0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AMMC-5026_08

AMMC-5026_08

  • 厂商:

    AVAGO(博通)

  • 封装:

  • 描述:

    AMMC-5026_08 - 2-35 GHz GaAs MMIC Traveling Wave Amplifier - AVAGO TECHNOLOGIES LIMITED

  • 数据手册
  • 价格&库存
AMMC-5026_08 数据手册
AMMC-5026 2 –35 GHz GaAs MMIC Traveling Wave Amplifier Data Sheet Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 3050 x 840 µm (119 x 33 mils) ±10 µm (±0.4 mils) 100 ± 10 µm (4 ± 0.4 mils) 75 x 75 µm (2.9 ± 0.4 mils) Description The AMMC-5026 is a broadband PHEMT GaAs MMIC Traveling Wave Amplifier (TWA) designed for medium output power and high gain over the full 2 GHz to 35 GHz frequency range. The design employs a 6-section cascode connected FET structure to provide flat gain and medium power as well as uniform group delay. For improved reliability and moisture protection, the die is passivated at the active areas. Features • Frequency range: 2 – 35 GHz • Gain: 10.5 dB • Gain flatness: ±0.8 dB • Return loss: Input 17 dB, Output: 15 dB • Output power (P-1dB): 24 dBm at 10 GHz 23 dBm at 20 GHz 22 dBm at 26 GHz • Noise figure (6–19 GHz): ≤ 4 dB Applications • Broadband gain block • Broadband driver amplifier • 10 Gb/s Fiber Optics Absolute Maximum Ratings [1] Symbol Vdd Idd Vg1 Ig1 Vg2 Ig2 Pin Tch Tb Tstg Tmax Parameters/Conditions Positive Drain Voltage Total Drain Current First Gate Voltage First Gate Current Second Gate Voltage Second Gate Current CW Input Power Channel Temperature Operating Backside Temperature Storage Temperature Max. Assembly Temp (60 sec max) Units V mA V mA V mA dBm °C °C °C °C Min. Max. 10 450 -5 -9 -3 -10 23 +150 -55 -65 +165 +300 +5 +3.5 Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to this device. AMMC-5026 DC Specifications/Physical Properties[1] Symbol Idss Vp1 Vg2 Idsoff ( Vg1) θch-b Parameters and Test Conditions Saturated Drain Current ( Vdd =7 V, Vg1=0 V, Vg2=open circuit) First Gate Pinch-off Voltage ( Vdd=7 V, Idd=0.1 Idss, Vg2=open circuit) Second Gate Self-bias Voltage ( Vdd=7 V, Idd=150 mA, Vg2=open circuit) First Gate Pinch-off Current (Vdd=7 V, Vg1=3.5 V, Vg2=open circuit) Thermal Resistance[2] (Backside temperature, Tb = 25°C) Units mA V V mA °C/W Min. 250 Typ. 350 -1.2 3.5 75 28 Max. 450 Notes: 1. Backside temperature Tb = 25°C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (θch-b) = 38°C/W at Tchannel ( Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data. RF Specifications[3,4] Symbol |S21| RLin RLout |S12| Psat OIP3 NF H2 H3 2 2 ( Vdd = 7V, Idd (Q) = 150 mA, Zin = Z0 = 50Ω) Parameters and Test Conditions Small-signal Gain Small-signal Gain Flatness Input Return Loss Output Return Loss Isolation Output Power @ 1 dB Gain Compression Saturated Output Power f = 10 GHz f = 10 GHz Units dB dB dB dB dB dBm dBm dBm dB dB dBc dBc Min. 8.5 Typ. 10.5 ±0.75 Max. 12.5 ±1.5 ∆ |S21|2 13 12 23 22 17 15 26 24 26 31 3.6 4.3 -20 -30 -17.5 -28 P-1dB Output 3rd Order Intercept Point, RFin1 = RFin2 = - 20 dBm, f = 10 GHz, ∆ f = 2 MHz Noise Figure Second Harmonic (Pin = 12 dBm at 10 GHz) Third Harmonic (Pin = 12 dBm at 10 GHz) f = 10 GHz f = 20 GHz Notes: 1. Data measured in wafer form, Tchuck = 25°C. 2. 100% on wafer RF test is done at frequency = 2, 10, 22, 26.5, and 35 GHz, except as noted. 2 AMMC-5026 Typical Performance ( Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω) 15 10 RETURN LOSS (dB) 0 -5 -10 -15 -20 -25 -30 S11(dB) S22(dB) 28 25 P1dB, P3dB (dBm) P1dB P3dB 5 GAIN (dB) 22 19 16 13 10 0 -5 -10 -15 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 1. Gain. Figure 2. Input and Output Return Loss. Figure 3. Output Power at P1dB and P3dB. 160 8 7 NOISE FIGURE (dB) 40 120 tg (pS) 30 6 5 4 3 0 IP3 (dBm) 20 80 10 40 0 0 5 10 15 20 25 30 35 40 2 0 5 10 15 20 25 30 35 40 -10 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 4. Group Delay. Figure 5. Noise Figure. Figure 6. Output 3rd Order Intercept Point. 3 AMMC-5026 Typical Performance 15 10 ( Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω) 0 -5 S11(dB) S22(dB) 28 25 P1dB P3dB RETURN LOSS (dB) P1dB, P3dB (dBm) 0 5 10 15 20 25 30 35 40 5 -10 -15 -20 -25 -30 22 19 16 13 10 GAIN (dB) 0 -5 -10 -15 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 7. Gain. 100 Figure 8. Input and Output Return Loss. Figure 9. Output Power at P1dB and P3dB. 40 8 7 80 30 NOISE FIGURE (dB) tg (pS) 60 OIP3 (dBm) 0 5 10 15 20 25 30 35 40 6 5 4 3 2 20 40 10 20 0 0 0 5 10 15 20 25 30 35 40 -10 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 10. Group Delay. Figure 11. Noise Figure. 10 NF @ 25°C NF @ -40°C NF @ 85°C Figure 12. Output 3rd Order Intercept Point. 15 10 8 S21 (dB) 5 NF (dB) S21(dB) 25°C S21(dB) -40°C S21(dB) 80°C 6 4 0 2 -5 0 5 10 15 20 25 30 35 40 0 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) FREQUENCY (GHz) Figure 13. Gain vs. Temperature. Figure 14. Noise Figure vs. Temperature. 4 AMMC-5026 Typical Scattering Parameters[1] ( Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA) Freq. GHz 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 Note: 1. Data obtained from on-wafer measurements. dB -24.93 -26.84 -25.16 -23.72 -22.99 -22.58 -21.97 -21.29 -20.67 -20.29 -20.47 -21.49 -23.65 -28.02 -39.49 -31.18 -24.21 -20.93 -18.20 -17.48 -17.43 -17.77 -18.27 -18.66 -18.56 -18.60 -19.07 -19.79 -18.63 -15.62 -13.40 -12.69 -14.73 -26.00 -14.82 -10.01 -9.81 -6.40 -4.23 S11 Mag 0.06 0.05 0.06 0.07 0.07 0.07 0.08 0.09 0.09 0.10 0.09 0.08 0.07 0.04 0.01 0.03 0.06 0.09 0.12 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.10 0.12 0.17 0.21 0.23 0.18 0.05 0.18 0.32 0.32 0.48 0.61 Ang -56 -18 -2 2 2 1 1 -3 -7 -16 -29 -43 -59 -81 -131 86 60 38 13 -17 -46 -81 -119 -161 156 112 66 9 -59 -116 -161 161 127 120 -157 172 161 157 135 dB 9.89 9.50 9.14 8.90 8.81 8.87 9.04 9.24 9.42 9.53 9.56 9.52 9.46 9.40 9.36 9.41 9.52 9.68 9.79 9.94 10.02 10.07 10.06 10.04 10.08 10.20 10.46 10.75 10.99 11.07 10.93 10.79 10.78 10.83 10.24 8.79 6.12 -0.65 -7.76 S21 Mag 3.12 2.98 2.87 2.79 2.76 2.78 2.83 2.90 2.96 2.99 3.01 2.99 2.97 2.95 2.94 2.95 2.99 3.05 3.09 3.14 3.17 3.19 3.18 3.18 3.19 3.24 3.33 3.45 3.54 3.58 3.52 3.46 3.46 3.48 3.25 2.75 2.02 0.93 0.41 Ang 130 112 94 77 60 42 24 5 -15 -35 -56 -76 -97 -117 -137 -157 -177 162 141 119 96 73 50 27 4 -19 -44 -70 -98 -127 -158 171 139 102 58 12 -42 -90 -109 dB -52.04 -48.40 -45.19 -43.10 -41.31 -40.00 -38.94 -38.13 -37.33 -36.65 -36.03 -35.34 -34.61 -33.89 -32.96 -32.22 -31.57 -30.96 -30.60 -30.17 -29.90 -29.74 -29.50 -29.24 -28.85 -28.34 -27.70 -27.23 -26.80 -26.67 -26.82 -26.97 -26.96 -26.76 -27.23 -28.38 -30.66 -36.71 -42.85 S12 Mag 0.0025 0.0038 0.0055 0.0070 0.0086 0.0100 0.0113 0.0124 0.0136 0.0147 0.0158 0.0171 0.0186 0.0202 0.0225 0.0245 0.0264 0.0283 0.0295 0.0310 0.0320 0.0326 0.0335 0.0345 0.0361 0.0383 0.0412 0.0435 0.0457 0.0464 0.0456 0.0448 0.0449 0.0459 0.0435 0.0381 0.0293 0.0146 0.0072 Ang -109 -131 -154 -174 164 143 122 103 84 66 49 32 14 -3 -22 -41 -62 -82 -104 -125 -147 -168 171 150 129 107 83 57 29 0 -29 -58 -89 -125 -169 146 91 44 18 dB -17.16 -15.78 -14.87 -14.55 -14.82 -15.68 -17.22 -19.41 -21.84 -22.43 -20.48 -18.32 -16.78 -15.83 -15.57 -15.93 -16.86 -18.63 -21.67 -27.56 -32.88 -24.55 -19.79 -17.19 -15.72 -15.10 -15.28 -16.61 -19.73 -24.26 -21.06 -17.40 -15.99 -17.25 -18.78 -16.58 -18.73 -13.68 -10.52 S22 Mag 0.14 0.16 0.18 0.19 0.18 0.16 0.14 0.11 0.08 0.08 0.09 0.12 0.14 0.16 0.17 0.16 0.14 0.12 0.08 0.04 0.02 0.06 0.10 0.14 0.16 0.18 0.17 0.15 0.10 0.06 0.09 0.13 0.16 0.14 0.12 0.15 0.12 0.21 0.30 Ang -126 -154 179 154 128 101 73 39 -6 -62 -110 -145 -172 165 144 125 107 91 78 74 142 171 163 150 135 119 104 89 80 102 136 133 118 107 120 125 125 154 139 5 AMMC-5026 Typical Scattering Parameters[1] ( Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA) Freq. GHz 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 Note: 1. Data obtained from on-wafer measurements. dB -24.88 -26.86 -25.30 -23.94 -23.17 -22.72 -22.09 -21.42 -20.79 -20.42 -20.68 -21.76 -24.04 -28.68 -40.72 -30.52 -24.07 -21.00 -18.37 -17.78 -17.89 -18.34 -18.89 -19.20 -19.05 -19.12 -19.87 -20.78 -19.42 -16.18 -13.92 -13.31 -15.52 -23.72 -14.68 -10.47 -9.72 -6.77 -4.70 S11 Mag 0.06 0.05 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.10 0.09 0.08 0.06 0.04 0.01 0.03 0.06 0.09 0.12 0.13 0.13 0.12 0.11 0.11 0.11 0.11 0.10 0.09 0.11 0.16 0.20 0.22 0.17 0.07 0.18 0.30 0.33 0.46 0.58 Ang -57 -19 -2 2 2 1 1 -3 -7 -17 -30 -44 -61 -83 -151 86 58 36 12 -18 -49 -84 -123 -166 151 108 62 3 -67 -123 -166 158 129 144 -169 166 159 152 133 dB 9.59 9.20 8.85 8.59 8.49 8.54 8.70 8.89 9.07 9.17 9.20 9.15 9.08 9.01 8.97 9.00 9.11 9.26 9.35 9.49 9.57 9.60 9.57 9.53 9.55 9.65 9.88 10.14 10.33 10.37 10.21 10.03 9.95 9.82 9.06 7.43 4.27 -2.02 -8.14 S21 Mag 3.02 2.88 2.77 2.69 2.66 2.67 2.72 2.78 2.84 2.87 2.88 2.87 2.84 2.82 2.81 2.82 2.85 2.90 2.93 2.98 3.01 3.02 3.01 3.00 3.00 3.04 3.12 3.21 3.29 3.30 3.24 3.17 3.14 3.10 2.84 2.35 1.64 0.79 0.39 Ang 129 112 94 76 59 41 23 4 -16 -37 -58 -78 -99 -119 -139 -159 -180 159 137 115 93 70 46 23 0 -24 -49 -75 -103 -133 -164 165 132 95 52 6 -46 -88 -108 dB -51.70 -47.74 -45.04 -42.85 -41.11 -39.74 -38.56 -37.72 -37.02 -36.31 -35.60 -34.94 -34.20 -33.47 -32.62 -31.87 -31.28 -30.66 -30.26 -29.87 -29.53 -29.42 -29.17 -28.95 -28.57 -28.09 -27.47 -27.05 -26.69 -26.60 -26.76 -26.92 -26.97 -27.01 -27.64 -29.02 -31.77 -37.46 -42.97 S12 Mag 0.0026 0.0041 0.0056 0.0072 0.0088 0.0103 0.0118 0.0130 0.0141 0.0153 0.0166 0.0179 0.0195 0.0212 0.0234 0.0255 0.0273 0.0293 0.0307 0.0321 0.0334 0.0338 0.0348 0.0357 0.0373 0.0394 0.0423 0.0444 0.0463 0.0468 0.0459 0.0451 0.0448 0.0446 0.0415 0.0354 0.0258 0.0134 0.0071 Ang -109 -131 -153 -175 164 144 123 104 85 67 49 32 14 -3 -21 -41 -61 -81 -103 -124 -146 -168 172 151 130 108 84 58 30 1 -28 -57 -88 -124 -167 148 96 53 28 dB -17.27 -15.97 -15.10 -14.79 -15.05 -15.89 -17.37 -19.46 -21.68 -22.16 -20.38 -18.33 -16.84 -15.91 -15.67 -16.02 -16.95 -18.70 -21.76 -27.81 -34.56 -24.90 -19.97 -17.32 -15.83 -15.23 -15.44 -16.82 -20.01 -24.45 -21.24 -17.71 -16.44 -17.71 -18.68 -16.97 -18.00 -13.26 -10.51 S22 Mag 0.14 0.16 0.18 0.18 0.18 0.16 0.14 0.11 0.08 0.08 0.10 0.12 0.14 0.16 0.16 0.16 0.14 0.12 0.08 0.04 0.02 0.06 0.10 0.14 0.16 0.17 0.17 0.14 0.10 0.06 0.09 0.13 0.15 0.13 0.12 0.14 0.13 0.22 0.30 Ang -123 -152 -179 155 129 102 72 38 -7 -61 -108 -143 -171 166 145 125 107 91 77 69 146 175 165 151 136 120 105 90 81 103 136 133 119 111 123 127 136 151 138 6 Biasing and Operation AMMC-5026 is biased with a single positive drain supply ( Vd) and a negative gate supply (Vg1). The recommended bias conditions for the AMMC-5026 is Vdd = 7 V and Idd = 150 mA for best overall performance. Open circuit is the default setting for the Vg2 biasing. Figure 17 shows a typical bonding configuration for the 2 to 35 GHz operations. In this case, auxiliary drain and Vg1 capacitors (>0.5 µF) are used for low frequency (below 2 GHz) performance. Input and output RF ports are DC coupled; therefore, DC decoupling capacitors are required if there are DC paths. The auxiliary gate and drain contacts are used for low frequency performance extension below 1 GHz. When used, these contacts must be AC coupled only. (Do not attempt to apply bias to these pads.) Ground connections are made with plated through-holes to the backside of the device. Assembly Techniques The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy [1,2]. For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize inductance. Gold mesh or double-bonding with 0.7 mil gold wire is recommended. Mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2°C. The chip is 100 mm thick and should be handled with care. This MMIC has exposed air bridges on the top surface. Handle at edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken. Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Eutectic attach is not recommended and may jeopardize reliability of the device. Vd RF Output Aux Vd Aux Vg2 RF Input Vg1 Figure 15. AMMC-5026 Schematic. 7 Aux Vg1 89 (RF Output Pad) 7 50 (Vd) 8 40 (±10 µm) (Aux Vd) 5 05 2964 587 2 52 318 (Aux Vg2) 89 (RF Input Pad) 3050 (± 10 µm) 2323 (Vg1) 2563 (Aux Vg1) 2951 Notes: All dimensions in microns. Rectangular Pad Dim: 75 x 75 µm Figure 16. AMMC-5026 Bonding Pad Locations. (dimensions in micrometers) 1.5 mil dia.Gold Wire Bond to 15 nF DC Feedthru 68 pF Capacitor 4 nH Inductor (1.0 mil Gold Wire Bond with length of 200 mils) Gold Plated Shim 2.0 mil nom. gap Vd IN OUT Vg Input and Output Thin Film Circuit with 8 pF DC Blocking Capacitor AMMC-5026 2.0 mil nom. gap 0.7 mil dia. Gold Bond Wire (Length Not important) Bonding Island 1.5 mil dia.Gold Wire Bond to 15 nF DC Feedthru Figure 17. AMMC-5026 Assembly Diagram. Ordering Information AMMC-5026-W10 = 10 devices per tray AMMC-5026-W50 = 50 devices per tray For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-3929EN AV02-1286EN - July 8, 2008
AMMC-5026_08 价格&库存

很抱歉,暂时无法提供与“AMMC-5026_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货