AMGP-6552
37 – 43.5 GHz Low Noise Down-Converter
in SMT Package
Data Sheet
Description
Features
The AMGP-6552 is a broadband down-converter that
combines a low noise amplifier and a sub-harmonic image
reject mixer. It is housed in a 5 x 5 mm surface mount
package designed for use in applications between 37 GHz
and 43.5 GHz. Over the frequency range from 40.5 to 43.5
GHz, it provides 12 dB typical down-conversion gain with
50 RF & LO match. The required LO power is 17 dBm.
The typical input third order intercept point is -6 dBm and
Noise Figure is typically 5 dB.
5 x 5 mm surface mount package
Functional Block Diagram
Vdd = 3 V and Idd = 100 mA
IF1
1
NC
2
IF2
3
RF
8
LO
4
Vdd
7
NC
6
NC
5
Pin
Function
1
IF1
2
NC
3
IF2
4
LO
5
NC
6
NC
7
Vdd
8
RF_IN
RF frequency range from 37 to 43.5 GHz
LO frequency range from 16.75 to 23.5 GHz
IF frequency range from DC to 3 GHz
+17 dBm LO driver power
12 dB Conversion Gain
-4.3 dBm Input IP3 @ 4 0.5 GHz, and -8.7 dBm @ 43.5
GHz
Application
Microwave Radio Systems
Package Diagram
RF
IF1
NC
IF2
1
2
3
8
4
Attention: Observe Precautions for
handling electrostatic sensitive devices.
ESD Machine Model: 40 V
ESD Human Body Model: 200 V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
7
6
5
Vdd
NC
NC
LO
ELECTRICAL SPECIFICATIONS
Table 1. Absolute Minimum and Maximum Ratings
Parameter
Description
Supply Voltage
RF Input Power
MSL
Channel Temperature
Storage Temperature
Specifications
Min.
Max.
Unit
V
dBm
-45
6
0
MSL2
150
150
Vdd
RF
Comments
°C
°C
Table 2. Recommended Operating Range
Parameter
Description
Pin
Supply Voltage
Frequency Range
Vd1
RF
LO
IF
LO Power
Bias Current
Thermal Resistance, ch-b
Case Temperature
ESD
Human Body Model
Machine Model
Specifications
Min.
Typical
3
37
17
DC
15
Max.
Unit
4
43.5
23.25
3
17
V
GHz
97
36.7
-40
+85
200
40
Comments
dBm
mA
°C/W
°C
V
V
Table 3. RF Electrical Characteristics
All data measured on a Taconic RF-35A2 demo board at Vdd = 3 V, TA = 25° C, IF = 1 GHz, LO = 17 dBm, Lower Side Band
(RF + IF = 2*LO) and 50 at all ports, unless otherwise specified.
Performance
Min.
Typical
Parameter
RF Return Loss
Conversion Gain
Noise Figure
Input IP3
RF = 40.5 GHz
10.5
Image Rejection Ratio
12.1
dB
11.8
RF = 43.5 GHz
12.6
RF = 40.5 GHz
4.8
RF = 42.0 GHz
4.7
RF = 43.5 GHz
5
RF = 40.5 GHz
-9
-4.3
RF = 42.0 GHz
-9
-5.8
RF = 43.5 GHz
-10
-8.7
RF = 40.5 GHz
RF = 42.0 GHz
RF = 43.5 GHz
12.5
Unit
dB
RF = 42.0 GHz
C/I (IF/2 Suppression)
Max.
-12
6.0
Comments
dB
dBm
RF power = -30 dBm/tone,
with f = 10 MHz
54
dBc
RF Power = -30 dBm
17.2
dB
19.5
20.2
LO Return Loss
-12
dB
LO power = 17 dBm
IF Return Loss
-12
dB
LO power = 17 dBm
Note: Conversion Gain, Noise Figure, Input IP3 and Image Rejection Ratio measurement accuracy is subjected to the tolerance of ± 0.2 dB, ± 0.2 dB,
± 0.2 dBm & ± 0.5 dB respectively.
2
Product Consistency Distribution Charts at 40.5 GHz, 42 GHz and 43.5 GHz, Vdd = 3 V, IF = 1 GHz, LO = 17 dBm
(Sample size of 2,400 pieces)
LSL
9
10
LSL
11
12
13
14
15
16
CGain @ 40.5 GHz, Mean = 12.1 dB, LSL = 10.5 dB
9
10
10
11
12
13
14
15
16
-11
-9
15
16
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
-4
-3
-2
-1
LSL
-8
-7
-6
-5
IIP3 @ 42 GHz, Mean = -5.8 dBm, LSL = -9 dBm
3
14
IIP3 @ 40.5 GHz, Mean = -4.3 dBm, LSL = -9 dBm
LSL
-10
13
LSL
CGain @ 43.5 GHz, Mean = 12.6 dB, LSL = 10.5 dB
-11
12
CGain @ 42 GHz, Mean = 11.8 dB, LSL = 10.5 dB
LSL
9
11
-4
-3
-2
-1
-11
-10
-9
-8
-7
-6
-5
IIP3 @ 43.5 GHz, Mean = -8.7 dBm, LSL = -10 dBm
LSL
11
USL
13
15
17
19
21
23
25
Image Rejection Ratio @ 40.5 GHz, Mean = 17.2 dB, LSL = 12.5 dB
4
4.5
5
5.5
6
Image Rejection Ratio CGain @ 42 GHz, Mean = 19.5 dB, LSL = 12.5 dB
USL
USL
4
4.5
5
5.5
6
6.5
Image Rejection Ratio @ 43.5 GHz, Mean = 20.2 dB, LSL = 12.5 dB
4
13
5
5.5
6
6.5
LSL
15
17
NF @ 42 GHz, Mean = 4.7 dB, USL = 6 dB
4
4.5
NF @ 40.5 GHz, Mean = 4.8 dB, USL = 6 dB
LSL
11
6.5
19
21
23
25
11
13
15
17
NF @ 43.5 GHz, Mean = 5 dB, USL = 6 dB
19
21
23
25
Performance plots (Typical @ 25° C)
Conversion Gain @ 25° C, LSB
Input IP3 @ 25° C, LSB
20
5
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
0
IIP3 (dBm)
Conv. Gain (dB)
15
10
-5
5
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
0
-10
37
38
39
40
41
Frequency (GHz)
42
43
44
37
39
RF Return Loss @ 25° C
0
40
41
Frequency (GHz)
42
43
44
Figure 2. Input IP3 at 25° C over Vdd, Lower Side Band
Figure 1. Conversion Gain at 25° C over Vdd, Lower Side Band
Noise Figure @ 25° C, LSB
8.0
-5
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
7.0
-10
Noise Figure (dB)
RF Return Loss (dB)
38
-15
-20
-25
-30
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
-35
6.0
5.0
4.0
3.0
-40
2.0
10
15
20
25
30
35
Frequency (GHz)
40
45
37
50
Figure 3. RF Return Loss at 25° C over Vdd
38
39
40
41
Frequency (GHz)
42
43
44
Figure 4. Noise Figure at 25° C over Vdd, Lower Side Band
IRR @ 25° C, LSB
LO Return Loss @ 25° C, LO = 15 dBm
25
0
Vdd = 3 V
Vdd = 4 V
LO Return Loss (dB)
IRR (dB)
20
15
10
5
37
38
39
40
41
Frequency (GHz)
42
Figure 5. Receiver Image Rejection Ratio @ 25° C over Vdd
5
43
44
-10
-20
-30
-40
16
17
18
19
20
21
Frequency (GHz)
Figure 6. LO Return Loss at 25° C, LO = 15 dBm
22
23
24
Performance plots (USB vs. LSB; LO power)
Input IP3 @ 25° C, Vdd = 3 V
Conversion Gain @ 25° C, Vdd = 3 V
5
20
LSB
USB
IIP3 (dBm)
Conv. Gain (dB)
15
10
0
-5
5
LSB
USB
-10
0
37
38
39
40
41
Frequency (GHz)
42
43
37
44
Figure 7. Conversion Gain at 25° C, Vdd = 3 V LSB and USB
38
39
40
41
Frequency (GHz)
42
44
Figure 8. Input IP3 at 25° C, Vdd = 3 V, LSB and USB
Conversion Gain @ Vd = 3 V
Noise Figure @ 25° C, USB
8.0
20
Vdd = 3 V
Vdd = 3.5 V
Vdd = 4 V
7.0
Noise Figure (dB)
15
Conv. Gain (dB)
43
10
6.0
5.0
4.0
5
3.0
LO = 15 dBm
LO = 16 dBm
0
2.0
37
38
39
40
41
Frequency (GHz)
42
43
37
44
38
39
40
41
Frequency (GHz)
42
44
Figure 10. Noise Figure at 25° C over Vdd, Upper Side Band
Figure 9. Conversion Gain @ 25° C, Vdd = 3 V, vs. LO Power
IRR @ 25° C, Vdd = 3 V
Input IP3 @ 25° C, Vdd = 3 V
25
5
LO = 15 dBm
LO = 16 dBm
IIP3 (dBm)
20
IRR (dB)
43
15
10
0
-5
5
0
LSB
USB
37
38
39
40
41
Frequency (GHz)
42
43
Figure 11. Image Rejection Ratio @ 25° C, Vdd = 3 V, LSB and USB
6
44
-10
37
38
39
40
41
Frequency (GHz)
Figure 12. Input IP3 @ 25° C, Vdd = 3 V, vs. LO Power
42
43
44
Performance plots (Over Temp, LSB)
Conversion Gain @ Vd = 3 V, LSB
IIP3 (dBm)
Conv. Gain (dB)
25° C
-40° C
85° C
5
15
10
5
0
Input IP3 Over Temp, Vdd = 3 V
10
20
25° C
-40° C
85° C
37
38
39
40
41
Frequency (GHz)
42
43
0
-5
-10
44
Figure 13. Conversion Gain, Vdd = 3 V, LSB Over Temperature
-15
37
38
-5
6
Noise Figure (dB)
RF Return Loss (dB)
7
-10
-15
-20
25° C
85° C
-40° C
44
5
4
3
2
25° C
-40° C
85° C
0
10
15
20
25
30
35
Frequency (GHz)
40
45
50
37
38
39
40
41
Frequency (GHz)
42
43
44
Figure 16. Noise Figure, Vdd = 3 V, LSB Over Temperature
Figure 15. RF Return Loss, Vdd = 3 V Over Temperature
IIP2 @ 25° C, Vdd = 3 V, LO = 15 dBm
IF Return Loss @ 25° C, LO = 15 dBm
0
35
IF1
IF2
30
IF Return Loss (dB)
25
IIP2 (dBm)
43
1
-30
20
15
10
-5
-10
-15
LSB
LSB
5
-20
37
38
39
40
41
Frequency (GHz)
42
43
44
Figure 17. Input IP2 @ 25° C, Vdd = 3 V, LO = 15 dBm and RF Power = -30 dBm
7
42
Noise Figure @ Vdd = 3 V, LSB
RF Return Loss @ Vdd = 3 V
0
40
41
Frequency (GHz)
Figure 14. Input IP3, Vdd = 3 V, LSB Over Temperature
0
-25
39
0
2
4
6
Frequency (GHz)
Figure 18. IF Return Loss @ 25° C, LO = 15 dBm
8
10
Evaluation Board Description
Biasing and Operation
IF1
For most applications, the recommended DC bias condition for the Low Noise Amplifier (LNA) should be set at Vdd
= 3 V with 97 mA. In this bias condition, the down-converter will provide the best compromise for conversion gain,
overall NF and linearity. If higher linearity (IIP3) is desired,
Vdd should be at 3.5 V or 4 V. This higher bias voltage of
the LNA will result in slightly higher NF and lower conversion gain.
IF2
AMGP
6552
YWWDNN
RF
LO
1 2 3 4 5 6 7
Table 4. Pin Description
Pin No.
Function
1
Gnd
2
Gnd
3
Vdd
4
NC
5
NC
6
Gnd
7
Gnd
LO
LO
Biasing
Comment
3V
97 mA (measured current)
One variable that strongly affects conversion gain and
linearity is the LO input power. The typical operating range
for LO input power is from 15 dBm to 17 dBm. The lower
the LO input power, the higher the conversion gain and
the lower overall linearity and vice versa; the higher the
LO input power, the lower the conversion and the higher
overall linearity. Depending on the applications, the LO
input power and the LNA bias voltage can be selected to
obtain desired performance.
Package Dimension, PCB Layout and Tape and Reel
information
Please refer to Avago Technologies Application Note 5521,
AMxP-xxxx production Assembly Process (Land Pattern B).
15 dBm
Part Number Ordering Information
Demo board circuit for AMGP-6552
LSB
USB
IF
0.1 – 3.5 GHz
External IF
90° Hybrid
IF1
NC
1
RF
37 – 43.5 GHz
LSB
2
Devices per
Container
Container
AMGP-6552-BLKG
10
antistatic bag
AMGP-6552-TR1G
100
7” Reel
AMGP-6552-TR2G
500
7” Reel
IF2
3
LO
4
RF
8
USB
IF
Part Number
LO
16.75 – 23.5 GHz
IF
7
LO
Vdd
0.1 PF
6
NC
5
NC
Top View
Package Base: GND
0.47 PF
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-3212EN - May 10, 2012