_25C
200
Idd_3.3GHz_25C
Idd_3.5GHz_25C
100
Idd_3.8GHz_25C
0
10 12 14 16 18 20 22 24 26 28 30 32
Pout (dBm)
.
Idd_total (mA)
Gain (dB)
.
32
31
30
29
28
27
26
25
24
23
22
EVM_3.3GHz_85C
EVM_3.5GHz_85C
EVM_3.8GHz_85C
Idd_3.3GHz_85C
Idd_3.5GHz_85C
Idd_3.8GHz_85C
14.0 16.0 18.0 20.0
Pout (dBm)
500
450
400
350
300
250
200
150
100
50
0
22.0 24.0 26.0
Figure 18. EVM vs Pout @ 85°C, High-gain mode, Vdd = 3.3
.
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
10.0 12.0
.
Idd_total (mA)
EVM (%)
.
.
Idd_total (mA)
Figure 17. EVM vs Pout @ -30°C, High-gain mode, Vdd = 5V
Idd_total (mA)
EVM (%)
.
Figure 16. EVM vs Pout @ -30°C, High-gain mode, Vdd = 3.3V
6.0
600
EVM_3.3GHz_-30C
5.5
EVM_3.5GHz_-30C
5.0
500
EVM_3.8GHz_-30C
Idd_3.3GHz_-30C
4.5
Idd_3.5GHz_-30C
4.0
400
Idd_3.8GHz_-30C
3.5
3.0
300
2.5
2.0
200
1.5
1.0
100
0.5
0.0
0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0
Pout (dBm)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
600
EVM_3.3GHz_85C
EVM_3.5GHz_85C
EVM_3.8GHz_85C
Idd_3.3GHz_85C
Idd_3.5GHz_85C
Idd_3.8GHz_85C
500
400
300
200
100
0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0
Pout (dBm)
Figure 19. EVM vs Pout @ 85°C, High-gain mode, Vdd = 5V
Idd_total (mA)
14.0 16.0 18.0 20.0
Pout (dBm)
500
450
400
350
300
250
200
150
100
50
0
22.0 24.0 26.0
EVM (%)
.
EVM_3.3GHz_-30C
EVM_3.5GHz_-30C
EVM_3.8GHz_-30C
Idd_3.3GHz_-30C
Idd_3.5GHz_-30C
Idd_3.8GHz_-30C
Idd_total (mA)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
10.0 12.0
Figure 15. EVM vs Pout @ 25°C, High-gain mode, Vdd = 5V
.
EVM (%)
.
Figure 14. EVM vs Pout @ 25°C, High-gain mode, Vdd = 3.3V
6.0
600
EVM_3.3GHz_25C
5.5
EVM_3.5GHz_25C
5.0
500
EVM_3.8GHz_25C
Idd_3.3GHz_25C
4.5
Idd_3.5GHz_25C
4.0
400
Idd_3.8GHz_25C
3.5
3.0
300
2.5
2.0
200
1.5
1.0
100
0.5
0.0
0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0
Pout (dBm)
EVM (%)
.
14.0 16.0 18.0 20.0
Pout (dBm)
500
450
400
350
300
250
200
150
100
50
0
22.0 24.0 26.0
.
EVM_3.3GHz_25C
EVM_3.5GHz_25C
EVM_3.8GHz_25C
Idd_3.3GHz_25C
Idd_3.5GHz_25C
Idd_3.8GHz_25C
Idd_total (mA)
EVM (%)
.
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
10.0 12.0
Figure 20. Spectral mask at Pout = 22.2 dBm, Freq= 3.5GHz,
normal gain mode, Vdd = 3.3V, Temperature = 25°C
Fig 21. Spectral mask at Pout = 24.7 dBm meeting specs, Freq=3.5GHz,
normal gain mode, Vdd = 5V, Temperature = 25°C
3.5
VDET (V)
.
2.5
3.0
VDET_3.3GHz_25
VDET_3.5GHz_25
VDET_3.8GHz_25
2.5
VDET (V)
.
3.0
3.5
2.0
1.5
1.5
1.0
0.5
0.5
14.0
16.0
18.0 20.0
Pout (dBm)
22.0
24.0
26.0
Figure 22. Detector vs Pout, normal gain mode, Vdd = 3.3V, Temperature = 25°C
2.0
1.0
0.0
10.0 12.0
VDET_3.3GHz_25
VDET_3.5GHz_25
VDET_3.8GHz_25
0.0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0
Pout (dBm)
Figure 23. Detector vs Pout, normal gain mode, Vdd = 5V, Temperature = 25°C
Pin 1
5.00±0.10
0.60
(6x0.73 pitch) =4.38
0.73
13x-0.40 sq
1
1
42316
WWYY
XXXX
5.00±0.10
1.86
1.05±0.100
Side View
3.38
1
0.08
1
0.11
(All Corner)
1
0.07
(All gaps)
Bottom View
Figure 24. Package Drawing dimensions
Note :
1. ALL DIMENSIONS ARE IN MILIMETERS
2. DIMENSIONS ARE INCLUSIVE OF PLATING
3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR.
PCB Land Pateern (Top View)
Combined PCB and Stencil Layout
All Dimensions are in mm
Figure 25. PC board and stencil design
10
2
0.2x45°
1.13
0.16
1
0.19
2
4x- 0.10
1
1
0.19
Top View
2
2
Stencil Outline
6x- 0.40
Device Orientation
REEL
USER FEED DIRECTION
CARRIER
TAPE
USER
FEED
DIRECTION
42316
WWYY
XXXX
42316
WWYY
XXXX
42316
WWYY
XXXX
TOP VIEW
END VIEW
COVER TAPE
Tape Dimensions
Part Number Ordering Information
11
Part Number
No. of Devices
Container
ALM-42316-BLKG
100
Antistatic Bag
ALM-42316-TR1G
1000
7” Reel
ALM-42316-TR2G
3000
13” Reel
Reel Dimensions - 7 Inch
Ø178.0 ± 1.0
Front
Back
See Detail “X”
FRONT VIEW
65˚
7.9 - 10.9**
+ 1.5*
8.4 - 0.0
45˚
R10.65
R5.2
Front
Back
60˚
Ø55.0 ± 0.5
Slot Hole ‘B’
Slot Hole ‘A’
Embossed Ribs
Raised: 0.25mm, Width: 1.25mm
BACK VIEW
12
Ø15.2 ± 0.3
14.4*
Max.
Ø178.0 ± 1.0
Recycle Logo
Reel Dimensions - 13 Inch
11
12 1
2
3
4
0 2
10
9
7
6
5
DATE CODE
12MM
8
EMBOSSED LETTERING
16.0mm HEIGHT x MIN. 0.4mm THICK.
Ø329.0±1.0
HUB
Ø100.0±0.5
6
PS
02
12
12
10
911
876534
MP
N
CPN
EMBOSSED LETTERING
7.5mm HEIGHT
EMBOSSED LETTERING
7.5mm HEIGHT
1.5
(MI
N.)
FRONT VIEW
EMBOSSED LINE (2x)
89.0mm LENGTH LINES 147.0mm
AWAY FROM CENTER POINT
+0.5
-0.2
20.2(MIN.)
Ø13.0
11.9-15.4**
+2.0*
12.4
-0.0
Ø16.0
ESD LOGO
6
PS
RECYCLE LOGO
Detail "X"
SEE DETAIL "X"
Ø100.0±0.5
Ø329.0±1.0
6
PS
R19.0±0.5
BACK VIEW
SLOT
5.0±0.5(3x)
Ø12.3±0.5(3x)
For product information and a complete list of distributors, please go to our web site:
18.4 MAX.*
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved.
AV02-1111EN - May 5, 2008