ASMT-Ax3x
3W Power LED Light Source
Data Sheet
Description
Features
This 3W Power LED Light Source is a high performance
energy efficient device which can handle high thermal
and high driving current. The exposed pad design
enables excellent heat transfer from the package to the
motherboard. Option with electrically isolated metal slug
is also available.
• Available in Red, Red Orange, Amber, Green, Blue, Royal
Blue, Cool White, Neutral White and Warm White color
The White Power LED is available in the range of color
temperature from 2700K to 10000K.
• High current operation
The low profile package design is suitable for a wide
variety of applications especially where height is a constraint.
• Wide viewing angle at 140°
The package is compatible with reflow soldering process.
This part has a foot print that is compatible to most of the
high power LED in the market today.
• Energy efficient
• Exposed metal slug for excellent heat transfer
• Compatible with reflow soldering process
• Long operation life
• Silicone encapsulation
• Non-ESD sensitive (threshold > 16 kV)
• MSL 2a products
Applications
• Architectural lighting
• Channel backlighting
• Contour lighting
• Retail Display lighting
• Decorative lighting
• Garden lighting
• Safety, exit and emergency signs lighting
• Specialty lighting
• Task lighting
Package Dimensions
7.4
1.1
Ø 6.0
7.4
1.5
2.3
Ø 8.0
Metal Slug
BOTTOM VIEW
TOP VIEW
Anode
Lead
0.5
4.1 (ref:)
3.0
Lens
2.0
Cathode
Lead
6.0
13.8 ± 0.2
Metal Slug
Body
Figure 1. ASMT-Ax3x package outline drawing
Notes:
1. All dimensions in millimeters.
2. Metal slug is connected to anode for electrically non-isolated option.
3. Tolerance is ±0.1 mm unless otherwise specified.
4 . Terminal Finish: Ag plating
2
Part Numbering System
ASMT – A x1 3 x2 – x3 x4 x5 x6 x7
Packaging Option
Color Bin Selection
Maximum Flux Bin Selection
Minimum Flux Bin Selection
Dice Type
N – InGaN
A – AllnGaP
Heat Sink
0 – Electrically Non-isolated
1 – Electrically Isolated
Color
R – Red
H – Red Orange
A – Amber
G – Green
B – Blue
L – Royal Blue
W – Cool White
N – Neutral White
Y – Warm White
Note:
1. Please refer to Page 11 for selection details.
Device Selection Guide (Tj = 25 °C)
Luminous Flux (lm) / Radiometric Power
(mW), ΦV [1,2]
Part Number
Color
Min.
Typ.
Max.
Test
Current
(mA)
ASMT-AR30-AST00
Red
51.7
60.0
87.4
350
AllnGaP
No [3]
ASMT-AH30-ARS00
Red Orange
39.8
50.0
67.2
350
AllnGaP
No [3]
ASMT-AA30-ARS00
Amber
39.8
50.0
67.2
350
AllnGaP
No [3]
ASMT-AG31-NTU00
Green
67.2
78.0
99.6
350
InGaN
Yes
87.4
105.0
113.6
350
InGaN
Yes
13.9
18.0
30.6
350
InGaN
Yes
18.1
23.0
30.6
350
InGaN
Yes
ASMT-AG31-NUV00
ASMT-AB31-NMP00
Blue
ASMT-AB31-NNP00
Dice
Technology
Electrically
Isolated
Metal Slug
ASMT-AL31-NRS00
Royal Blue
515 mW
600 mW
685 mW
350
InGaN
Yes
ASMT-AW31-NVX00
Cool White
99.6
120.0
147.7
350
InGaN
Yes
ASMT-AN31-NWX00
Neutral White
113.6
120.0
147.7
350
InGaN
Yes
ASMT-AY31-NUW00
Warm White
87.4
95.0
129.5
350
InGaN
Yes
Notes:
1. ΦV is the total luminous flux / radiometric power output as measured with an integrating sphere at 25ms mono pulse condition.
2. Flux and power tolerance is ±10 %
3. Electrically isolated metal slug option is also available. Please contact your Avago sale representative.
3
Absolute Maximum Ratings
Parameter
DC Forward Current
AllnGaP
[1]
InGaN
Units
700
700
mA
Peak Pulsing Current
1500
2400
mA
Power Dissipation
1820
2730
mW
LED Junction Temperature
125
135
°C
Operating Metal Slug Temperature Range at 350 mA
-40 to +115
-40 to +120
°C
Operating Metal Slug Temperature Range at 700 mA
-40 to +100
-40 to +105
°C
Storage Temperature Range
-40 to +120
-40 to +120
°C
Soldering Temperature
Refer to Figure 26
Reverse Voltage [2]
Not recommended
Note:
1. Derate linearly based on Figure 10 for AlInGaP and Figure 22 for InGaN.
2. Not recommended for reverse bias operation.
Optical Characteristics at 350 mA (TJ = 25 °C)
Peak Wavelength,
lPEAK (nm)
Dominant
Wavelength,
lD [1] (nm)
Viewing Angle,
2q½ [2] (°)
Luminous Efficiency
(lm/W)
Part Number
Color
Typ.
Typ.
Typ.
Typ.
ASMT-AR30-AST00
Red
635
625
140
82
ASMT-AH30-ARS00
Red Orange
625
615
140
68
ASMT-AA30-ARS00
Amber
598
590
140
68
ASMT-AG31-NTU00
Green
519
525
140
70
519
525
140
94
454
460
140
16
454
460
140
21
450
455
140
Not applicable
Correlated Color Temperature,
CCT (Kelvin)
Viewing Angle,
2q½ [2] (°)
Luminous Efficiency
(lm/W)
ASMT-AG31-NUV00
ASMT-AB31-NMP00
Blue
ASMT-AB31-NNP00
ASMT-AL31-NRS00
Royal Blue
Part Number
Color
Min.
Max.
Typ.
Typ.
ASMT-AW31-NVX00
Cool White
4500
10000
140
107
ASMT-AN31-NWX00
Neutral White
3500
4500
140
107
ASMT-AY31-NUW00
Warm White
2700
3500
140
85
Notes:
1. The dominant wavelength, lD, is derived from the CIE Chromaticity Diagram and represents the color of the device.
2. q½ is the off-axis angle where the luminous intensity is ½ the peak intensity.
4
Electrical Characteristic at 350 mA (TJ = 25°C)
Forward Voltage,
VF (Volts)
Thermal Resistance,
Rθj-ms(°C/W) [1]
Dice Type
Min.
Typ
Max.
Typ.
AllnGaP
1.7
2.1
2.3
10
InGaN
2.8
3.2
3.5
10
Notes:
1. Rθj-ms is Thermal Resistance from LED junction to metal slug.
Optical and Electrical Characteristic at 700 mA (TJ = 25°C)
Luminous Flux (lm)
/ Radiometric Power
(mW), ΦV
Forward Voltage,
VF (Volts)
Part Number
Color
Typ.
Typ.
ASMT-AR30-AST00
Red
112.0
2.4
ASMT-AH30-ARS00
Red Orange
94.0
2.4
ASMT-AA30-ARS00
Amber
94.0
2.4
ASMT-AG31-NTU00
Green
125.0
3.6
168.0
3.6
30.0
3.6
39.0
3.6
ASMT-AG31-NUV00
ASMT-AB31-NMP00
Blue
ASMT-AB31-NNP00
ASMT-AL31-NRS00
Royal Blue
1022 mW
3.6
ASMT-AW31-NVX00
Cool White
205.0
3.6
ASMT-AN31-NWX00
Neutral White
205.0
3.6
ASMT-AY31-NUW00
Warm White
162.0
3.6
5
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
AMBER
RED ORANGE
RED
RELATIVE LUMINOUS FLUX
(NORMALIZED AT 350 mA)
RELATIVE INTENSITY
AlInGaP
530 545 560 575 590 605 620 635 650 665 680
WAVELENGTH - nm
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
0
0.5
1
1.5
2
FORWARD VOLTAGE - V
2.5
3
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.00001
D=
0.05
0.10
0.25
0.50
1.00
D=
0.001
0.1
tp
T
tp
IF
T
10
tp - PULSE DURATION - sec
Figure 6. Maximum pulse current vs.pulse duration. Derated based on
TA = 25°C, RθJ-A = 30°C/W.
6
100
200
300
400
500
MONO PULSE CURRENT - mA
600
700
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-90
-60
-30
0
30
60
ANGULAR DISPLACEMENT - DEGREES
90
Figure 5. Radiation Pattern Red, Red Orange and Amber.
IP - PULSE CURRENT - A
IP - PULSE CURRENT - A
Figure 4. Forward Current vs. Forward Voltage.
0
Figure 3. Relative Luminous Flux vs. Mono Pulse Current.
NORMALIZED INTENSITY
FORWARD CURRENT - mA
Figure 2. Relative Intensity vs. Wavelength for Red, Red Orange and Amber.
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.00001
D=
0.05
0.10
0.25
0.50
1.00
D=
0.001
0.1
tp - PULSE DURATION - sec
tp
T
tp
IF
T
10
Figure 7. Maximum pulse current vs. pulse duration. Derated based on
TA = 85°C, RθJ-A = 30°C/W.
AlInGaP
RELATIVE LIGHT OUTPUT - %
(NORMALIZED AT 25 °C)
FORWARD VOLTAGE SHIFT - V
(NORMALIZED AT 25°C)
0.05
120.0
110.0
100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
25
RED-ORANGE
RED
AMBER
50
75
100
JUNCTION TEMPERATURE, TJ -°C
600
500
RθJ-A = 20°C/W
RθJ-A = 25°C/W
RθJ-A = 30°C/W
100
0
20
40
60
80
100
AMBIENT TEMPERATURE, TA - °C
50
75
100
JUNCTION TEMPERATURE, TJ -°C
125
Figure 9. Forward Voltage Shift vs. Junction Temperature.
MAX ALLOWABLE DC CURRENT - mA
MAX ALLOWABLE DC CURRENT - mA
25
700
0
120
Figure 10. Maximum Forward Current vs. Ambient Temperature.
Derated based on TJMAX = 125°C, RθJ-A = 20°C/W, 25°C/W and 30°C/W.
7
-0.20
700
200
RED ORANGE
-0.15
800
300
RED
-0.10
800
400
AMBER
-0.05
-0.25
125
Figure 8. Relative Light Output vs. Junction Temperature.
0.00
140
600
RθJ-MS = 10°C/W
500
400
300
200
100
0
0
20
40
60
80
100
METAL SLUG TEMPERATURE, TMS - °C
120
Figure 11. Maximum Forward Current vs. Metal Slug Temperature.
Derated based on TJMAX = 125°C, RθJ-MS = 10°C/W.
140
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
WARM WHITE
NEUTRAL WHITE
COOL WHITE
380
480
580
WAVELENGTH - nm
680
RELATIVE INTENSITY
RELATIVE INTENSITY
InGaN
780
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
100
200
300
400
500
MONO PULSE CURRENT - mA
600
700
-90
-60
-30
0
30
ANGULAR DISPLACEMENT - DEGREES
Figure 16. Radiation Pattern for Blue, Royal Blue and Green
8
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
0
0.5
1
1.5
2
2.5
FORWARD VOLTAGE - V
3
3.5
4
Figure 15. Forward Current vs. Forward Voltage.
NORMALIZED INTENSITY
NORMALIZED INTENSITY
Figure 14. Relative Luminous Flux vs. Mono Pulse Current.
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Figure 13. Relative Intensity vs. Wavelength for Blue, Royal Blue and Green.
FORWARD CURRENT - mA
RELATIVE LUMINOUS FLUX / RADIOMETRIC
POWER (NORMALIZED AT 350 mA)
Figure 12. Relative Intensity vs. Wavelength for Warm White and Cool White.
1
0.9
GREEN
0.8
BLUE
ROYAL BLUE
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
380 405 430 455 480 505 530 555 580 605 630
WAVELENGTH - nm
60
90
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-90
-60
-30
0
30
60
ANGULAR DISPLACEMENT - DEGREES
90
Figure 17. Radiation Pattern for Cool White, Neutral White and Warm White.
3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.00001
t
D= p
T
tp
T
IF
Ip - PULSE CURRENT - A
Ip - PULSE CURRENT - A
InGaN
D=
0.05
0.10
0.25
0.50
1.00
0.001
0.1
tp - PULSE DURATION - sec
10
120.0
110.0
100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
25
75
100
125
JUNCTION TEMPERATURE, TJ - °C
700
700
MAX ALLOWABLE DC CURRENT - mA
MAX ALLOWABLE DC CURRENT - mA
800
600
500
RθJ-A = 20°C/W
RθJ-A = 25°C/W
RθJ-A = 30°C/W
200
100
0
0
20
40
60
80
100
AMBIENT TEMPERATURE, TA - °C
120
Figure 22. Maximum Forward Current vs. Ambient Temperature.
Derated based on TJMAX = 135°C, RθJ-A = 20°C/W, 25°C/W and 30°C/W.
9
T
IF
0.001
0.1
tp - PULSE DURATION - sec
10
GREEN
WHITE
ROYAL BLUE
BLUE
45
65
85
105
125
JUNCTION TEMPERATURE, TJ - °C
145
Figure 21. Forward Voltage Shift vs. Junction Temperature.
800
300
tp
D=
0.05
0.10
0.25
0.50
1.00
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30
-0.35
-0.40
-0.45
25
150
Figure 20. Relative Light Output vs. Junction Temperature.
400
tp
T
Figure 19. Maximum pulse current vs. pulse duration. Derated based on
TA = 85°C, RθJ-A = 30°C/W.
BLUE
ROYAL BLUE
GREEN
WHITE
50
D=
FORWARD VOLTAGE SHIFT - V
(NORMALIZED AT 25 °C)
RELATIVE LIGHT OUTPUT - %
(NORMALIZED AT 25 °C)
Figure 18. Maximum pulse current vs. pulse duration. Derated based on
TA = 25°C, RθJ-A = 30°C/W.
3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.00001
140
600
RθJ-MS = 10°C/W
500
400
300
200
100
0
0
20
40
60
80
100
METAL SLUG TEMPERATURE, TMS - °C
120
Figure 23. Maximum Forward Current vs. Metal Slug Temperature.
Derated based on TJMAX = 135°C, RθJ-MS = 10°C/W.
140
1.60
4.38
8.80
14.10
2.65
Ø 6.40
∅5.8
1.10
Figure 24. Recommended soldering land pattern.
Figure 25. Recommended pick and place nozzle tip.
Inner diameter = 5.8 mm
TEMPERATURE
10 to 30 SEC.
217°C
200°C
255 - 260°C
3°C/SEC. MAX.
6°C/SEC. MAX.
150°C
3°C/SEC. MAX.
100 SEC. MAX.
60 - 120 SEC.
TIME
(Acc. to J-STD-020C)
Figure 26. Recommended Reflow Soldering.
Note:
For detail information on reflow soldering of Avago surface mount LEDs,
do refer to Avago Application Note AN1060 Surface Mounting SMT LED
Indicator Components.
10
Option Selection Details
Flux / Power Bin Limit [x4, x5]
Color
Bin ID
Luminous Flux (lm) / Radiometric
Power (mW) at 350 mA
Min.
Max.
Blue
M
N
P
R
S
T
U
V
W
X
P
Q
R
S
13.9
18.1
23.5
39.8
51.7
67.2
87.4
99.6
113.6
129.5
355.0
435.0
515.0
595.0
ASMT-A x13 x2 – x3 x4 x5 x6 x7
x4 – Minimum Flux Bin Selection
x5 – Maximum Flux Bin Selection
x6 – Color Bin Selection
x7 – Packaging Option
Other Colors
Royal Blue
Tolerance for each bin limits is ±10 %
Color Bin Selection [x6]
Individual reel or tube will contain parts from one color bin selection only.
Cool White
Warm White
Selection
Bin ID
Selection
Bin ID
0
Full Distribution
0
Full Distribution
B
VN and V0
A
M0 and MA
E
VM, UM, VN and UN
B
PA and P0
F
WM, VM, WN and VN
C
N1 and N0
G
XM, WM, XN and WN
E
NM, MM, N1 and M1
H
UN, VN, U0 and V0
F
PM, NM, P1 and N1
J
WN, VN, W0 and V0
G
QM, PM, Q1 and P1
K
XN, WN, X0 and W0
H
M1, N1, M0 and N0
L
V0, U0, VP and UP
J
P1, N1, P0 and N0
M
W0, V0, WP, VP and WQ
K
Q1, P1, Q0 and P0
N
X0, W0, XP, WP and WQ
L
N0, M0, NA and MA
P
Y0
M
P0, N0, PA and NA
Q
YA
N
Q0, P0, QA and PA
Neutral White
Other Colors
Selection
Bin ID
Selection
Bin ID
0
Full Distribution
0
Full Distribution
A
S1 and S0
Z
A and B
B
S0 and R0
Y
B and C
E
SM, RM, S1 and R1
W
C and D
F
TM, SM, TN and S1
V
D and E
G
S1, R1, S0 and R0
Q
A, B and C
H
TN, S1, T0 and S0
P
B, C and D
J
S0, R0, SA and RA
N
C, D and E
T0, S0, TP and SA
M
D, E and F
K
11
18.1
23.5
30.6
51.7
67.2
87.4
99.6
113.6
129.5
147.7
435.0
515.0
595.0
685.0
0.42
0.48
4500K
5000K
Y-COORDINATE
0.38
5650K
6300K
0.36
7000K
0.34
0.32
XN
X0
10000K
Y0
0.30
XP
U0
UP
VP
WP
WQ
BLACK BODY CURVE
0.28
0.30
0.32
0.34
X-COORDINATE
0.36
0.38
0.40
0.44
4100K
Y-COORDINATE
0.42
4500K
3800K
S1
TN
SA
R1
R0
S0
T0
3500K
RM
SM
TM
0.36
RA
BLACK BODY CURVE
TP
0.34
0.32
0.34
0.36
0.38
0.40
X-COORDINATE
Figure 29. Color bin structure for Neutral White.
12
0.40
Q0
P0
PA NA
NM
M1
N1
P1
Q1
M0
N0
MA
QA
BLACK BODY CURVE
0.32
0.38
0.40
0.42
0.44
0.46
X-COORDINATE
Figure 28. Color bin structure for Warm White.
0.46
0.38
0.42
0.38
PM
QM
2700K
MM
0.34
Figure 27. Color bin structure for Cool White.
0.40
3500K
3050K 2850K
3250K
0.36
YA
0.28
0.26
0.26
XM
0.44
UN
VM
VN
V0
WM
WN
W0
0.46
UM
Y-COORDINATE
0.40
0.42
0.44
0.48
0.50
Color Bin Limit
Cool
White
Color Limits
(Chromaticity Coordinates)
Warm
White
Color Limits
(Chromaticity Coordinates)
Bin UM x 0.365 0.367 0.348 0.347 Bin MM x 0.471 0.460 0.473 0.486
y 0.386 0.400 0.385 0.372
y 0.451 0.430 0.432 0.455
Bin UN x 0.365 0.362 0.346 0.347 Bin M1 x 0.460 0.453 0.467 0.473
y 0.386 0.372 0.359 0.372
y 0.430 0.416 0.419 0.432
Bin U0 x 0.362 0.360 0.344 0.346 Bin M0 x 0.453 0.444 0.459 0.467
y 0.372 0.357 0.344 0.359
y 0.416 0.399 0.403 0.419
Bin UP x 0.360 0.357 0.343 0.344 Bin MA x 0.459 0.444 0.436 0.451
y 0.357 0.342 0.311 0.344
y 0.403 0.399 0.384 0.389
Bin VM x 0.329 0.329 0.348 0.347 Bin NM x 0.454 0.444 0.460 0.4
71
y 0.357 0.369 0.385 0.372
y 0.446 0.426 0.430 0.451
Bin VN x 0.329 0.329 0.347 0.346 Bin N1 x 0.444 0.438 0.453 0.4
60
y 0.345 0.357 0.372 0.359
y 0.426 0.412 0.416 0.430
Bin V0 x 0.329 0.329 0.346 0.344 Bin N0 x 0.438 0.429 0.444 0.4
53
y 0.311 0.345 0.359 0.344
y 0.412 0.394 0.399 0.416
Bin VP x 0.329 0.344 0.343 0.329 Bin NA x 0.444 0.429 0.422 0.4
36
y 0.331 0.344 0.331 0.320
y 0.399 0.394 0.379 0.384
Bin WM x 0.329 0.329 0.315 0.314 Bin PM x 0.438 0.430 0.444 0.454
y 0.369 0.357 0.344 0.355
y 0.440 0.421 0.426 0.446
Bin WN x 0.329 0.316 0.315 0.329 Bin P1 x 0.430 0.424 0.438 0.444
y 0.345 0.333 0.344 0.357
y 0.421 0.407 0.412 0.426
Bin W0 x 0.329 0.329 0.317 0.316 Bin P0 x 0.424 0.416 0.429 0.438
y 0.345 0.331 0.320 0.333
y 0.407 0.389 0.394 0.412
Bin WP x 0.329 0.329 0.318 0.317 Bin PA x 0.429 0.416 0.410 0.422
y 0.331 0.320 0.310 0.320
y 0.394 0.389 0.374 0.379
Bin WQ x 0.329 0.329 0.319 0.318 Bin QM x 0.421 0.414 0.430 0.438
y 0.320 0.310 0.300 0.310
y 0.433 0.414 0.421 0.440
Bin XM x 0.301 0.314 0.315 0.303 Bin Q1 x 0.414 0.409 0.424 0.430
y 0.342 0.355 0.344 0.333
y 0.414 0.400 0.407 0.421
Bin XN x 0.305 0.303 0.315 0.316 Bin Q0 x 0.409 0.402 0.416 0.424
y 0.322 0.333 0.344 0.333
y 0.400 0.382 0.389 0.407
Bin X0 x 0.308 0.305 0.316 0.317 Bin QA x 0.416 0.402 0.396 0.410
y 0.311 0.322 0.333 0.320
y 0.389 0.382 0.367 0.374
Bin XP x 0.308 0.317 0.319 0.311 Tolerance: ± 0.01
y 0.311 0.320 0.300 0.293
Bin Y0 x 0.308 0.283 0.274 0.303
y 0.311 0.284 0.301 0.333
Bin YA x 0.308 0.311 0.290 0.283
y 0.311 0.293 0.270 0.284
Tolerance: ± 0.01
13
Neutral
White
Color Limits
(Chromaticity Coordinates)
Dominant Wavelength (nm)
at 350 mA
Bin RM x 0.421 0.414 0.397 0.402
y 0.433 0.414 0.406 0.423
Color
Bin ID
Min.
Max.
Bin R1 x 0.414 0.409 0.392 0.397
y 0.414 0.400 0.391 0.406
Red
–
620.0
635.0
Red Orange
–
610.0
620.0
Amber
B
587.0
589.5
C
589.5
592.0
D
592.0
594.5
E
594.5
597.0
A
515.0
520.0
B
520.0
525.0
C
525.0
530.0
D
530.0
535.0
A
455.0
460.0
B
460.0
465.0
C
465.0
470.0
D
470.0
475.0
Bin R0 x 0.392 0.387 0.402 0.409
y 0.391 0.374 0.382 0.400
Bin RA x 0.387 0.383 0.396 0.402
y 0.374 0.360 0.367 0.382
Bin SM x 0.402 0.397 0.382 0.386
y 0.423 0.406 0.397 0.413
Green
Bin S1 x 0.397 0.392 0.378 0.382
y 0.406 0.391 0.382 0.397
Bin S0 x 0.392 0.387 0.374 0.378
y 0.391 0.374 0.366 0.382
Blue
Bin SA x 0.387 0.383 0.370 0.374
y 0.374 0.360 0.351 0.366
Bin TM x 0.386 0.382 0.365 0.367
y 0.413 0.397 0.386 0.400
Bin TN x 0.382 0.378 0.362 0.365
y 0.397 0.382 0.372 0.386
Bin T0 x 0.378 0.374 0.360 0.362
y 0.382 0.366 0.357 0.372
Bin TP x 0.374 0.370 0.357 0.360
y 0.366 0.351 0.342 0.357
Tolerance: ±1 nm
Peak Wavelength (nm) at 350 mA
Color
Bin ID
Min.
Max.
Royal Blue
C
440.0
445.0
D
445.0
450.0
E
450.0
455.0
F
455.0
460.0
Tolerance: ± 0.01
Tolerance: ±2 nm
Packaging Option [x7]
Example
Selection
Option
0
Tube
1
Tape and Reel
14
ASMT-AW31-NUV00
ASMT-AW31-Nxxxx – Cool White, InGaN,
Electrically isolated Heat Sink
x4 = U
–
Minimum Flux Bin U
x5 = V
–
Maximum Flux Bin V
x6 = 0
–
Full Distribution
x7 = 0
–
Tube Option
Packing Tube – Option 0
0.4 ±0.1
7.3 ±0.1
8.4 ±0.1
3.4 ±0.1
5.0 ±0.1
17.2 ±0.1
mm
395
Figure 30. Package tube dimensions.
15
4.00 ±0.10
2.00 ±0.10
11.50 ±0.10
24.00 ±0.30
1.75 ±0.10
Tape and Reel – Option 1
A
B
Ø 1.50
+0.10
0.00
0.40 ±0.05
Ø 8.10
A
+0.10
0.00
‘BO’
14.30 ±0.10
R 0.30 Max (TYP.)
‘KO’
4.50 ±0.10
B
12.00 ±0.10
2.55
Section 'B-B'
‘AO’
8.10 ±0.10
Section 'A-A'
Figure 31. Carrier tape dimensions.
Ø 330.0 ± 2.0
1.8 +0.2
0.0
24.0 +0.2
0.0
2.0 ±0.5
Ø 13.0 +0.5
–0.2
Detail – 1
See Detail – 1
Figure 32. Reel dimensions.
16
100 ±0.5
Ø 21.0 ±0.8
Handling Precaution
The encapsulation material of the product is made of
silicone for better reliability of the product. As silicone
is a soft material, please do not press on the silicone or
poke a sharp object onto the silicone. These might
damage the product and cause premature failure. During
assembly of handling, the unit should be held on the body
only. Please refer to Avago Application Note AN 5288 for
detail information.
Moisture Sensitivity
This product is qualified as Moisture Sensitive Level 2a
per Jedec J-STD-020. Precautions when handling this
moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note
AN5305 Handling of Moisture Sensitive Surface Mount
Devices for details.
A. Storage before use
– Unopen moisture barrier bag (MBB) can be stored at
< 40°C/90%RH for 12 months. If the actual shelf life
has exceeded 12 months and the humidity indicator
card (HIC) indicates that baking is not required, then
it is safe to reflow the LEDs per the original MSL
rating.
– It is not recommended to open the MBB prior to
assembly (e.g. for IQC).
B. Control after opening the MBB
– The humidity indicator card (HIC) shall be read
immediately upon opening of MBB.
– The LEDs must be kept at < 30°C/60%RH at all time
and all high temperature related process including
soldering, curing or rework need to be completed
within 672 hours.
C. Control for unfinished reel
– For any unused LEDs, they need to be stored in
sealed MBB with desiccant or desiccator at < 5%RH.
D. Control of assembled boards
– If the PCB soldered with the LEDs is to be subjected
to other high temperature processes, the PCB
need to be stored in sealed MBB with desiccant
or desiccator at < 5%RH to ensure no LEDs have
exceeded their floor life of 672 hours.
E. Baking is required if:
– HIC “10%” indicator is NOT Brown and “5%” indicator
is Azure.
– The LEDs are exposed to condition of > 30°C/60%RH
at any time.
– The LED floor life exceeded 672 hrs.
Recommended baking condition: 60±5°C for 20 hrs.
DISCLAIMER: Avago’s products and software are not specifically designed, manufactured or authorized for
sale as parts, components or assemblies for the planning, construction, maintenenace or direct operation of a
nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights
to make claims against avago or its suppliers, fo all loss, damage, expense or liability in connection with such use.
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.
AV02-2048EN - February 2, 2015