6N137, HCNW137, HCNW2601, HCNW2611,
HCPL-0600, HCPL-0601, HCPL-0611, HCPL-0630,
HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611,
HCPL-2630, HCPL-2631, HCPL-4661
High CMR, High Speed TTL Compatible Optocouplers
Data Sheet
Description
Features
The 6N137, HCPL-26xx/06xx/4661, HCNW137/26x1 are
optically coupled gates that combine a GaAsP light emitting
diode and an integrated high gain photo detector. An enable
input allows the detector to be strobed. The output of the
detector IC is an open collector Schottky-clamped transistor.
The internal shield provides a guaranteed common mode
transient immunity specification up to 15,000 V/μs at Vcm =
1000 V.
This unique design provides maximum AC and DC circuit
isolation while achieving TTL compatibility. The optocoupler
AC and DC operational parameters are guaranteed from –40 °C
to +85 °C allowing troublefree system performance.
Functional Diagram
6N137, HCPL-2601/2611
HCPL-0600/0601/0611
8 V CC
NC 1
HCPL-2630/2631/4661
HCPL-0630/0631/0661
ANODE 1 1
8 V CC
ANODE 2
7 VE
CATHODE 1 2
7 V O1
CATHODE 3
6 VO
CATHODE 2 3
6 V O2
NC 4
LED
ON
OFF
ON
OFF
ON
OFF
SHIELD
5 GND
TRUTH TABLE
(POSITIVE LOGIC)
ENABLE
OUTPUT
H
L
H
H
L
H
L
H
NC
L
NC
H
ANODE 2 4
SHIELD
5 GND
TRUTH TABLE
(POSITIVE LOGIC)
LED
OUTPUT
ON
L
OFF
H
Applications
A 0.1 μF bypass capacitor must be connected between pins 5
and 8.
CAUTION
15 kV/μs minimum Common Mode Rejection (CMR) at
VCM= 1 kV for HCNW2611, HCPL-2611, HCPL-4661,
HCPL-0611, HCPL-0661
High speed: 10 MBd typical
LSTTL/TTL compatible
Low input current capability: 5 mA
Guaranteed AC and DC performance over temperature:
–40 °C to +85 °C
Available in 8-Pin DIP, SOIC-8, widebody packages
Strobable output (single channel products only)
Safety approval
— UL recognized - 3750 Vrms for 1 minute and 5000 Vrms
for 1 minute per UL1577 CSA approved (5000 Vrms/1
Minute rating is for HCNW137/26X1 and Option 020
[6N137, HCPL-2601/11/30/31, HCPL-4661] products
only)
— IEC/EN/DIN EN 60747-5-5 approved with
VIORM= 567 Vpeak for 06xx Option 060
VIORM= 630 Vpeak for 6N137/26xx Option 060
VIORM=1414 Vpeak for HCNW137/26x1
MIL-PRF-38534 hermetic version available
(HCPL-56xx/66xx)
It is advised that normal static precautions be
taken in handling and assembly of this
component to prevent damage and/or
degradation which may be induced by ESD.
Avago Technologies
-1-
Isolated line receiver
Computer-peripheral interfaces
Microprocessor system interfaces
Digital isolation for A/D, D/A conversion
Switching power supply
Instrument input/output isolation
Ground loop elimination
Pulse transformer replacement
Power transistor isolation in motor drives
Isolation of high speed logic systems
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Selection Guide
The 6N137, HCPL-26xx, HCPL-06xx, HCPL-4661, HCNW137, and HCNW26x1 are suitable for high speed logic interfacing,
input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for
use in extremely high ground or induced noise environments.
Selection Guide
Minimum CMR
Input OnCurrent
dV/dt
(mA)
VCM (V)
(V/μs)
Output
Enable
1000
10
5
YES
5,000
1,000
5
YES
Single
Channel
Package
1,000
YES
1,000
YES
HCPL-2630
HCPL-2601
YES
HCPL-2602
3, 500
300
YES
HCPL-2612a
1,000
50
YES
HCPL-261Aa
1,000
50
12.5
HCPL-0611
HCNW2611
HCPL-0661
HCPL-061Aa
HCPL-263Aa
HCPL-261Na
NO
HCNW2601
a
NO
YES
Single and
Dual Channel
Packages
HCPL-0631
HCPL-4661
50
1,000
Single
Channel
Package
HCNW137
HCPL-0601
HCPL-2611
1,000
1,000b
Hermetic
HCPL-0630
HCPL-2631
NO
3
Dual Channel
Package
HCPL-0600
NO
15,000
Single
Channel
Package
Dual Channel
Package
Widebody
(400 Mil)
6N137
NO
10,000
Small-Outline SO-8
8-Pin DIP (300 Mil)
HCPL-063Aa
HCPL-061Na
HCPL-263Na
c
HCPL-063Na
HCPL-193xa
HCPL-56xxa
HCPL-66xxa
a.
Technical data are on separate Avago publications.
b.
15 kV/μs with VCM = 1 kV can be achieved using Avago application circuit.3
c.
Enable is available for single channel products only, except for HCPL-193x devices.
Ordering Information
HCPL-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577.
HCNWxxxx is UL Recognized with 5000 Vrms for 1 minute per UL1577.
Avago Technologies
-2-
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Ordering Information
Table 1 Ordering Information
Option
Part
Number
6N137
HCPL-2601
HCPL-2611
HCPL-2630
HCPL-2631
HCPL-4661
RoHS
Compliant
Non RoHS
Compliant
Surface
Mount
Package
Gull Wing
-000E
No option
-300E
#300
X
X
-500E
#500
X
X
-020E
#020
-320E
#320
X
X
-520E
#520
X
X
-060E
#060
UL 5000
Vrms/ 1
Minute
Rating
Tape & Reel
IEC/EN/DIN
EN
60747-5-5
300mil DIP-8
Quantity
50 per tube
-560E
-560
-000E
No option
X
X
-300E
#300
X
X
-500E
#500
X
X
-020E
#020
-320E
#320
X
X
-520E
#520
X
X
-060E
#060
50 per tube
X
X
1000 per reel
X
50 per tube
X
50 per tube
X
1000 per reel
X
X
50 per tube
X
1000 per reel
300mil DIP-8
50 per tube
-360E
-
-000E
No option
X
-300E
#300
X
X
-500E
#500
X
X
-020E
#020
-320E
#320
X
X
-520E
#520
X
X
-060E
#060
-360E
#360
X
X
-560E
#560
X
X
-000E
No option
-300E
#300
X
X
-500E
#500
X
X
-020E
#020
-320E
#320
X
X
-520E
-520
X
X
-000E
No option
-300E
#300
X
X
-500E
#500
X
X
-020E
#020
-320E
#320
X
X
-520E
#520
X
X
50 per tube
X
X
1000 per reel
X
50 per tube
X
50 per tube
X
1000 per reel
X
X
50 per tube
X
50 per tube
300mil DIP-8
50 per tube
50 per tube
X
X
1000 per reel
X
50 per tube
X
50 per tube
X
1000 per reel
X
300mil DIP-8
X
50 per tube
X
50 per tube
X
1000 per reel
50 per tube
50 per tube
X
X
1000 per reel
X
50 per tube
X
50 per tube
X
1000 per reel
300mil DIP-8
50 per tube
Avago Technologies
-3-
50 per tube
X
X
1000 per reel
X
50 per tube
X
50 per tube
X
1000 per reel
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Schematic
Table 1 Ordering Information (Continued)
Option
Part
Number
HCPL-0600
HCPL-0601
HCPL-0611
RoHS
Compliant
-000E
Non RoHS
Compliant
No option
Surface
Mount
Package
SO-8
Gull Wing
UL 5000
Vrms/ 1
Minute
Rating
Tape & Reel
IEC/EN/DIN
EN
60747-5-5
X
100 per tube
-500E
#500
X
-060E
#060
X
-560E
#560
X
HCPL-0630
HCPL-0631
HCPL-0661
-000E
No option
-500E
#500
HCNW137
HCNW2601
HCNW2611
-000E
No option
-300E
#300
X
X
-500E
#500
X
X
SO-8
Quantity
X
1500 per reel
X
X
100 per tube
X
1500 per reel
X
100 per tube
X
X
400 mil DIP-8
X
1500 per reel
X
X
42 per tube
X
X
42 per tube
X
X
750 per reel
To order, choose a part number from the part number column and combine with the desired option from the option column to
form an order entry. Combinations of Option 020 and Option 060 are not available.
Example 1:
HCPL-2611-560E to order product of 300-mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with
IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.
Example 2:
HCPL-2630 to order product of 300-mil DIP package in tube packaging and non RoHS compliant.
Option data sheets are available. Contact your Avago sales representative or authorized distributor for information.
NOTE
The notation ‘#xxx’ is used for existing products, while (new) products launched since July 15, 2001 and RoHS
compliant option will use ‘-xxxE‘.
Schematic
IF
6N137, HCPL-2601/2611
HCPL-0600/0601/0611
HCNW137, HCNW2601/2611
ICC
8
2+
IO
6
VCC
VO
VF
–
3
SHIELD
5
IE
7
VE
USE OF A 0.1 μF BYPASS CAPACITOR CONNECTED
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).
Avago Technologies
-4-
GND
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Schematic
HCPL-2630/2631/4661
HCPL-0630/0631/0661
ICC
1
8
IF1
IO1
+
7
VCC
VO1
VF1
–
2
SHIELD
3
IF2
IO2
–
6
VO2
VF2
+
4
SHIELD
5
GND
Avago Technologies
-5-
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Outline Drawings
Package Outline Drawings
8-pin DIP Package1 (6N137, HCPL-2601/11/30/31, HCPL-4661)
9.65 ± 0.25
(0.380 ± 0.010)
8
AVAGO
LEAD-FREE
DATE CODE
PIN 1
1.19 (0.047) MAX.
•
1
7
7.62 ± 0.25
(0.300 ± 0.010)
6
5
DEVICE PART NUMBER
TEST RATING CODE
A NNNN Z
YYWW
EEE P
2
3
6.35 ± 0.25
(0.250 ± 0.010)
UL LOGO
4
SPECIAL PROGRAM CODE
LOT ID
1.78 (0.070) MAX.
5° TYP.
3.56 ± 0.13
(0.140 ± 0.005)
4.70 (0.185) MAX.
0.51 (0.020) MIN.
2.92 (0.115) MIN.
1.080 ± 0.320
(0.043 ± 0.013)
1.
0.65 (0.025) MAX.
2.54 ± 0.25
(0.100 ± 0.010)
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
DIMENSIONS IN MILLIMETERS (INCHES).
*MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
JEDEC Registered Data (for 6N137 only).
Avago Technologies
-6-
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Outline Drawings
8-pin DIP Package with Gull Wing Surface Mount Option 300 (6N137, HCPL-2601/11/30/31,
HCPL-4661)
LAND PATTERN RECOMMENDATION
9.65 ± 0.25
(0.380 ± 0.010)
8
7
6
1.016 (0.040)
5
6.350 ± 0.25
(0.250 ± 0.010)
1
2
3
10.9 (0.430)
4
1.27 (0.050)
1.19
(0.047)
MAX.
1.780
(0.070)
MAX.
9.65 ± 0.25
(0.380 ± 0.010)
7.62 ± 0.25
(0.300 ± 0.010)
3.56 ± 0.13
(0.140 ± 0.005)
1.080 ± 0.320
(0.043 ± 0.013)
0.635 ± 0.25
(0.025 ± 0.010)
0.635 ± 0.130
2.54
(0.025 ± 0.005)
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
Avago Technologies
-7-
2.0 (0.080)
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
12° NOM.
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Outline Drawings
Small-Outline SO-8 Package (HCPL-0600/01/11/30/31/61)
3.937 ± 0.127
(0.155 ± 0.005)
8
7
6
5
NNNN Z
YYWW
EEE
DEVICE PART NUMBER
•
LEAD-FREE
PIN 1
1
2
3
TEST RATING CODE
DATE CODE
LOT ID
5.994 ± 0.203
(0.236 ± 0.008)
4
0.406 ± 0.076
(0.016 ± 0.003)
1.270 BSC
(0.050)
* 5.080 ± 0.127
(0.200 ± 0.005)
7°
3.175 ± 0.127
(0.125 ± 0.005)
1.524
(0.060)
0.432
45° X (0.017)
0 ~ 7°
0.228 ± 0.025
(0.009 ± 0.001)
0.203 ± 0.102
(0.008 ± 0.004)
* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)
5.207 ± 0.254 (0.205 ± 0.010)
0.305 MIN.
(0.012)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.
8-Pin Widebody DIP Package (HCNW137, HCNW2601/11)
11.00 MAX.
(0.433)
11.23 ± 0.15
(0.442 ± 0.006)
7
8
5
A
NNNNNNNN Z
YYWW
EEE
DEVICE PART NUMBER
•
LEAD-FREE
PIN 1
6
1
2
3
AVAGO
9.00 ± 0.15
(0.354 ± 0.006)
TEST RATING CODE
DATE CODE
LOT ID
4
10.16 (0.400)
TYP.
1.55
(0.061)
MAX.
7° TYP.
+ 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
5.10 MAX.
(0.201)
3.10 (0.122)
3.90 (0.154)
2.54 (0.100)
TYP.
1.80 ± 0.15
(0.071 ± 0.006)
0.40 (0.016)
0.56 (0.022)
0.51 (0.021) MIN.
DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
Avago Technologies
-8-
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Reflow Soldering Profile
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW137, HCNW2601/11)
11.23 ± 0.15
(0.442 ± 0.006)
8
7
6
LAND PATTERN RECOMMENDATION
5
9.00 ± 0.15
(0.354 ± 0.006)
1
2
3
13.56
(0.534)
4
2.29
(0.09)
1.3
(0.051)
12.30 ± 0.30
(0.484 ± 0.012)
1.55
(0.061)
MAX.
11.00 MAX.
(0.433)
4.00 MAX.
(0.158)
1.80 ± 0.15
(0.071 ± 0.006)
0.75 ± 0.25
(0.030 ± 0.010)
2.54
(0.100)
BSC
1.00 ± 0.15
(0.039 ± 0.006)
+ 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
DIMENSIONS IN MILLIMETERS (INCHES).
7° NOM.
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
Test Rating Code, Z
L – Option x2x
Optional Identification Code
A – Avago
V – Option x5x or x6x
– UL Logo
P – Special Program Code
Reflow Soldering Profile
The recommended reflow soldering conditions are per JEDEC Standard J-STD-020 (latest revision). Non-halide flux should be used.
Regulatory Information
The 6N137, HCPL-26xx/06xx/46xx, and HCNW137/26xx have been approved by the following organizations:
UL
Recognized under UL 1577, Component Recognition Program, File E55361.
IEC/EN/DIN EN 60747-5-5
CSA
Approved under CSA Component Acceptance Notice #5, File CA 88324.
Avago Technologies
-9-
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Insulation and Safety Related Specifications
Insulation and Safety Related Specifications
Parameter
Symbol
8-pin DIP
(300 Mil)
Value
SO-8 Value
Widebod
(400 Mil)
Value
Unit
Conditions
Minimum External Air Gap
(External Clearance)
L(101)
7.1
4.9
9.6
mm
Measured from input terminals to
output terminals, shortest distance
through air.
Minimum External Tracking
(External Creepage)
L(102)
7.4
4.8
10.0
mm
Measured from input terminals to
output terminals, shortest distance
path along body.
Minimum Internal Plastic Gap
(Internal Clearance)
0.08
0.08
1.0
mm
Through insulation distance,
conductor to conductor, usually the
direct distance between the
photoemitter and photodetector
inside the optocoupler cavity.
Minimum Internal Tracking
(Internal Creepage)
NA
NA
4.0
mm
Measured from input terminals to
output terminals, along internal
cavity.
200
200
200
V
DIN IEC 112/VDE 0303 Part 1
IIIa
IIIa
IIIa
Tracking Resistance
(Comparative Tracking Index)
Isolation Group
CTI
Option 300 – Surface mount classification is Class A in accordance with CECC 00802.
Avago Technologies
- 10 -
Material Group (DIN VDE 0110, 1/89,
Table 1)
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (HCPL-06xx Option 060 Only)
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics1 (HCPL-06xx Option 060 Only)
Description
Symbol
Installation classification per DIN VDE 0110, Table 1
for rated mains voltage ≤ 150 Vrms
Characteristic
Unit
I-IV
I-IV
I-III
for rated mains voltage ≤ 300 Vrms
for rated mains voltage ≤ 600 Vrms
Climatic Classification
40/85/21
Pollution Degree (DIN VDE 0110/39)
2
Maximum Working Insulation Voltage
VIORM
567
V peak
Input-to-Output Test Voltage, Method ba
VIORM × 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC
VPR
1063
V peak
Input-to-Output Test Voltage, Method aa
VIORM ×1.6 = VPR, Type and Sample Test, tm = 10 sec, Partial Discharge < 5 pC
VPR
907
V peak
Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec)
VIOTM
6000
V peak
Safety Limiting Values (Maximum values allowed in the event of a failure)
Case Temperature
TS
150
150
600
°C
mA
mW
≥ 109
Input Currentb
IS,INPUT
Output Powerb
PS,OUTPUT
Insulation Resistance at TS, VIO = 500 V
RS
a.
Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed
description.
b.
Ratings apply to all devices except otherwise noted in the Package column.
1.
Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in
application.
Avago Technologies
- 11 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (HCPL-26xx; 46xx; 6N13x Option 060
Only)
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics1 (HCPL-26xx; 46xx; 6N13x Option
060 Only)
Description
Symbol
Installation classification per DIN VDE 0110, Table 1
for rated mains voltage ≤ 300 Vrms
Characteristic
Unit
I-IV
I-IV
for rated mains voltage ≤ 450 Vrms
Climatic Classification
40/85/21
Pollution Degree (DIN VDE 0110/39)
2
Maximum Working Insulation Voltage
VIORM
630
V peak
Input to Output Test Voltage, Method ba
VIORM × 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC
VPR
1181
V peak
Input to Output Test Voltage, Method aa
VIORM × 1.6 = VPR, Type and sample test, tm = 10 sec, Partial Discharge < 5 pC
VPR
1008
V peak
Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec)
VIOTM
6000
V peak
TS
175
230
600
°C
mA
mW
≥ 109
Safety Limiting Values (Maximum values allowed in the event of a failure)
Case Temperature
Input Current
Output Power
Insulation Resistance at TS, VIO = 500 V
IS,INPUT
PS,OUTPUT
RS
a.
Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed
description.
1.
Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in
application
Avago Technologies
- 12 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (HCNW137/2601/2611 Only)
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics1 (HCNW137/2601/2611 Only)
Description
Symbol
Installation classification per DIN VDE 0110, Table 1
for rated mains voltage ≤ 600 Vrms
Characteristic
Unit
I-IV
I-III
for rated mains voltage ≤ 1000 Vrms
Climatic Classification
40/85/21
Pollution Degree (DIN VDE 0110/39)
2
Maximum Working Insulation Voltage
VIORM
1414
V peak
Input to Output Test Voltage, Method ba
VIORM × 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC
VPR
2651
V peak
Input to Output Test Voltage, Method aa
VIORM × 1.6 = VPR, Type and sample test, tm = 10 sec, Partial Discharge < 5 pC
VPR
2262
V peak
Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec)
VIOTM
8000
V peak
TS
150
400
700
°C
mA
mW
≥109
Safety Limiting Values (Maximum values allowed in the event of a failure)
Case Temperature
Input Current
Output Power
Insulation Resistance at TS, VIO = 500 V
IS,INPUT
PS,OUTPUT
RS
a.
Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed
description.
1.
Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in
application.
Avago Technologies
- 13 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Absolute Maximum Ratings (No Derating Required up to 85 °C)
Absolute Maximum Ratings1 (No Derating Required up to 85 °C)
Parameter
Symbol
Packagea
Min.
Max.
Units
Storage Temperature
TS
–55
125
°C
Operating Temperatureb
TA
–40
85
°C
Average Forward Input Current
IF
Single 8-Pin DIP
Single SO-8
Widebody
20
mA
Dual 8-Pin DIP
Dual SO-8
15
8-Pin DIP, SO-8
5
Widebody
3
Widebody
40
Reverse Input Voltage
VR
Input Power Dissipation
PI
Supply Voltage (1 Minute Maximum)
VCC
Enable Input Voltage (Not to Exceed VCC
by more than 500 mV)
VE
Enable Input Current
Single 8-Pin DIP
Note
c
d, e
V
d
mW
36
7
V
VCC + 0.5
V
IE
5
mA
Output Collector Current
IO
50
mA
d
Output Collector Voltage
VO
7
V
d
Output Collector Power Dissipation
PO
Single 8-Pin DIP
Single SO-8
Widebody
85
mW
Dual 8-Pin DIP
Dual SO-8
60
8-Pin DIP
260 °C for 10 sec.,
1.6 mm below seating
plane
Widebody
260 °C for 10 sec., up to
seating plane
SO-8 and Option
300
See Package Outline
Drawings section
Lead Solder Temperature (Through Hole
Parts Only)
TLS
Solder Reflow Temperature Profile
(Surface Mount Parts Only)
Single 8-Pin DIP
Single SO-8
Widebody
a.
Ratings apply to all devices except otherwise noted in the Package column.
b.
0 °C to 70 °C on JEDEC Registration.
d, f
c.
Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 20 mA.
d.
Each channel.
e.
Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 15 mA.
f.
Derate linearly above 80 °C free-air temperature at a rate of 2.7 mW/°C for the SOIC-8 package.
1.
JEDEC Registered Data (for 6N137 only).
Avago Technologies
- 14 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Recommended Operating Conditions
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Units
Input Current, Low Level
IFLa
0
250
μA
Input Current, High Levelb
IFHc
5
15
mA
Power Supply Voltage
VCC
4.5
5.5
V
Low Level Enable Voltaged
VEL
0
0.8
V
High Level Enable Voltaged
VEH
2.0
VCC
V
Operating Temperature
TA
–40
85
°C
Fan Out (at RL = 1 k)b
N
5
TTL Loads
Output Pull-up Resistor
RL
4k
330
a.
The off condition can also be guaranteed by ensuring that VFL ≤ 0.8 V.
b.
Each channel.
c.
The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to
permit at least a 20% LED degradation guardband.
d.
For single channel products only.
Avago Technologies
- 15 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Electrical Specifications
Electrical Specifications
Over recommended temperature (TA =–40 °C to +85 °C) unless otherwise specified. All Typicals at VCC = 5 V, TA = 25 °C.
All enable test conditions apply to single channel products only. See note.
NOTE
Bypassing of the power supply line is required, with a 0.1 μF ceramic disc capacitor adjacent to each optocoupler
as illustrated in Figure 17. Total lead length between both ends of the capacitor and the isolator pins should not
exceed 20 mm.
Table 2 Electrical Specifications
Parameter
Sym.
High Level Output
Current
IOHa
Input Threshold
Current
ITH
Package
Min.
All
Typ.
5.5
Max.
100
Units
μA
VOL
High Level Supply
Current
ICCH
a
Single Channel
Widebody
2.0
Note
1
b c d
2, 3
d
, ,
Dual Channel
2.5
8-Pin DIP, SO-8
0.35
Widebody
0.4
Single Channel
7.0
5.0
mA
VCC = 5.5 V, VE = 2.0 V,
VO = 0.6 V,
IOL (Sinking) = 13 mA
0.6
V
VCC = 5.5 V, VE = 2.0 V, 2, 3, 4, 5 b, d
IF = 5 mA,
IOL (Sinking) = 13 mA
10.0*
mA
VE = 0.5 V VCC = 5.5 V,
IF = 0 mA
6.5
ICCL
High Level Enable
Current
IEH
Low Level Enable
Current
IELa
High Level Enable
Voltage
VEH
Low Level Enable
Voltage
VEL
Input Forward Voltage VF
Dual Channel
10
15
Single Channel
9.0
13.0*
Both Channels
mA
21
Single Channel
–0.7
–1.6
mA
VCC = 5.5 V, VE = 2.0 V
–0.9
–1.6
mA
VCC = 5.5 V, VE = 0.5 V
2.0
1.4
SO-8
1.3
Widebody
1.25
8-Pin DIP, SO-8
5
Widebody
3
f
VE = VCC, VCC = 5.5 V
IF = 10 mA
13
1.2
BVRa
VE = 0.5 V VCC = 5.5 V,
IF = 10 mA
Dual Channel
8-Pin DIP
e
VE = VCC, VCC = 5.5 V,
IF = 0 mA
8.5
Input Reverse
Breakdown Voltage
VCC = 5.5 V, VE = 2.0 V,
Fig.
VO = 5.5 V, IF = 250 mA
Low Level Output
Voltage
Low Level Supply
Current
Test Conditions
Both Channels
g
V
1.5
1.64
0.8
V
1.75a
V
d
TA = 25 °C, IF = 10 mA
1.80
IF = 10 mA
1.85
TA = 25 °C, IF = 10 mA
2.05
IF = 10 mA
V
IR = 10 A
IR = 100 A, TA = 25°C
Avago Technologies
- 16 -
6, 7
b
b
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Electrical Specifications
Table 2 Electrical Specifications (Continued)
Parameter
Sym.
Package
Input Diode
Temperature
Coefficient
VF/TA 8-Pin DIP, SO-8
Input Capacitance
CIN
Min.
Typ.
–1.6
Widebody
–1.9
8-Pin DIP, SO-8
60
Widebody
70
Max.
Units
Test Conditions
mV/°C
IF = 10 mA
pF
f = 1 MHz, VF = 0 V
Fig.
7
Note
b
b
a.
JEDEC registered data for the 6N137. The JEDEC Registration specifies 0 °C to +70 °C. Avago specifies –40 °C to +85 °C.
b.
Each channel.
c.
The JEDEC registration for the 6N137 specifies a maximum IOH of 250 μA. Avago guarantees a maximum IOH of 100 μA.
d.
No external pull up is required for a high logic state on the enable input. If the VE pin is not used, tying VE to VCC will result in improved CMR performance. For
single channel products only.
e.
The JEDEC registration for the 6N137 specifies a maximum ICCH of 15 mA. Avago guarantees a maximum ICCH of 10 mA.
f.
The JEDEC registration for the 6N137 specifies a maximum ICCL of 18 mA. Avago guarantees a maximum ICCL of 13 mA.
g.
The JEDEC registration for the 6N137 specifies a maximum IEL of –2.0 mA. Avago guarantees a maximum IEL of –1.6 mA.
Avago Technologies
- 17 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Switching Specifications (AC)
Switching Specifications (AC)
Over Recommended Temperature (TA = –40 °C to + 85 °C), VCC = 5 V, IF = 7.5 mA unless otherwise specified.
All Typicals at TA = 25 °C, VCC = 5 V.
Parameter
Sym.
Packagea
Propagation Delay Time to tPLH
High Output Level
Min.
20
Typ.
48
Max.
75b
Units
ns
25
50
75*
ns
|tPHL – tPLH|
8-Pin DIP
SO-8
3.5
Widebody
Propagation Delay Skew
35
8, 9, 10
Note
c d f
, ,
TA = 25°C
RL = 350
CL = 15 pF
c e f
, ,
RL = 350
CL = 15 pF
100
Pulse Width Distortion
TA = 25°C
RL = 350
Fig.
RL = 350
CL = 15 pF
100
Propagation Delay Time to tPHL
Low Output Level
Test Conditions
ns
RL = 350
CL = 15 pF
ns
RL = 350
CL = 15 pF
8, 9, 10, g, f
11
40
40
tPSK
h, g, f
Output Rise Time (10-90%) tr
24
ns
RL = 350
CL = 15 pF
12
c, f
Output Fall Time (90-10%)
10
ns
RL = 350
CL = 15 pF
12
c, f
RL = 350 ,
CL = 15 pF,
VEL = 0 V,
VEH = 3 V
13, 14
i
tf
Propagation Delay Time of tELH
Enable from VEH to VEL
Single
Channel
30
ns
Propagation Delay Time of tEHL
Enable from VEL to VEH
Single
Channel
20
ns
a.
Ratings apply to all devices except otherwise noted in the Package column.
b.
JEDEC registered data for the 6N137.
c.
Each channel.
j
d.
The tPLH propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
e.
The tPHL propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
f.
No external pull up is required for a high logic state on the enable input. If the VE pin is not used, tying VE to VCC will result in improved CMR performance. For
single channel products only.
g.
See application section titled “Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew” for more information.
h.
tPSK is equal to the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature and specified test conditions.
i.
The tELH enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the
output pulse.
j.
The tEHL enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the
output pulse.
Avago Technologies
- 18 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Parameter
Sym.
Logic High
|CMH|
Common Mode
Transient
Immunity
Logic Low
|CML|
Common Mode
Transient
Immunity
Device
Min.
Switching Specifications (AC)
Units
Typ.
6N137
1,000
10,000
V/μs
HCPL-2630
HCPL-0600/0630
HCNW137
5,000
10,000
|VCM| = 1 kV
HCPL-2601/2631
HCPL-0601/0631
HCNW2601
10,000
15,000
|VCM| = 1 kV
HCPL-2611/4661
HCPL-0611/0661
HCNW2611
15,000
25,000
|VCM| = 1 kV
6N137
1,000
10,000
HCPL-2630
HCPL-0600/0630
HCNW137
5,000
10,000
|VCM| = 1 kV
HCPL-2601/2631
HCPL-0601/0631
HCNW2601
10,000
15,000
|VCM| = 1 kV
HCPL-2611/4661
HCPL-0611/0661
HCNW2611
15,000
25,000
|VCM| = 1 kV
V/μs
|VCM| = 10 V
|VCM| = 10 V
Test Conditions
Fig.
Note
VCC = 5 V,
IF = 0 mA,
VO(MIN) = 2 V,
RL = 350 ,
TA = 25 °C
15
a b c d
VCC = 5 V,
IF = 7.5 mA,
VO(MAX) = 0.8 V,
RL = 350 ,,
TA = 25°C
15
a, e, c, d
, , ,
a.
Each channel.
b.
CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VO > 2.0 V).
c.
For sinusoidal voltages, (|dVCM | / dt)max = fCMVCM(p-p).
d.
No external pull up is required for a high logic state on the enable input. If the VE pin is not used, tying VE to VCC will result in improved CMR performance.
For single channel products only.
e.
CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VO < 0.8 V).
Avago Technologies
- 19 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Characteristics
Package Characteristics
All Typicals at TA = 25 °C.
Parameter
Input-Output Insulation
Sym.
II-Oa
Input-Output Momentary With-stand VISO
Voltaged
Package
3750
Widebody
5000
Units
CI-O
Fig.
Note
μA
45% RH, t = 5 s,
VI-O = 3 kV dc,
TA = 25 °
b c
V rms
RH 50%,
t = 1 min,
TA = 25 °C
b c
VI-O = 500 Vdc,
g, b, h
1012
1012
,
,
b e
,
VI-O = 500 Vdc,
TA = 25 °C
1013
VI-O = 500 Vdc,
TA = 100 °C
1011
Input-Output Capacitance
Test Conditions
5000
8-Pin DIP, SO-8
Widebody
Max.
1
8-Pin DIP, SO-8
OPT 020
RI-O
Typ.
Single 8-Pin DIP
Single SO-8
f
Input-Output Resistance
Min.
8-Pin DIP, SO-8
0.6
Widebody
0.5
pF
f = 1 MHz,
TA = 25 °C
g, b, h
0.6
Input-Input Insulation Leakage
Current
II-I
Dual Channel
0.005
μA
RH 45%, t = 5 s,
VI-I = 500 V
i
Resistance (Input-Input)
RI-I
Dual Channel
1011
RH 45%, t = 5 s,
VI-I = 500 V
i
Capacitance (Input-Input)
CI-I
Dual 8-Pin DIP
0.03
pF
f = 1 MHz
i
Dual SO-8
0.25
a.
JEDEC registered data for the 6N137. The JEDEC Registration specifies 0 °C to 70 °C. Avago specifies –40 °C to 85 °C.
b.
Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.
c.
In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 Vrms for one second (leakage detection current
limit, II-O ≤ 5 μA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation
Characteristics Table, if applicable.
d.
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.
For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety
specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”
e.
In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 Vrms for one second (leakage detection current
limit, II-O ≤ 5 μA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation
Characteristics Table, if applicable.
f.
For 6N137, HCPL-2601/2611/2630/2631/4661 only.
g.
Each channel.
h.
Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.
i.
Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.
Avago Technologies
- 20 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Figure 2 Typical Output Voltage vs.
Forward Input Current
8-PIN DIP, SO-8
6
VCC = 5.5 V
VO = 5.5 V
VE = 2.0 V*
IF = 250 μA
10
* FOR SINGLE
CHANNEL
PRODUCTS
ONLY
5
0
-60 -40 -20
20
0
40
60
RL = 350 W
3
RL = 1 KW
2
RL = 4 KW
1
0
TA – TEMPERATURE – °C
1
2
3
4
6
5
IF – FORWARD INPUT CURRENT – mA
8-PIN DIP, SO-8
ITH – INPUT THRESHOLD CURRENT – mA
ITH – INPUT THRESHOLD CURRENT – mA
5
WIDEBODY
6
VCC = 5.0 V
VO = 0.6 V
4
RL = 350 W
3
RL = 1 KW
2
1
RL = 4 KW
0
-60 -40 -20
0
20
40
60
TA – TEMPERATURE – °C
80
100
5
VCC = 5.0 V
VO = 0.6 V
4
3
RL = 1 KW
RL = 350 W
2
1
RL = 4 KW
0
-60 -40 -20
0
20
40
60
TA – TEMPERATURE – °C
Avago Technologies
- 21 -
80
4
RL = 350 W
3
RL = 1 KW
2
RL = 4 KW
1
0
0
1
2
3
4
5
IF – FORWARD INPUT CURRENT – mA
Figure 3 Typical Input Threshold Current
vs. Temperature
6
VCC = 5 V
TA = 25 °C
5
4
0
80 100
WIDEBODY
6
VCC = 5 V
TA = 25 °C
5
VO – OUTPUT VOLTAGE – V
IOH – HIGH LEVEL OUTPUT CURRENT – μA
15
VO – OUTPUT VOLTAGE – V
Figure 1 Typical High Level Output
Current vs. Temperature
Package Characteristics
100
6
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Characteristics
Figure 4 Typical Low Level Output Voltage
vs. Temperature
Figure 5 Typical Low Level Output Current
vs. Temperature
8-PIN DIP, SO-8
WIDEBODY
* FOR SINGLE
CHANNEL
PRODUCTS ONLY
0.6
0.5
IO = 16 mA
IO = 12.8 mA
0.4
0.3
0.2
IO = 9.6 mA
IO = 6.4 mA
0.1
0
-60 -40 -20
0
20
40
60
70
0.8
80
IOL – LOW LEVEL OUTPUT CURRENT – mA
0.7
VCC = 5.5 V
VE = 2.0 V*
IF = 5.0 mA
VOL – LOW LEVEL OUTPUT VOLTAGE – V
VOL – LOW LEVEL OUTPUT VOLTAGE – V
0.8
VCC = 5.5 V
VE = 2.0 V
IF = 5.0 mA
0.7
0.6
0.5
IO = 16 mA
IO = 12.8 mA
0.4
0.3
IO = 9.6 mA
IO = 6.4 mA
0.2
0.1
0
-60 -40 -20
100
TA – TEMPERATURE – °C
0
20
40
60
80
100
8-PIN DIP, SO-8
10
IF - FORWARD CURRENT - mA
IF – FORWARD CURRENT – mA
100
IF
+
VF
–
1.0
0.1
0.01
0.001
1.1
1.2
1.3
1.4
1.5
WIDEBODY
1000
TA = 25 °C
1.6
TA = 25 oC
100
10
IF
+
VF
-
1.0
0.1
0.01
0.001
1.2
VF – FORWARD VOLTAGE – V
1.3
1.4
1.5
1.6
1.7
VF - FORWARD VOLTAGE - V
Figure 7 Typical Temperature Coefficient
of Forward Voltage vs. Input Current
8-PIN DIP, SO-8
-2.2
-2.0
-1.8
-1.6
-1.4
-1.2
0.1
WIDEBODY
-2.3
dVF/dT – FORWARD VOLTAGE
TEMPERATURE COEFFICIENT – mV/°C
dVF/dT – FORWARD VOLTAGE
TEMPERATURE COEFFICIENT – mV/°C
-2.4
1
10
IF – PULSE INPUT CURRENT – mA
100
-2.2
-2.1
-2.0
-1.9
-1.8
0.1
1
10
IF – PULSE INPUT CURRENT – mA
Avago Technologies
- 22 -
* FOR SINGLE
CHANNEL
PRODUCTS ONLY
60
IF = 10-15 mA
50
IF = 5.0 mA
40
20
-60 -40 -20
0
20
40
60
TA – TEMPERATURE – °C
TA – TEMPERATURE – °C
Figure 6 Typical Input Diode Forward
Characteristic
1000
VCC = 5.0 V
VE = 2.0 V*
VOL = 0.6 V
100
80 100
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Characteristics
Figure 8 Test Circuit for TPHL and TPLH
PULSE GEN.
ZO = 50 W
ft = tr = 5 ns
SINGLE CHANNEL
PULSE GEN.
ZO = 50 W
tf = tr = 5 ns
IF
INPUT
MONITORING
NODE
1
2
7
3
6
4
5
0.1μF
BYPASS
*C L
RM
GND
DUAL CHANNEL
+5 V
VCC 8
+5 V
IF
OUTPUT V O
MONITORING
NODE
2
7
3
6
4
5
RL
INPUT
MONITORING
NODE
RL
1
VCC 8
RM
C L*
GND
*CL IS APPROXIMATELY 15 pF WHICH INCLUDES
PROBE AND STRAY WIRING CAPACITANCE.
I F = 7.50 mA
INPUT
IF
I F = 3.75 mA
t PHL
t PLH
OUTPUT
VO
1.5 V
Avago Technologies
- 23 -
0.1μF
BYPASS
OUTPUT V O
MONITORING
NODE
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Figure 9 Typical Propagation Delay vs.
Temperature
105
VCC = 5.0 V
IF = 7.5 mA
80
60
tPLH , RL = 4 KW
tPHL , RL = 350 W
1 KW
4 KW
tPLH , RL = 1 KW
40
20
Figure 10 Typical Propagation Delay vs.
Pulse Input Current
tPLH , RL = 350 W
0
-60 -40 -20
20
0
40
60
tP – PROPAGATION DELAY – ns
tP – PROPAGATION DELAY – ns
100
tPLH , RL = 4 KW
90
75
tPLH , RL = 350 W
60
tPLH , RL = 1 KW
45
30
80 100
VCC = 5.0 V
TA = 25°C
tPHL , RL = 350 W
1 KW
4 KW
5
40
11
13
VCC = 5.0 V
IF = 7.5 mA
RL = 4 kW
30
VCC = 5.0 V
IF = 7.5 mA
20
RL = 350W
0
RL = 1 kW
0
9
20
40
60
15
Figure 12 Typical Rise and Fall Time vs.
Temperature
80 100
TA - TEMPERATURE - oC
tr, tf – RISE, FALL TIME – ns
PWD - PULSE WIDTH DISTORTION - ns
Figure 11 Typical Pulse Width Distortion
vs. Temperature
-10
-60 -40 -20
7
IF – PULSE INPUT CURRENT – mA
TA – TEMPERATURE – °C
10
Package Characteristics
300
tRISE
tFALL
RL = 4 kW
290
60
RL = 1 kW
40
20
RL = 350 W
RL = 350 W, 1 kW, 4 kW
0
20 40 60 80 100
-60 -40 -20 0
TA – TEMPERATURE – °C
Avago Technologies
- 24 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Characteristics
Figure 13 Test Circuit for tEHL and tELH
PULSE GEN.
ZO = 50 W
tf = tr = 5 ns
INPUT VE
MONITORING NODE
+5 V
7.5 mA
IF
3.0 V
VCC 8
1
2
0.1 μF
BYPASS
7
3
6
4
5
RL
1.5 V
t EHL
OUTPUT V O
MONITORING
NODE
*C L
GND
INPUT
VE
t ELH
OUTPUT
VO
1.5 V
*C L IS APPROXIMATELY 15 pF WHICH INCLUDES
PROBE AND STRAY WIRING CAPACITANCE.
Figure 14 Typical Enable Propagation Delay vs. Temperature
tE – ENABLE PROPAGATION DELAY – ns
120
VCC = 5.0 V
VEH = 3.0 V
VEL = 0 V
90 IF = 7.5 mA
tELH, RL = 4 kW
60
tELH, RL = 1 kW
30
tELH, RL = 350 W
tEHL, RL = 350 W, 1 kW, 4 kW
0
-60 -40 -20 0
20 40 60 80 100
TA – TEMPERATURE – °C
Figure 15 Test Circuit for Common Mode Transient Immunity and Typical Waveforms
IF
SINGLE CHANNEL
DUAL CHANNEL
B
IF
1
VCC 8
B
A
VFF
2
7
3
6
4
GND
+5 V
0.1 μF
BYPASS
1
A
VCC 8
RL
2
7
3
6
VFF
OUTPUT V O
MONITORING
NODE
5
4
GND
VCM
VCM
+
–
PULSE
GENERATOR
ZO = 50 W
+
–
PULSE
GENERATOR
ZO = 50 W
V CM(PEAK)
V CM
VO
0V
5V
SWITCH AT A: I = F0 mA
CM H
VO (MIN.)
SWITCH AT B: I = 7.5
F mA
VO
+5 V
RL
VO (MAX.)
0.5 V
CM L
Avago Technologies
- 25 -
5
0.1 μF
BYPASS
OUTPUT V O
MONITORING
NODE
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Characteristics
HCPL-2611 OPTION 060
800
HCNWXXXX
OUTPUT POWER – PS, INPUT CURRENT – IS
OUTPUT POWER – PS, INPUT CURRENT – IS
Figure 16 Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per IEC/EN/DIN EN 60747 5-5
PS (mW)
700
IS (mA)
600
500
400
300
200
100
0
0
25
50
75
100 125 150 175 200
PS (mW)
IS (mA)
800
700
600
500
400
300
200
100
0
0
25
TS – CASE TEMPERATURE – °C
50
75
100
125
150
TS – CASE TEMPERATURE – °C
Figure 17 Recommended Printed Circuit Board Layout
GND BUS (BACK)
VCC BUS (FRONT)
NC
ENABLE
0.1μF
NC
OUTPUT
10 mm MAX.
(SEE NOTE 5)
SINGLE CHANNEL
DEVICE ILLUSTRATED.
Avago Technologies
- 26 -
175
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Package Characteristics
Figure 18 Recommended TTL/LSTTL to TTL/LSTTL Interface Circuit
SINGLE CHANNEL DEVICE
VCC1 5 V
5V
8
VCC2
390 W
470 W
IF
2
6
+
D1*
VF
–
GND 1
0.1 μF
BYPASS
3
5
SHIELD
GND 2
VE 7
1
2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.
DUAL CHANNEL DEVICE
CHANNEL 1 SHOWN
VCC1 5 V
5V
8
VCC2
390 W
470 W
IF
1
7
+
D1*
0.1 μF
BYPASS
VF
–
GND 1
2
5
GND 2
SHIELD
1
2
Avago Technologies
- 27 -
6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611,
HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631,
HCPL-4661
Data Sheet
Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew
Propagation Delay, Pulse-Width
Distortion and Propagation Delay Skew
before all of the data outputs have settled, or some of the data
outputs may start to change before the clock signal has arrived.
From these considerations, the absolute minimum pulse width
that can be sent through optocouplers in a parallel application
is twice tPSK. A cautious design should use a slightly longer
pulse width to ensure that any additional uncertainty in the
rest of the circuit does not cause a problem.
Propagation delay is a figure of merit which describes how
quickly a logic signal propagates through a system. The
propagation delay from low to high (tPLH) is the amount of time
required for an input signal to propagate to the output,
causing the output to change from low to high. Similarly, the
propagation delay from high to low (tPHL) is the amount of time
required for the input signal to propagate to the output
causing the output to change from high to low (see Figure 8).
Pulse-width distortion (PWD) results when tPLH and tPHL differ
in value. PWD is defined as the difference between tPLH and
tPHL and often determines the maximum data rate capability of
a transmission system. PWD can be expressed in percent by
dividing the PWD (in ns) by the minimum pulse width (in ns)
being transmitted. Typically, PWD on the order of 20-30% of
the minimum pulse width is tolerable; the exact figure
depends on the particular application (RS232, RS422, T-l, etc.).
Propagation delay skew, tPSK, is an important parameter to
consider in parallel data applications where synchronization of
signals on parallel data lines is a concern. If the parallel data is
being sent through a group of optocouplers, differences in
propagation delays will cause the data to arrive at the outputs
of the optocouplers at different times. If this difference in
propagation delays is large enough, it will determine the
maximum rate at which parallel data can be sent through the
optocouplers.
Propagation delay skew is defined as the difference between
the minimum and maximum propagation delays, either tPLH or
tPHL, for any given group of optocouplers which are operating
under the same conditions (i.e., the same drive current, supply
voltage, output load, and operating temperature). As
illustrated in Figure 19, if the inputs of a group of optocouplers
are switched either ON or OFF at the same time, tPSK is the
difference between the shortest propagation delay, either tPLH
or tPHL, and the longest propagation delay, either tPLH or tPHL.
The tPSK specified optocouplers offer the advantages of
guaranteed specifications for propagation delays, pulsewidth
distortion and propagation delay skew over the recommended
temperature, input current, and power supply ranges.
Figure 19 Illustration of Propagation Delay Skew – tPSK
IF
50%
1.5 V
VO
IF
50%
VO
1.5 V
t PSK
Figure 20 Parallel Data Transmission Example
DATA
INPUTS
CLOCK
DATA
OUTPUTS
As mentioned earlier, tPSK can determine the maximum parallel
data transmission rate. Figure 20 is the timing diagram of a
typical parallel data application with both the clock and the
data lines being sent through optocouplers. The figure shows
data and clock signals at the inputs and outputs of the
optocouplers. To obtain the maximum data transmission rate,
both edges of the clock signal are being used to clock the data;
if only one edge were used, the clock signal would need to be
twice as fast.
Propagation delay skew represents the uncertainty of where an
edge might be after being sent through an optocoupler.
Figure 20 shows that there will be uncertainty in both the data
and the clock lines. It is important that these two areas of
uncertainty not overlap, otherwise the clock signal might arrive
Avago Technologies
- 28 -
t PSK
CLOCK
t PSK
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago Technologies and the A logo are trademarks of Avago Technologies in the United
States and other countries. All other brand and product names may be trademarks of their
respective companies.
Data subject to change. Copyright © 2014–2016 Avago Technologies. All Rights Reserved.
AV02-0940EN – March 23, 2016