AVT-50663
DC – 6000 MHz
InGaP HBT Gain Block
Data Sheet
Description
Features
Avago Technologies’ AVT-50663 is an economical, easyto-use, general purpose InGaP HBT MMIC gain block
amplifier utilizing Darlington pair configuration housed in
a 6-lead (SOT-363) surface mount plastic package.
• Small signal gain amplifier
The Darlington feedback structure provides inherent
broad bandwidth performance, resulting in useful operating frequency up to 6 GHz. This is an ideal device for
small-signal gain cascades or IF amplification.
AVT-50663 is fabricated using advanced InGaP HBT
(Hetero-junction Bipolar Transistor) technology that
offers state-of-the-art reliability, temperature stability and
performance consistency.
Component Image
• Operating frequency DC to 6 GHz
• Unconditionally stable
• 50 Ohm input & output
• Flat, Broadband Frequency Response up to 2 GHz
• Industry standard SOT-363
• Lead-free, RoHS compliant, Green
Specifications
2 GHz, 5V Vcc, 36mA (typical)
• 15.3 dB Gain
• 12.5 dBm P1dB
• 25 dBm OIP3
Output
& Vd
GND
50X
GND
GND
• 15 dB IRL and ORL
Applications
GND
Input
• 4 dB NF
• Cellular / PCS / 3G base station
• Wireless Data / WLAN
Top View
Notes:
Package marking provides orientation and identification
“50” = Device Code
“X” = Month of Manufacture
“•” = Pin 1
• WiMAX / WiBRO
• CATV & Cable modem
• ISM
Typical Biasing Configuration
VCC = 5V
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (120V)
ESD Human Body Model (1200V)
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Rbias Cbyp
RFin
Cblock
Pin 3
Cbyp
Rbias = (VCC - Vd)/Id
RFout
Pin 6
Vd
Pin 1, 2, 4, 5
(GND)
Cblock
Absolute Maximum Rating[1] TA=25°C
Thermal Resistance
Symbol
Parameter
Units
Absolute Max.
Id
Device Current
mA
70
PIN,MAX
CW RF Input Power
dBm
15
PDISS
Total Power Dissipation [3]
mW
297
TOPT
Operating Temperature
°C
-40 to 85
TJ,MAX
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
Thermal Resistance [2] θJC = 149°C/W
(Id = 36 mA, TC = 85°C)
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage.
2. Thermal resistance measured using Infrared
measurement technique.
3. Ground lead temperature is 25°C. Derate
6.7mW/°C for TC >106°C.
Electrical Specifications [4]
TA = 25°C, Zo = 50 Ω, VCC = 5 V, Rbias = 30 Ω, Pin = -15 dBm (unless specified otherwise)
Symbol
Parameter and Test Condition
Id
Device Current
Gp
Power Gain
Frequency
900 MHz
2000 MHz
ΔGp
Gain Flatness
f3dB
3 dB Bandwidth
OIP3 [5]
Output 3rd Intercept Point
Units
Min.
Typ.
Max.
mA
32.5
36
39.5
13.8
15.8
15.3
16.8
dB
0.05 - 2 GHz
0.6
GHz
900 MHz
2000 MHz
dBm
5.2
23.5
26.4
25
S11
Input Return Loss, 50Ω source
900 MHz
2000 MHz
dB
-21.9
-15.4
S22
Output Return Loss, 50Ω load
900MHz
2000 MHz
dB
-19.1
-14.4
S12
Reverse Isolation
900 MHz
2000 MHz
dB
-19.2
-19.2
P1dB
Output Power at 1dB Gain Compression
900 MHz
2000 MHz
dBm
13
12.5
NF
Noise Figure
900 MHz
2000 MHz
dB
3.7
4
Notes:
4. Measurements obtained on CPWG line with reference plane at the ends of DUT leads (as shown in Figure 1).
5. OIP3 test condition: FRF1 - FRF2 = 10MHz with input power of -15 dBm per tone measured at worse side band.
VCC
Rbias
Bias Tee
RFin
Pin 6
Zo = 50 Ohm
RFout
Zo = 50 Ohm
Pin 3
Pin 1, 2, 4, 5
(GND)
Figure 1. Block diagram of board used for Id, Gain, OIP3, S11, S22, S12, OP1dB and NF measurements.
Circuit losses have been de-embedded from actual measurements.
2
Product Consistency Distribution Charts at 2 GHz, Vcc = 5 V, Rbias = 30 Ω
LSL
32
LSL
USL
33
34
35
36
37
38
39
40
Figure 2. Id (mA) distribution. LSL = 32.5, Nominal = 36, USL = 39.5
13.5
14
USL
14.5
15
15.5
16
16.5
17
17.5
Figure 3. Gain (dB) distribution. LSL = 13.8, Nominal = 15.2, USL = 16.8
LSL
Notes:
1. Statistical distribution determined from a sample size of 1421
samples taken from 6 different wafers, measured on a production
test board.
2. Future wafers allocated to this product may have typical values
anywhere between the minimum and maximum specification limits.
23.5
24
24.5
25
25.5
26
Figure 4. OIP3 (dBm) distribution. LSL = 23.5, Nominal = 25
3
26.5
AVT-50663 Typical Performance Curves
18
14
17
13
16
12
15
P1dB (dBm)
Gain (dB)
TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise)
14
13
11
10
9
8
12
7
11
6
10
0
1
2
3
4
Frequency (GHz)
5
5
6
Figure 5. Gain vs Frequency at Id = 36mA
0
1
2
3
4
Frequency (GHz)
5
6
5
6
Figure 6. P1dB vs Frequency at Id = 36mA
6
29
27
5
23
NF (dB)
OIP3 (dBm)
25
21
19
4
17
15
13
0
1
2
3
4
Frequency (GHz)
5
6
Figure 7. OIP3 vs Frequency at Id = 36mA
25°C
85°C
-40°C
Id (mA)
50
40
30
20
10
0
0
1
2
Figure 9. Id vs Vd and Temperature
4
3
Vd (V)
0
1
2
3
4
Frequency (GHz)
Figure 8. NF vs Frequency at Id = 36mA
70
60
3
4
5
6
AVT-50663 Typical Performance Curves
TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise), continued
17
20
25°C
85°C
-40°C
15
P1dB (dBm)
Gain (dB)
16
15
14
10
20
30
Id (mA)
40
0
50
Figure 10. Gain vs Id and Temperature at 900 MHz
10
20
30
Id (mA)
40
50
40
50
40
50
Figure 11. P1dB vs Id and Temperature at 900 MHz
35
5.0
25°C
85°C
-40°C
30
4.5
4.0
25
NF (dB)
OIP3 (dBm)
10
5
13
12
25°C
85°C
-40°C
20
3.5
3.0
15
10
2.0
10
20
30
Id (mA)
40
10
50
Figure 12. OIP3 vs Id and Temperature at 900 MHz
25°C
85°C
-40°C
15
P1dB (dBm)
Gain (dB)
30
Id (mA)
20
25°C
85°C
-40°C
16
15
14
10
5
13
10
20
30
Id (mA)
Figure 14. Gain vs Id and Temperature at 2 GHz
5
20
Figure 13. NF vs Id and Temperature at 900 MHz
17
12
25°C
85°C
-40°C
2.5
40
50
0
10
20
30
Id (mA)
Figure 15. P1dB vs Id and Temperature at 2 GHz
AVT-50663 Typical Performance Curves
TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise), continued
5.0
35
25°C
85°C
-40°C
4.5
4.0
25
NF (dB)
OIP3 (dBm)
30
20
3.5
3.0
15
10
10
20
30
Id (mA)
40
2.0
50
Figure 16. OIP3 vs Id and Temperature at 2 GHz
10
20
30
Id (mA)
40
50
Figure 17. NF vs Id and Temperature at 2 GHz
20
17
0.05
0.9
2.0
2.5
3.0
4.0
15
14
0.05
0.9
2.0
2.5
3.0
4.0
15
P1dB (dBm)
16
Gain (dB)
25°C
85°C
-40°C
2.5
5.0
13
10
5.0
6.0
12
6.0
5
11
10
10
20
30
Id (mA)
40
0
50
Figure 18. Gain vs Id and Frequency (GHz)
40
0.05
0.9
2.0
2.5
3.0
4.0
50
25
20
6.0
5.0
4.0
5.0
NF (dB)
OIP3 (dBm)
30
Id (mA)
6.0
30
5.0
3.0
2.5
2.0
0.9
0.05
4.0
6.0
15
10
20
30
Id (mA)
Figure 20. OIP3 vs Id and Frequency (GHz)
6
20
Figure 19. P1dB vs Id and Frequency (GHz)
35
10
10
40
50
3.0
10
20
30
Id (mA)
Figure 21. NF vs Id and Frequency (GHz)
40
50
AVT-50663 Typical Performance Curves
0
0
-5
-5
-10
-10
-15
-15
S22 (dB)
S11 (dB)
TA = 25°C, Zo = 50 Ω, Pin = -15 dBm (unless specified otherwise), continued
-20
-25
Id=20mA
Id=36mA
Id=45mA
-35
-40
0
2
4
6
Frequency (GHz)
Figure 22. S11 vs Frequency and Id
7
-25
-30
-30
-45
-20
8
Id=20mA
Id=36mA
Id=45mA
-35
-40
10
-45
0
2
4
6
Frequency (GHz)
Figure 23. S22 vs Frequency and Id
8
10
AVT-50663 Typical Scattering Parameters TA = 25°C, Zo = 50 Ω, Id = 20 mA, (unless specified otherwise)
S11
S21
S12
S22
Id=20mA
mag
angle
dB
mag
angle
mag
angle
mag
angle
K
0.05
0.11
0.5
14.84
5.52
178.1
0.12
-1.16
0.15
-1.3
1.1
0.1
0.11
0.058
14.83
5.51
176.3
0.12
-1.79
0.15
-2.2
1.1
0.5
0.12
-4.9
14.79
5.49
161.8
0.12
-8.75
0.17
-10.7
1.1
0.9
0.16
-14.3
14.68
5.42
147.4
0.12
-15.6
0.2
-21.3
1.1
1.5
0.21
-30.4
14.48
5.3
126.1
0.12
-25.6
0.25
-39.2
1.1
2.0
0.23
-42.5
14.32
5.2
108.7
0.11
-33.6
0.26
-54.1
1.1
2.5
0.24
-54.7
14.14
5.09
91.24
0.11
-41.5
0.28
-69.3
1.1
3.0
0.25
-67.6
13.94
4.98
73.8
0.1
-49.1
0.28
-85.2
1.2
3.5
0.26
-82
13.71
4.85
56.21
0.09
-56.5
0.29
-102
1.3
4.0
0.27
-98.3
13.41
4.68
38.38
0.09
-63.5
0.3
-120
1.3
4.5
0.29
-116
13
4.47
20.38
0.08
-69.7
0.33
-139
1.4
5.0
0.32
-135
12.44
4.19
2.521
0.07
-74.3
0.37
-156
1.6
5.5
0.35
-153
11.78
3.88
-14.9
0.06
-76.2
0.41
-172
1.8
6.0
0.37
-171
11.04
3.56
-31.7
0.05
-74.7
0.44
172.9
2.1
6.5
0.39
171.5
10.23
3.25
-48.2
0.05
-70.4
0.46
157.5
2.1
7.0
0.41
154.8
9.35
2.94
-64.4
0.05
-65.1
0.48
141.6
2.2
7.5
0.43
138.8
8.41
2.64
-80.2
0.05
-61
0.5
125.5
2.2
8.0
0.44
123.5
7.42
2.35
-95.5
0.06
-59.6
0.52
109.6
2.0
8.5
0.44
108.3
6.38
2.09
-110
0.06
-61.1
0.54
94.53
2.1
9.0
0.44
92.68
5.29
1.84
-124
0.07
-64.6
0.57
80.78
1.9
9.5
0.45
76.47
4.13
1.61
-137
0.07
-69.3
0.59
68.48
2.1
10.0
0.46
61.11
2.91
1.4
-150
0.08
-74.6
0.62
57.6
1.9
10.5
0.49
48.39
1.64
1.21
-161
0.08
-79.8
0.64
48.02
2.1
11.0
0.52
38.47
0.36
1.04
-171
0.09
-85
0.66
39.08
1.9
11.5
0.54
29.93
-0.89
0.9
179.5
0.09
-90.7
0.67
29.65
2.1
12.0
0.56
21.19
-2.13
0.78
169.2
0.09
-97.4
0.68
19.03
2.3
12.5
0.57
11.68
-3.33
0.68
158.4
0.1
-105
0.69
7.452
2.3
13.0
0.58
1.218
-4.48
0.6
147.1
0.1
-114
0.7
-4.48
2.5
13.5
0.59
-10.6
-5.58
0.53
135.5
0.1
-123
0.71
-16.3
2.8
14.0
0.59
-23.8
-6.69
0.46
124.2
0.1
-133
0.72
-27.5
3.1
14.5
0.61
-37.2
-7.91
0.4
113.8
0.1
-142
0.74
-37
3.3
15.0
0.63
-48.6
-9.22
0.35
105.1
0.1
-149
0.76
-44.1
3.3
16.0
0.69
-62.8
-11.8
0.26
93.18
0.1
-159
0.79
-51.8
3.4
17.0
0.71
-69.7
-14.2
0.19
85.49
0.1
-167
0.8
-57.5
4.3
18.0
0.72
-73.8
-16.2
0.15
78.34
0.1
-175
0.79
-67.4
5.6
19.0
0.71
-87.4
-18.1
0.12
65.13
0.1
169.3
0.79
-86.3
7.4
20.0
0.73
-111
-20.9
0.09
47.87
0.09
148.5
0.82
-109
9.1
Notes:
1. S-parameters are measured on a CPWG line fabricated on 0.025 inch thick Rogers® RO4350 material. The input reference plane is at the end of the
input lead. The output reference plane is at the end of the output lead.
8
AVT-50663 Typical Scattering Parameters TA = 25°C, Zo = 50 Ω, Id = 36 mA, (unless specified otherwise)
S11
S21
S12
S22
Id=36mA
mag
angle
dB
mag
angle
mag
angle
mag
angle
K
0.05
0.02
8.06
16.03
6.33
178.2
0.11
-0.93
0.06
-0.64
1.1
0.10
0.02
15.19
16.02
6.32
176.4
0.11
-1.6
0.07
-0.29
1.1
0.50
0.04
24.46
15.98
6.3
161.7
0.11
-7.94
0.08
-2.75
1.1
0.90
0.08
10.9
15.89
6.23
147.2
0.11
-14.4
0.11
-13
1.1
1.50
0.14
-14.7
15.68
6.08
125.6
0.11
-23.9
0.17
-33.1
1.1
2.00
0.17
-27.4
15.48
5.95
107.9
0.11
-31.7
0.19
-48.6
1.1
2.50
0.19
-39.7
15.26
5.79
90.43
0.1
-39.3
0.21
-64.5
1.1
3.00
0.21
-52.9
15.00
5.62
73.02
0.1
-46.7
0.22
-81.1
1.1
3.50
0.22
-67.7
14.71
5.44
55.58
0.09
-54
0.23
-99
1.2
4.00
0.23
-84.8
14.38
5.23
37.97
0.08
-60.9
0.25
-118
1.3
4.50
0.26
-104
13.95
4.98
20.21
0.08
-67.1
0.28
-138
1.3
5.00
0.28
-124
13.39
4.67
2.574
0.07
-71.6
0.33
-156
1.5
5.50
0.31
-145
12.74
4.33
-14.7
0.06
-73.3
0.38
-172
1.7
6.00
0.34
-164
12.01
3.99
-31.5
0.05
-71.3
0.41
171.9
2.0
6.50
0.37
178
11.22
3.64
-47.9
0.05
-66.3
0.44
156
2.0
7.00
0.39
160.5
10.35
3.29
-64.1
0.05
-60.4
0.47
139.7
2.0
7.50
0.41
143.7
9.42
2.96
-80
0.05
-56.2
0.49
123.3
2.1
8.00
0.42
127.7
8.43
2.64
-95.5
0.06
-55.2
0.51
107.1
1.8
8.50
0.43
112
7.39
2.34
-110
0.06
-57.3
0.54
91.87
1.9
9.00
0.43
95.8
6.30
2.07
-125
0.07
-61.6
0.57
78.02
1.7
9.50
0.44
79.08
5.15
1.81
-138
0.08
-66.9
0.6
65.67
1.6
10.00
0.45
63.22
3.92
1.57
-150
0.08
-72.8
0.62
54.82
1.8
10.50
0.48
50.05
2.65
1.36
-161
0.09
-78.5
0.64
45.31
1.6
11.00
0.51
39.79
1.37
1.17
-171
0.09
-84.1
0.66
36.42
1.7
11.50
0.53
30.99
0.11
1.01
178.6
0.09
-90.1
0.67
27.04
1.9
12.00
0.55
22.04
-1.13
0.88
168.3
0.1
-97.1
0.68
16.47
1.9
12.50
0.57
12.35
-2.34
0.76
157.3
0.1
-105
0.69
4.954
2.0
13.00
0.58
1.748
-3.49
0.67
145.9
0.1
-114
0.7
-6.9
2.2
13.50
0.58
-10.2
-4.59
0.59
134.2
0.1
-124
0.71
-18.6
2.5
14.00
0.59
-23.5
-5.71
0.52
122.7
0.1
-133
0.72
-29.7
2.7
14.50
0.61
-36.9
-6.92
0.45
112.2
0.1
-142
0.74
-39.1
2.9
15.00
0.63
-48.4
-8.23
0.39
103.4
0.1
-150
0.75
-46.1
3.1
16.00
0.69
-62.8
-10.82
0.29
91.06
0.1
-160
0.78
-53.5
3.2
17.00
0.71
-69.7
-13.19
0.22
82.81
0.1
-167
0.79
-59
3.8
18.00
0.72
-74
-15.13
0.18
74.96
0.1
-176
0.78
-68.8
4.8
19.00
0.71
-87.5
-17.05
0.14
60.98
0.1
168.7
0.77
-87.6
6.8
20.00
0.73
-112
-19.79
0.1
42.85
0.09
147.9
0.8
-110
9.0
Notes:
1. S-parameters are measured on a CPWG line fabricated on 0.025 inch thick Rogers® RO4350 material. The input reference plane is at the end of the
input lead. The output reference plane is at the end of the output lead.
9
AVT-50663 Typical Scattering Parameters TA = 25°C, Zo = 50 Ω, Id = 45 mA, (unless specified otherwise)
S11
S21
S12
S22
Id=45mA
mag
angle
dB
mag
angle
mag
angle
mag
angle
K
0.05
0
46.76
16.24
6.48
178.2
0.11
-0.72
0.05
-0.52
1.1
0.10
0.01
58.22
16.23
6.48
176.4
0.11
-1.52
0.05
0.833
1.1
0.50
0.03
48.46
16.19
6.45
161.8
0.11
-7.75
0.06
1.615
1.1
0.90
0.07
22.8
16.1
6.38
147.3
0.11
-14.1
0.09
-8.8
1.1
1.50
0.13
-9.99
15.89
6.23
125.7
0.11
-23.5
0.15
-30.6
1.1
2.00
0.16
-23.4
15.69
6.09
108
0.1
-31.2
0.18
-46.3
1.1
2.50
0.18
-36
15.45
5.93
90.57
0.1
-38.8
0.2
-62.3
1.1
3.00
0.2
-49.2
15.19
5.75
73.22
0.1
-46.2
0.21
-79.1
1.1
3.50
0.21
-64.1
14.9
5.56
55.87
0.09
-53.5
0.22
-97.1
1.2
4.00
0.22
-81.4
14.57
5.35
38.36
0.08
-60.4
0.24
-117
1.3
4.50
0.25
-101
14.14
5.1
20.7
0.08
-66.7
0.27
-137
1.3
5.00
0.27
-122
13.6
4.79
3.128
0.07
-71.3
0.32
-155
1.5
5.50
0.3
-142
12.96
4.45
-14.1
0.06
-73.1
0.37
-172
1.7
6.00
0.33
-162
12.25
4.1
-30.8
0.05
-71.4
0.41
172.7
2.0
6.50
0.36
179.9
11.47
3.75
-47.3
0.05
-66.4
0.44
156.7
2.0
7.00
0.38
162
10.62
3.4
-63.6
0.05
-60.2
0.46
140.3
2.0
7.50
0.4
145.1
9.702
3.06
-79.5
0.05
-55.7
0.49
123.7
2.0
8.00
0.42
128.9
8.724
2.73
-95
0.06
-54.6
0.51
107.4
1.7
8.50
0.42
113
7.69
2.42
-110
0.06
-56.6
0.54
92.11
1.9
9.00
0.43
96.69
6.603
2.14
-124
0.07
-60.9
0.57
78.13
1.7
9.50
0.43
79.8
5.45
1.87
-138
0.08
-66.3
0.6
65.67
1.6
10.00
0.45
63.79
4.226
1.63
-150
0.08
-72.2
0.62
54.74
1.7
10.50
0.48
50.49
2.953
1.4
-161
0.09
-78
0.65
45.17
1.5
11.00
0.51
40.13
1.671
1.21
-171
0.09
-83.7
0.66
36.24
1.7
11.50
0.53
31.23
0.408
1.05
178.5
0.1
-89.8
0.67
26.81
1.6
12.00
0.55
22.22
-0.83
0.91
168.1
0.1
-96.9
0.68
16.2
1.8
12.50
0.57
12.47
-2.04
0.79
157.1
0.1
-105
0.69
4.669
2.0
13.00
0.58
1.813
-3.19
0.69
145.6
0.1
-114
0.7
-7.19
2.2
13.50
0.58
-10.1
-4.29
0.61
133.9
0.1
-124
0.71
-19
2.4
14.00
0.59
-23.5
-5.42
0.54
122.3
0.11
-133
0.72
-30
2.4
14.50
0.6
-36.9
-6.63
0.47
111.7
0.1
-142
0.74
-39.4
2.8
15.00
0.63
-48.4
-7.93
0.4
102.9
0.1
-150
0.75
-46.4
3.0
16.00
0.69
-62.9
-10.5
0.3
90.4
0.1
-160
0.78
-53.8
3.1
17.00
0.71
-69.8
-12.9
0.23
81.97
0.1
-167
0.79
-59.3
3.7
18.00
0.72
-74.1
-14.8
0.18
73.92
0.1
-176
0.78
-69.1
4.8
19.00
0.71
-87.7
-16.7
0.15
59.73
0.1
168.5
0.77
-87.9
6.3
20.00
0.73
-112
-19.5
0.11
41.32
0.09
147.8
0.8
-110
8.1
Notes:
1. S-parameters are measured on a CPWG line fabricated on 0.025 inch thick Rogers® RO4350 material. The input reference plane is at the end of the
input lead. The output reference plane is at the end of the output lead.
10
Part Number Ordering Information
Part Number
No. of Devices
Container
AVT-50663-TR1G
3000
7” Reel
AVT-50663-BLKG
100
Antistatic Bag
Package Dimensions
Recommended PCB Pad Layout for
Avago's SC70 6L/SOT-363 Products
Outline 63 (SOT-363/SC-70)
0.026
HE
E
0.079
e
0.039
D
0.018
Q1
A2
A
Dimensions in inches.
c
A1
b
SYMBOL
E
D
HE
A
A2
A1
Q1
e
b
c
L
11
DIMENSIONS (mm)
MAX.
MIN.
1.35
1.15
2.25
1.80
2.40
1.80
1.10
0.80
1.00
0.80
0.10
0.00
0.40
0.10
0.65
0.30
0.15
0.25
0.10
0.46
0.10
L
Notes:
1. All dimensions are in mm.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash &
metal burr.
4. All specifications comply to EIAJSC70.
5. Die is facing up for mold and facing down for
trim/form, ie: reverse trim/form.
6. Package surface to be mirror finish. 0.650BCS.
Device Orientation
REEL
TOP VIEW
END VIEW
4 mm
8 mm
CARRIER
TAPE
USER
FEED
DIRECTION
2Kx
50X
2Kx
50X
2Kx
50X
2Kx
50X
(Package marking example orientation shown.)
COVER TAPE
Tape Dimensions and Product Orientation for Outline 63
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
K0
10 MAX.
A0
CAVITY
10 MAX.
B0
SYMBOL
A0
B0
K0
P
D1
SIZE (mm)
2.40 0.10
2.40 0.10
1.20 0.10
4.00 0.10
1.00 + 0.25
SIZE (INCHES)
0.094 0.004
0.094 0.004
0.047 0.004
0.157 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.50 0.10
4.00 0.10
1.75 0.10
0.061 + 0.002
0.157 0.004
0.069 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 + 0.30 - 0.10
0.254 0.02
0.315 + 0.012
0.0100 0.0008
COVER TAPE
WIDTH
TAPE THICKNESS
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
C
Tt
F
5.40 0.10
0.062 0.001
3.50 0.05
0.205 + 0.004
0.0025 0.0004
0.138 0.002
P2
2.00 0.05
0.079 0.002
DISTANCE
12
DESCRIPTION
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
Tt (COVER TAPE THICKNESS)
Reel Dimension 7 inch
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved.
AV02-2244EN - December 1, 2009