0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AMMC-5620

AMMC-5620

  • 厂商:

    AVAGO(博通)

  • 封装:

  • 描述:

    AMMC-5620 - 6 - 20 GHz High Gain Amplifier - AVAGO TECHNOLOGIES LIMITED

  • 数据手册
  • 价格&库存
AMMC-5620 数据手册
AMMC-5620 6 - 20 GHz High Gain Amplifier Data Sheet Chip Size: 1410 x 1010 µm (55.5 x 39.7 mils) Chip Size Tolerance: ± 10 µm (± 0.4 mils) Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils) Pad Dimensions: 80 x 80 µm (3.1 x 3.1 mils or larger) Description Avago Technologies’ AMMC-5620 MMIC is a GaAs wideband amplifier designed for medium output power and high gain over the 6 - 20 GHz frequency range. The 3 cascaded stages provide high gain while the single bias supply offers ease of use. It is fabricated using a PHEMT integrated circuit process. The RF input and output ports have matching circuitry for use in 50-Ω environments. The backside of the chip is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. For improved reliability and moisture protection, the die is passivated at the active areas. The MMIC is a cost effective alternative to hybrid (discrete FET) amplifiers that require complex tuning and assembly processes. AMMC-5620 Absolute Maximum Ratings[1] Symbol VDD IDD PDC Pin Tch Tb Tstg Tmax Parameters/Conditions Drain Supply Voltage Total Drain Current DC Power Dissipation RF CW Input Power Channel Temp. Operating Backside Temp. Storage Temp. Maximum Assembly Temp. (60 sec max) Features • Frequency Range: 6 - 20 GHz • High Gain: 19 dB Typical • Output Power: 15dBm Typical • Input and Output Return Loss: < -10 dB • Positive Gain Slope: + 0.21dB/GHz Typical • Single Supply Bias: 5 V @ 95 mA Typical Applications • General purpose, wide-band amplifier in communication systems or microwave instrumentation • High gain amplifier Units V mA W dBm °C °C °C °C Min. Max. 7.5 135 1.0 20 +150 - 55 - 65 +165 +300 Note: 1. Operation in excess of any one of these conditions may result in permanent damage to this device. Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure that an ESD approved carrier is used when dice are transported from one destination to another. Personal grounding is to be worn at all times when handling these devices AMMC-5620 DC Specifications/Physical Properties [1] Symbol VDD IDD IDD qch-b Parameters and Test Conditions Recommended Drain Supply Current Total Drain Supply Current ( VDD = 5V) Total Drain Supply Current ( VDD = 7V) Thermal Resistance [3] (Backside temperature (Tb) = 25 °C Units V mA mA °C/W 70 Min. Typical 5 95 105 33 130 Max. Notes: 1. Backside temperature Tb = 25°C unless otherwise noted 2. Channel-to-backside Thermal Resistance (qch-b) = 47°C/W at Tchannel (Tc) = 150°C as measured using infrared microscopy. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data. AMMC-5620 RF Specifications [3] Tb = 25°C, VDD=5V, IDD=95 mA, Zo=50 Ω Symbol S21 2 Gain Slope Parameters and Test Conditions Small-signal Gain Positive Small-signal Gain Slope Input Return Loss Output Return Loss Reverse Isolation Output Power at 1 dB Gain Compression @ 20 GHz Saturated Output Power (3dB Gain Compression) @ 20 GHz Output 3rd Order Intercept Point @ 20 GHz Noise Figure @ 20 GHz Units dB dB/GHz dB dB dB dBm dBm dBm dB Min. 16 Typical 19 +0.21 Max. 22 RLin RLout S12 2 P-1dB Psat OIP3 NF 10 10 13 14 - 55 12.5 14.5 15 17 23.5 4.2 5.0 Notes: 3. 100% on-wafer RF test is done at frequency = 6, 13 and 20 GHz, except as noted. 2 AMMC-5620 Typical Performances (Tchuck=25°C, VDD=5V, IDD = 95 mA, 25 0 -10 ISOLATION (dB) -20 -30 -40 -50 INPUT RL (dB) 4 7 10 13 16 19 22 0 20 -10 GAIN (dB) 15 -20 10 5 -30 -60 4 7 10 13 16 19 22 -70 -40 4 7 10 13 16 19 22 0 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 1. Gain Figure 2. Isolation Figure 3. Input Return Loss 0 10 18 15 12 9 6 -10 OUTPUT RL (dB) NF (dB) 8 P1dB (dBm) 4 7 10 13 16 19 22 6 -20 4 -30 2 3 0 -40 4 7 10 13 16 19 22 0 4 7 10 13 16 19 22 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 4.Output Return Loss Figure 5. Noise Figure Figure 6. Output Power at 1dB Gain Compression AMMC-5620 Typical Performances vs. Supply Voltage (Tb = 25°C, Zo=50Ω) 25 0 Vdd=4V Vdd=5V Vdd=6V 0 20 ISOLATION (dB) -20 -10 INPUT RL (dB) GAIN (dB) 15 -20 -40 10 Vdd=4V Vdd=5V Vdd=6V -30 5 -60 Vdd=4V Vdd=5V Vdd=6V -40 0 4 7 10 13 16 19 22 -80 4 7 10 13 16 19 22 -50 4 7 10 13 16 19 22 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 7. Gain and Voltage Figure 8. Isolation and Voltage Figure 9. Input Return Loss and Voltage 3 AMMC-5620 Typical Performances vs. Supply Voltage (cont.) ( Tb = 25°C, Zo=50Ω) 0 20 -10 OUTPUT RL (dB) P1dB (dBm) 16 12 -20 Vdd=4V Vdd=5V Vdd=6V 8 -30 Vdd=4V Vdd=5V Vdd=6V 4 -40 4 7 10 13 16 19 22 0 4 7 10 13 16 19 22 FREQUENCY (GHz) FREQUENCY (GHz) Figure 10. Output Return Loss and Voltage Figure 11. Output Power and Voltage AMMC-5620 Typical Performance vs. Temperature (VDD = 5V, Zo=50Ω) 24 20 ISOLATION (dB) 16 GAIN (dB) 12 8 4 0 -40 C 25 C 85 C 0 -10 -20 -30 -40 -50 -60 4 7 10 13 16 19 22 -70 4 7 10 13 16 19 22 -40 C 25 C 85 C 0 -10 INPUT RL (dB) -20 -30 -40 C 25 C 85 C -40 4 7 10 13 16 19 22 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 12. Gain and Temperature Figure 13. Isolation and Temperature Figure 14. Input Return Loss and Temperature 0 -5 OUTPUT RL (dB) -10 NF (dB) -15 -20 -25 -30 -35 4 7 10 13 16 -40 C 25 C 85 C 7 6 5 4 3 2 1 22 0 4 7 10 13 16 -40 C 25 C 85 C 18 15 12 P1dB (dB) 9 6 3 0 -40 C 25 C 85 C 19 19 22 4 7 10 13 16 19 22 FREQUENCY (GHz) FREQUENCY (GHz) FREQUENCY (GHz) Figure 15. Output Return Loss and Temperature Figure 16. Noise Figure and Temperature Figure 17. Output Power and Temperature 4 AMMC-5620 Typical Scattering Parameters [1] (Tb = 25°C, VDD =5 V, IDD = 107 mA) S11 Freq GHz 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 dB -2.9 -3.3 -3.5 -3.7 -3.8 -4.0 -5.0 -7.7 -12.0 -16.9 -21.9 -27.2 -32.8 -33.4 -30.9 -27.7 -24.9 -22.6 -20.7 -19.3 -18.2 -17.3 -16.6 -16.0 -15.6 -15.3 -15.1 -15.0 -14.9 -14.9 -15.0 -15.0 -14.9 -14.7 -14.3 -13.8 -13.1 -11.9 -10.5 -9.0 -7.5 Mag 0.72 0.69 0.67 0.65 0.64 0.63 0.56 0.41 0.25 0.14 0.08 0.04 0.02 0.02 0.03 0.04 0.06 0.07 0.09 0.11 0.12 0.14 0.15 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.2 0.22 0.25 0.3 0.35 0.42 Phase -147 -168 173 154 134 111 81 49 23 5 -8 -18 -17 -5 -15 -32 -50 -66 -80 -92 -103 -113 -123 -131 -140 -148 -156 -164 -172 179 170 160 149 137 122 106 89 72 53 36 19 S21 dB -23.3 -16.1 -10.0 -4.6 0.8 6.6 12.0 15.2 16.7 17.0 17.2 17.4 17.9 18.2 18.4 18.4 18.4 18.5 18.5 18.5 18.5 18.5 18.5 18.6 18.6 18.7 18.8 18.9 19.1 19.2 19.3 19.5 19.7 19.9 20.0 20.1 20.2 20.3 20.3 20.2 19.9 Mag 0.07 0.16 0.31 0.59 1.1 2.15 3.96 5.73 6.84 7.06 7.28 7.41 7.81 8.12 8.29 8.34 8.35 8.37 8.36 8.37 8.38 8.4 8.43 8.48 8.53 8.6 8.71 8.81 8.97 9.11 9.25 9.43 9.62 9.84 10 10.2 10.3 10.4 10.3 10.2 9.88 Phase -176 146 114 87 62 34 -5 -50 -91 -123 -150 -173 164 142 121 101 83 65 48 32 16 1 -14 -29 -44 -58 -73 -87 -101 -116 -131 -145 -161 -176 168 151 134 117 99 80 60 S12 dB -50.0 -46.1 -44.0 -42.9 -42.1 -41.5 -42.1 -44.7 -49.0 -53.7 -58.0 -60.6 -61.9 -64.4 -64.4 -63.1 -63.5 -64.4 -64.4 -64.2 -62.1 -63.3 -64.4 -62.1 -61.9 -62.1 -62.9 -64.1 -61.2 -60.0 -61.8 -62.1 -61.9 -62.7 -61.9 -61.9 -60.0 -60.9 -64.1 -67.5 -67.5 Mag 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Phase 46 -1 -46 -89 -132 -179 128 72 19 -30 -78 -123 -160 -178 -179 -169 157 144 145 130 127 126 125 118 107 107 98 82 94 95 60 80 70 67 70 61 45 41 38 13 5 S22 dB -1.5 -2.5 -3.6 -4.5 -5.3 -6.7 -9.6 -15.2 -21.8 -24.8 -26.4 -30.0 -34.5 -28.3 -23.8 -21.2 -19.3 -18.1 -17.1 -16.3 -15.7 -15.1 -14.7 -14.4 -14.2 -14.0 -13.7 -13.6 -13.4 -13.3 -13.3 -13.2 -13.2 -13.3 -13.4 -13.6 -14.0 -14.1 -14.6 -15.1 -15.5 Mag 0.85 0.75 0.66 0.6 0.54 0.46 0.33 0.17 0.08 0.06 0.05 0.03 0.02 0.04 0.06 0.09 0.11 0.12 0.14 0.15 0.16 0.18 0.18 0.19 0.2 0.2 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22 0.21 0.21 0.2 0.2 0.19 0.18 0.17 Phase -72 -89 -104 -118 -136 -158 175 157 165 -173 -164 -155 -102 -61 -60 -65 -72 -78 -84 -90 -95 -101 -105 -110 -115 -120 -126 -131 -136 -140 -145 -150 -154 -159 -166 -171 -177 179 173 168 162 Note: Data obtained from on-wafer measurements. 5 Biasing and Operation The AMMC-5620 is normally biased with a single positive drain supply connected to the VDD bond pads shown in Figure 19. The recommended supply voltage is 5 V, which results in IDD = 95 mA (typical). No ground wires are required because all ground connections are made with plated through-holes to the backside of the device. Refer the Absolute Maximum Ratings table for allowed DC and thermal conditions. Assembly Techniques The backside of the AMMC-5620 chip is RF ground. For microstripline applications, the chip should be attached directly to the ground plane (e.g., circuit carrier or heatsink) using electrically conductive epoxy[1]. For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plated metal shim (same length and width as the MMIC) under the chip, which is of the correct thickness to make the chip and adjacent circuit coplanar. The amount of epoxy used for chip and or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. The location of the RF bond pads is shown in Figure 20. Note that all the RF input and output ports are in a Ground-Signal-Ground configuration. RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is sufficient for signal connections, however double-bonding with 0.7 mil gold wire or the use of gold mesh[2] is recommended for best performance, especially near the high end of the frequency range. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. Gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2 ° C. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. The chip is 100 µm thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken. Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824 6 VD1 Feedback network Feedback network Feedback network RF Output Matching Matching RF Input Matching Matching Figure 18. AMMC-5620 Schematic To power supply 100 pF chip capacitor Gold plated shim RF Input AMMC-5620 RF Output Figure 19. AMMC-5620 Assembly Diagram 7 875 (VDD) 1010 910 350 (RFIn) 350 (RFOut) 0 0 90 1315 1410 Figure 20. AMMC-5620 Bond Pad Locations. (dimensions in microns) Ordering Information: AMMC-5620-W10 = 10 devices per tray AMMC-5620-W50 = 50 devices per tray For product information and a complete list of distributors, please go to our web site: w ww.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, AV02-0528EN in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0222EN AV02-0528EN - June 19, 2007
AMMC-5620 价格&库存

很抱歉,暂时无法提供与“AMMC-5620”相匹配的价格&库存,您可以联系我们找货

免费人工找货