0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HCPL-4504-000E

HCPL-4504-000E

  • 厂商:

    AVAGO(博通)

  • 封装:

    DIP-8_9.65X6.35MM

  • 描述:

    光电耦合器 VF=1.5V VISO=3.75KV DIP8_9.65X6.35MM

  • 数据手册
  • 价格&库存
HCPL-4504-000E 数据手册
Data Sheet HCPL-4504/J454/0454, HCNW4504 High CMR, High-Speed Optocouplers Description The Broadcom® HCPL-4504 and HCPL-0454 contain a GaAsP LED while the Broadcom HCPL-J454 and HCNW4504 contain an AlGaAs LED. The LED is optically coupled to an integrated high-gain photodetector. The HCPL-4504 series has short propagation delays and high CTR. The HCPL-4504 series also has a guaranteed propagation delay difference (tPLH – tPHL). These features make the HCPL-4504 series an excellent solution to IPM inverter dead time and other switching problems. The CTR, propagation delay, and CMR are specified both for TTL and IPM conditions, which are provided for ease of application. These single channel, diode-transistor optocouplers are available in 8-Pin DIP, SO-8, and Widebody package configurations. An insulating layer between an LED and an integrated photodetector provide electrical insulation between input and output. Separate connections for the photodiode bias and output-transistor collector increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base collector capacitance. CAUTION! Take normal static precautions in handling and assembly of this component to prevent damage, degradation, or both that may be induced by ESD. Features        Applications      Broadcom Short propagation delays for TTL and IPM applications 15 kV/µs minimum common mode transient immunity at VCM = 1500V for TTL/load drive High CTR at TA = 25°C – >25% for HCPL-4504/0454 – >23% for HCNW4504 – >19% for HCPL-J454 Electrical specifications for common IPM applications TTL compatible Open collector output Safety approval: – UL recognized  3750 Vrms/1 min. for HCPL-4504/0454/J454  5000 Vrms/1 min. for HCPL-4504 Option 020 and HCNW4504 – CSA approved – IEC/EN/DIN EN 60747-5-2 approved  VIORM = 560 Vpeak for HCPL-0454 Option 060  VIORM = 630 Vpeak for HCPL-4504 Option 060  VIORM = 891 Vpeak for HCPL-J454  VIORM = 1414 Vpeak for HCNW4504 Inverter circuits and Intelligent Power Module (IPM) interfacing: high common mode transient immunity (> 10 kV/µs for an IPM load/drive) and (tPLH – tPHL) specified (see Power Inverter Dead Time and Propagation Delay Specifications) Line receivers: Short propagation delays and low input-output capacitance High-speed logic ground isolation: TTL/TTL, TTL/ CMOS, TTL/LSTTL Replaces pulse transformers: Saves board space and weight Analog signal ground isolation: Integrated photodetector provides improved linearity over phototransistors AV02-0867EN June 24, 2021 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Functional Diagram 8 VCC NC 1 ANODE 2 7 NC CATHODE 3 6 VO TRUTH TABLE LED VO ON LOW OFF HIGH 5 GND NC 4 Schematic ANODE IO 6 VCC 2 – VO 3 SHIELD Broadcom 8 IF + VF CATHODE ICC 5 GND AV02-0867EN 2 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Ordering Information HCPL-0454, HCPL-4504 and HCPL-J454 are UL Recognized with 3750 Vrms for 1 minute per UL1577. HCNW4504 is UL Recognized with 5000 Vrms for 1 minute per UL1577. HCPL-0454, HCPL-4504, HCPL-J454 and HCNW4504 are approved under CSA Component Acceptance Notice #5, File CA 88324. Option Part Number RoHS Compliant HCPL-4504 -000E Non-RoHS Compliant Package no option 300-mil DIP 8 Surface Mount Gull Wing X X X X Tape and Reel UL 1577 5000 Vrms/1 Minute Rating IEC/EN/DIN EN 60747-5-2 Quantity 50 per tube -300E #300 -500E #500 -020E #020 -320E #320 X X -520E #520 X X -060E #060 -360E #360 X X -560E #560 X X X 50 per tube X X X 50 per tube X X X 50 per tube HCPL-J454 -000E no option -300E #300 -400E N/A 300-mil DIP 8 50 per tube X X 1000 per reel X 50 per tube X 50 per tube X 1000 per reel X X 50 per tube X 50 per tube X 1000 per reel -500E #500 X X X X 1000 per reel -600E N/A X X X X 750 per reel HCPL-0454 -000E no option SO-8 X -500E #500 X -060E #060 X -560E #560 X HCNW4504 -000E no option -300E #300 -500E #500 400-mil Widebody DIP-8 100 per tube X 1500 per reel X X X X X X X 100 per tube X 1500 per reel X X 42 per tube X X 42 per tube X X 750 per reel To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: HCPL-4504-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval and RoHS compliant. Example 2: HCPL-4504 to order product of 300-mil DIP package in Tube packaging and non RoHS compliant. Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information. NOTE: Broadcom The notation '#XXX' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use '-XXXE.' AV02-0867EN 3 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Package Outline Drawings HCPL-4504 Outline Drawing 7.62 ± 0.25 (0.300 ± 0.010) 9.65 ± 0.25 (0.380 ± 0.010) TYPE NUMBER 8 7 6 5 DATE CODE A XXXXZ YYWW RU EEE LOT ID 1 1.19 (0.047) MAX. 2 3 OPTION CODE* 4 6.35 ± 0.25 (0.250 ± 0.010) UL RECOGNITION 1.78 (0.070) MAX. 5° TYP. 3.56 ± 0.13 (0.140 ± 0.005) 4.70 (0.185) MAX. + 0.076 - 0.051 + 0.003) (0.010 - 0.002) 0.254 0.51 (0.020) MIN. 2.92 (0.115) MIN. 1.080 ± 0.320 (0.043 ± 0.013) 0.65 (0.025) MAX. 2.54 ± 0.25 (0.100 ± 0.010) DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020 "V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED. NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. Broadcom AV02-0867EN 4 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCPL-4504 Gull Wing Surface Mount Option 300 Outline Drawing LAND PATTERN RECOMMENDATION 9.65 ± 0.25 (0.380 ± 0.010) 8 7 6 1.016 (0.040) 5 6.350 ± 0.25 (0.250 ± 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 1.19 (0.047) MAX. 9.65 ± 0.25 (0.380 ± 0.010) 1.780 (0.070) MAX. 7.62 ± 0.25 (0.300 ± 0.010) 3.56 ± 0.13 (0.140 ± 0.005) 1.080 ± 0.320 (0.043 ± 0.013) 0.635 ± 0.25 (0.025 ± 0.010) 2.54 (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). 2.0 (0.080) 0.635 ± 0.130 (0.025 ± 0.005) + 0.076 - 0.051 + 0.003) (0.010 - 0.002) 0.254 12° NOM. NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. Broadcom AV02-0867EN 5 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCPL-J454 Outline Drawing 7.62 ± 0.25 (0.300 ± 0.010) 9.80 ± 0.25 (0.386 ± 0.010) TYPE NUMBER 8 7 6 5 DATE CODE A XXXX YYWW RU EEE LOT ID 1 1.19 (0.047) MAX. 2 3 4 6.35 ± 0.25 (0.250 ± 0.010) UL RECOGNITION 1.78 (0.070) MAX. 5 TYP. 3.56 ± 0.13 (0.140 ± 0.005) 4.70 (0.185) MAX. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 0.51 (0.020) MIN. 2.92 (0.115) MIN. 1.080 ± 0.320 (0.043 ± 0.013) Broadcom 0.65 (0.025) MAX. 2.54 ± 0.25 (0.100 ± 0.010) DIMENSIONS IN MILLIMETERS AND (INCHES). OPTION NUMBERS 300 AND 500 NOT MARKED. NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX. AV02-0867EN 6 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCPL-J454 Gull Wing Surface Mount Option 300 Outline Drawing LAND PATTERN RECOMMENDATION 9.80 ± 0.25 (0.386 ± 0.010) 8 7 6 1.016 (0.040) 5 6.350 ± 0.25 (0.250 ± 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 1.19 (0.047) MAX. 9.65 ± 0.25 (0.380 ± 0.010) 1.780 (0.070) MAX. 7.62 ± 0.25 (0.300 ± 0.010) 3.56 ± 0.13 (0.140 ± 0.005) 1.080 ± 0.320 (0.043 ± 0.013) 0.635 ± 0.25 (0.025 ± 0.010) 2.54 (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). 2.0 (0.080) 0.635 ± 0.130 (0.025 ± 0.005) + 0.076 - 0.051 + 0.003) (0.010 - 0.002) 0.254 12° NOM. NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX. Broadcom AV02-0867EN 7 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCPL-J454-400E/600E Widelead Gullwing Surface Mount Outline Drawing LAND PATTERN RECOMMENDATION [9.80±0.25] 0.386 ±0.010 [1.016] 0.040 TYPE NUMBER DATE CODE A XXXX [6.35 ±0.25] 0.250±0.010 YYWW RU EEE LOT ID [12.9] 0.508 UL RECOGNITION [1.27] 0.050 [0.65] 0.025 MAX [2.0] 0.08 [11.75 ± 0.25] 0.460 ± 0.010 [7.62±0.51] 0.300 ±0.020 [1.19] 0.047 MAX. [0.20] 0.008 [0.33] 0.013 [3.56±0.13] 0.140±0.005 [0.152] 0.006 [0.406] 0.016 [1.080] ± 0.320 0.043 ± 0.013 [2.54] 0.100 BSC DIMENSIONS IN [MILLIMETERS] INCHES OPTION NUMBERS 400 AND 600 NOT MARKED. NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX. Broadcom [0.625±0.254] 0.025 ±0.010 LEAD COPLANARITY MAXIMUM: [0.102] 0.004 30° NOM. AV02-0867EN 8 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCPL-0454 Outline Drawing (8-Pin Small Outline Package) LAND PATTERN RECOMMENDATION 8 7 5 XXX YWW EEE 3.937 ± 0.127 (0.155 ± 0.005) PIN ONE 6 1 2 3 5.994 ± 0.203 (0.236 ± 0.008) TYPE NUMBER (LAST 3 DIGITS) DATE CODE LOT ID 7.49 (0.295) 4 1.9 (0.075) 0.406 ± 0.076 (0.016 ± 0.003) 1.270 BSC (0.050) 0.64 (0.025) * 5.080 ± 0.127 (0.200 ± 0.005) 3.175 ± 0.127 (0.125 ± 0.005) 7 1.524 (0.060) * TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) 5.207 ± 0.254 (0.205 ± 0.010) 45 X 0.432 (0.017) 0~7 0.228 ± 0.025 (0.009 ± 0.001) 0.203 ± 0.102 (0.008 ± 0.004) 0.305 MIN. (0.012) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX. NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX. Broadcom AV02-0867EN 9 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCNW4504 Outline Drawing (8-Pin Widebody Package) 11.00 MAX. (0.433) 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 TYPE NUMBER A HCNWXXXX DATE CODE YYWW EEE 1 2 3 9.00 ± 0.15 (0.354 ± 0.006) 5 LOT ID 4 10.16 (0.400) TYP. 1.55 (0.061) MAX. 7° TYP. 5.10 MAX. (0.201) 3.10 (0.122) 3.90 (0.154) 2.54 (0.100) TYP. 1.78 ± 0.15 (0.070 ± 0.006) Broadcom 0.40 (0.016) 0.56 (0.022) 0.076 0.254 -+0.0051 0.003) (0.010 +- 0.002) 0.51 (0.021) MIN. DIMENSIONS IN MILLIMETERS (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. AV02-0867EN 10 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers HCNW4504 Gull Wing Surface Mount Option 300 Outline Drawing 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 LAND PATTERN RECOMMENDATION 5 9.00 ± 0.15 (0.354 ± 0.006) 1 2 3 13.56 (0.534) 4 1.3 (0.051) 2.29 (0.09) 12.30 ± 0.30 (0.484 ± 0.012) 1.55 (0.061) MAX. 11.00 MAX. (0.433) 4.00 MAX. (0.158) 1.78 ± 0.15 (0.070 ± 0.006) 2.54 (0.100) BSC 0.75 ± 0.25 (0.030 ± 0.010) 1.00 ± 0.15 (0.039 ± 0.006) 0.254 (0.010 DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). 7° NOM. NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. Broadcom AV02-0867EN 11 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Solder Reflow Temperature Profile 300 PREHEATING RATE 3 qC + 1 qC/–0.5 qC/SEC. REFLOW HEATING RATE 2.5 qC ± 0.5 qC/SEC. 200 PEAK TEMP. 245 qC PEAK TEMP. 240 qC TEMPERATURE (qC) 2.5 C ± 0.5 qC/SEC. 30 SEC. 160 qC 150 qC 140 qC SOLDERING TIME 200 qC 30 SEC. 3 qC + 1 qC/–0.5 qC 100 PEAK TEMP. 230 qC PREHEATING TIME 150 qC, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE ROOM TEMPERATURE 0 0 50 100 150 200 250 TIME (SECONDS) NOTE: NON-HALIDE FLUX SHOULD BE USED. Recommended Pb-Free IR Profile tp Tp TEMPERATURE TL Tsmax * 260 +0/-5 qC TIME WITHIN 5 qC of ACTUAL PEAK TEMPERATURE 15 SEC. 217 qC 150 - 200 qC RAMP-UP 3 qC/SEC. MAX. RAMP-DOWN 6 qC/SEC. MAX. Tsmin ts PREHEAT 60 to 180 SEC. 25 tL 60 to 150 SEC. t 25 qC to PEAK TIME NOTES: THE TIME FROM 25 qC to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 qC, Tsmin = 150 qC NOTE: NON-HALIDE FLUX SHOULD BE USED. * RECOMMENDED PEAK TEMPERATURE FOR WIDEBODY 400mils PACKAGE IS 245 qC Broadcom AV02-0867EN 12 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Regulatory Information The devices contained in this data sheet have been approved by the following agencies: Agency/Standard HCPL-4504 Underwriters Laboratories (UL) Recognized under UL1577, Component Recognition Program, Category FPQU2, File E55361 UL1577 3750 Vrms /1 minute, Option 020 5000 Vrms/ 1 minute Canadian Standards Association (CSA) File CA88324 Component 3750 Vrms/ Acceptance 1 minute, Notice #5 Option 020 5000 Vrms/ 1 minute Option 060 VIORM = 630V peak IEC/EN/DIN EN 60747-5-2 Approved under: IEC 60747-5-2:1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01 HCPL-J454 HCPL-0454 HCNW4504 3750 Vrms /1 minute 3750 Vrms/ 1 minute 5000 Vrms/ 1 minute 3750 Vrms /1 minute 3750 Vrms/ 1 minute 5000 Vrms/ 1 minute VIORM = 891V peak Option 060 VIORM = 560V peak VIORM = 1414V peak Insulation and Safety Related Specifications Value Parameter Symbol Minimum External Air Gap (External Clearance) L(101) 7.1 8.0 7.4 4.9 Minimum External Tracking (External Creepage) L(102) 7.4 8.0 8.0 Minimum Internal Plastic Gap (Internal Clearance) 0.8 0.5 Minimum Internal Tracking (Internal Creepage N/A Tracking Resistance (Comparative Tracking Index) Isolation Group Broadcom CTI HCPL- J454 -400E/-600E HCPL-J454 All Other HCPL- HCNW 0454 4504 Options HCPL4504 Units Conditions 9.6 mm Measured from input terminals to output terminals, shortest distance through air. 4.8 10.0 mm Measured from input terminals to output terminals, shortest distance path along body. 0.5 0.08 1.0 mm Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and the photodetector inside the optocoupler cavity. N/A N/A N/A 4.0 mm Measured from input terminals to output terminals, along internal cavity. ≥ 175 ≥ 175 ≥ 175 ≥ 175 ≥ 200 V DIN IEC 112/VDE 0303 Part 1 IIIa IIIa IIIa IIIa IIIa Material Group (DIN VDE 0110, 1/89, Table 1) AV02-0867EN 13 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers All Broadcom data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, when mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, consider the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads. There are techniques, such as grooves and ribs, that may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances also change depending on factors, such as pollution degree and insulation level. IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics HCPL-0454 Description Symbol Installation Classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage ≤150 Vrms for rated mains voltage ≤ 300 Vrms for rated mains voltage ≤ 450 Vrms for rated mains voltage ≤ 600 Vrms for rated mains voltage ≤ 1000 Vrms Option 060 HCPL-4504 Option 060 HCPL-J454 HCNW4504 Units I-IV I-III I-IV I-IV I-III I-IV I-IV I-III I-III I-IV I-IV I-IV I-IV I-III 55/100/21 55/100/21 55/100/21 55/85/21 2 2 2 2 VIORM 560 630 891 1414 Vpeak Input to Output Test Voltage, Method ba VIORM × 1.875 = VPR, 100% Production Test with tm = 1s, Partial Discharge < 5 pC VPR 1050 1181 1670 2652 Vpeak Input to Output Test Voltage, Method aa VIORM × 1.5 = VPR, Type and Sample Test, tm = 60s, Partial Discharge < 5 pC VPR 840 945 1336 2121 Vpeak VIOTM 4000 6000 6000 8000 Vpeak Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Highest Allowable Overvoltagea (Transient Overvoltage, tini = 10s) Safety Limiting Values – Maximum values allowed in the event of a failure, also see Thermal Derating curve TS 150 175 175 150 °C Input Current IS,INPUT 150 230 400 400 mA Output Power PS,OUTPUT 600 600 600 700 mW RS ≥ 109 ≥ 109 ≥ 109 ≥ 109 Ω Case Temperature Insulation Resistance at TS, VIO = 500V a. Refer to the optocoupler section of the Designer's Catalog, under regulatory information (IEC/EN/DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles. NOTE: Broadcom  These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits.  Insulation Characteristics are per IEC/EN/DIN EN 60747-5-2.  Surface mount classification is Class A in accordance with CECC 00802. AV02-0867EN 14 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Absolute Maximum Ratings Parameter Symbol Storage Temperature TS Operating Temperature TA Average Forward Input Current IF(AVG) Peak Forward Input Current (50% duty cycle, 1-ms pulse width) IF(PEAK) Peak Transient Input Current (≤ 1-µs pulse width, 300 pps) Reverse LED Input Voltage (Pin 3-2) Input Power Dissipation IF(TRANS) VR PIN Device Min. Max. Units –55 125 °C HCPL-4504 HCPL-0454 HCPL-J454 –55 100 °C HCNW4504 –55 85 25 mA a mA b HCPL-4504 HCPL-0454 — 50 HCPL-J454 HCNW4504 — 40 HCPL-4504 HCPL-0454 — 1 HCPL-J454 HCNW4504 — 0.1 HCPL-4504 HCPL-0454 — 5 HCPL-J454 HCNW4504 — 3 HCPL-4504 HCPL-0454 — 45 HCPL-J454 HCNW4504 — 40 A V mW Average Output Current (Pin 6) IO(AVG) — 8 mA Peak Output Current IO(PEAK) — 16 mA Supply Voltage (Pin 8-5) VCC –0.5 30 V Output Voltage (Pin 6-5) VO –0.5 20 V Output Power Dissipation PO — 100 mW Lead Solder Temperature (Through-Hole Parts Only) TLS — 260 °C — 260 1.6 mm below seating plane, 10s Up to seating plane, 10s Reflow Temperature Profile HCPL-4504 HCPL-J454 HCNW4504 TRP HCPL-4504 Option 300, Option 500, Option 400E, and Option 600E Notes c d See Package Outline Drawings a. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8). b. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8). c. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8). d. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8). Broadcom AV02-0867EN 15 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Electrical Specifications (DC) Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. See note 12. Parameter Symbol Device Current Transfer Ratio CTR HCPL-4504 HCPL-0454 Current Transfer Ratio CTR VOL IOH Logic Low Supply Current ICCL Logic High Supply Current ICCH Input Forward Voltage VF Broadcom BVR 60 21 34 — 37 60 13 39 — HCNW4504 23 29 60 19 31 63 HCPL-4504 HCPL-0454 26 35 65 22 37 — HCPL-J454 21 43 65 16 45 — 25 33 65 21 35 68 HCPL-4504 HCPL-0454 — 0.2 0.4 HCPL-J454 — 0.2 0.4 — 0.5 — — 0.2 0.4 — 0.5 — — 0.003 0.5 — 0.01 1 — — — 50 — 50 200 HCPL-J454 — — 70 — 0.02 1 HCPL-4504 HCPL-0454 — — 2 — 1.5 1.7 — — 1.8 1.59 1.85 HCPL-4504 HCPL-0454 5 HCPL-J454 HCNW4504 3 Units % Test Conditions Figure Notes TA = 25°C VO = 0.4V IF = 16 mA, VCC = 4.5V 1, 2, 4 b TA = 25°C VO = 0.4V TA = 25°C VO = 0.4V IF = 12 mA, VCC = 4.5V 1, 2, 4 b VO = 0.5V VO = 0.5V VO = 0.5V % TA = 25°C VO = 0.4V VO = 0.5V TA = 25°C VO = 0.4V VO = 0.5V TA = 25°C VO = 0.4V VO = 0.5V V TA = 25°C 0.5 HCPL-4504 HCPL-0454 HCNW4504 HCPL-J454 1.45 HCNW4504 1.35 Input Reverse Breakdown Voltage 32 19 HCNW4504 Logic High Output Current 25 HCPL-J454 HCNW4504 Logic Low Output Voltage Min. Typ.a Max. IO = 4.0 mA IO = 3.3 mA TA = 25°C IF = 16 mA, VCC = 4.5V IO = 3.6 mA IO = 3.0 mA TA = 25°C IO = 3.6 mA IO = 3.0 mA µA TA = 25°C VO = VCC = 5.5V, IF = 0 mA TA = 25°C VO = VCC = 15V 5 µA IF = 16 mA, VO = Open, VCC = 15V 12 µA TA = 25°C 12 V TA = 25°C IF = 16 mA TA = 25°C IF = 16mA IF = 0 mA, VO = Open VCC = 15V 3 1.95 V IR = 10 µA IR = 100 µA AV02-0867EN 16 HCPL-4504/J454/0454, HCNW4504 Data Sheet Parameter Symbol Device High CMR, High-Speed Optocouplers Min. Typ.a Max. Temperature VF/T Coefficient of Forward Voltage HCPL-4504 HCPL-0454 — –1.6 HCPL-J454 HCNW4504 — –1.4 Input Capacitance HCPL-4504 HCPL-0454 — 60 — HCPL-J454 HCNW4504 — — 70 CIN Units Test Conditions Figure Notes mV/°C IF = 16 mA pF f = 1 MHz, VF = 0V a. All typicals at TA = 25°C. b. Current Transfer Ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100. Broadcom AV02-0867EN 17 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers AC Switching Specifications Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. Parameter Propagation Delay Time to Logic Low at Output Symbol Device tPHL tPHL Propagation Time to Logic High at Output Delay Min. Typ.a Max. — 0.2 0.3 — 0.2 0.5 0.2 0.5 0.7 HCPL-J454 0.05 Others 0.1 tPLH tPLH Units 0.3 0.5 — 0.3 0.7 0.3 0.8 1.1 0.2 0.8 1.4 6, 8. 9 b µs TA = 25°C Pulse: f = 10 kHz, Duty Cycle = 50%, IF = 12 mA, VCC = 15.0V, RL = 20 kΩ, CL = 100 pF, VTHHL = 1.5V 6, 10, 11, 12, 13, 14 c µs TA = 25°C Pulse: f = 20 kHz, Duty Cycle = 10%, IF = 16 mA, VCC = 5.0V, RL = 1.9 kΩ, CL = 15 pF, VTHLH = 1.5V 6. 8. 9 b µs TA = 25°C Pulse: f = 10 kHz, Duty Cycle = 50%, IF = 12 mA, VCC = 15.0V, RL = 20 kΩ, CL = 100 pF, VTHLH = 2.0 V 6, 10, 11, 12, 13, 14 c µs TA = 25°C Pulse: f = 10 kHz, Duty Cycle = 50%, IF = 12 mA, VCC = 15.0V, RL = 20 kΩ, CL = 100 pF, VTHHL = 1.5V, VTHLH = 2.0V 6, 10, 11, 12, 13, 14 d kV/µs TA = 25°C, VCC = 5.0V, RL = 1.9 kΩ, VCM = CL = 15 pF, IF = 0 mA 1500 VP-P kV/µs VCC = 15.0V, RL = 20 kΩ, CL = 100 pF, IF = 0 mA 7 b, e 7 c, f 7 b, e 7 c, f 7 c, f tPLH – tPHL –0.4 0.3 0.9 –0.7 0.3 1.3 Common Mode Transient Immunity at Logic High |CMH| 15 30 — |CMH| 15 30 — Level Output Common Mode Transient Immunity at Logic Low Level Output |CML| 15 30 — HCPL-J454 15 30 — Others 10 — — kV/µs TA = 25°C, VCC = 5.0V, RL = 1.9 kΩ, VCM = CL = 15 pF, IF = 16 mA 1500 V P-P kV/µs VCC = 15.0V, RL = 20 kΩ, CL = 100 pF, IF = 12 mA 15 30 — kV/µs |CML| Notes TA = 25°C Pulse: f = 20 kHz, Duty Cycle = 10%, IF = 16 mA, VCC = 5.0V, RL = 1.9 kΩ, CL = 15 pF, VTHHL = 1.5V Propagation Delay Difference Between Any 2 Parts |CML| Figure µs 1.0 — Test Conditions VCC = 15.0 V, RL = 20 kΩ, CL = 100 pF, IF = 16 mA a. All typicals at TA = 25°C. b. The 1.9-kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6-kΩ pull-up resistor. c. The RL = 20 kΩ, CL = 100 pF load represents an Intelligent Power Module (IPM) load. d. The difference between tPLH and tPHL between any two devices (same part number) under the same test condition. (See Power Inverter Dead Time and Propagation Delay Specifications.) e. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (that is, VO > 2.0V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal, VCM, to ensure that the output will remain in a Logic Low state (that is, VO < 0.8 V). f. Under Intelligent Power Module (IPM) load and LED drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable dVCM/dt on the leading edge of the common mode pulse, VCM, to ensure that the output will remain in a Logic High state (that is, VO > 3.0V). Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/dt on the trailing edge of the common mode pulse signal, VCM, to ensure that the output will remain in a Logic Low state (that is, VO < 1.0V). Broadcom AV02-0867EN 18 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Package Characteristics Over recommended temperature (TA = 0°C to 25°C) unless otherwise specified. Parameter Symbol Input-Output Momentary Withstand Voltageb Input-Output Resistance VISO Device HCPL-4504 Min. Typ.a Max. 3750 — — HCPL-0454 RI-O Units CI-O Figure V rms RH ≤ 50%, t = 1 min., TA = 25°C Notes c, d, e HCPL-J454 3750 c, e, f HCPL-4504 Option 020 5000 c, g, h HCNW4504 5000 c, e, h HCPL-4504 HCPL-0454 HCPL-J454 — 1012 HCNW4504 1012 1013 — Ω HCPL-4504 HCPL-0454 — VI-O = 500 Vdc c TA = 25°C TA = 100°C 1011 Capacitance (Input-Output) Test Conditions 0.6 HCPL-J454 0.8 HCNW4504 0.5 — pF f = 1 MHz c 0.6 a. All typicals at TA = 25°C. b. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Broadcom Application Note 1074, “Optocoupler Input-Output Endurance Voltage.” c. The device is considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. d. In accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage ≥ 4500 V rms for 1 second (leakage detection current limit, II-O ≤ 5 µA). e. This test is performed before the 100% production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable. f. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 second (leakage detection current limit, II-O ≤ 5 µA). g. Refer to the Option 020 data sheet for more information. h. In accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (leakage detection current limit, II-O ≤ 5 µA). Broadcom AV02-0867EN 19 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Figure 1: DC and Pulsed Transfer Characteristics HCPL-4504/0454 25 mA 20 mA 15 mA 10 mA 0 40 mA 35 mA 30 mA 25 mA 15 20 mA 15 mA 10 10 mA 5 IF = 5 mA IF = 5 mA 0 0 20 10 HCNW4504 IO – OUTPUT CURRENT – mA 30 mA TA = 25° C VCC = 5.0 V 20 IO – OUTPUT CURRENT – mA IO – OUTPUT CURRENT – mA 35 mA 5 HCPL-J454 25 40 mA TA = 25°C 10 VCC = 5.0 V 5 0 10 15 20 TA = 25°C 20 VCC = 5.0 V 18 14 12 30 mA 25 mA 10 20 mA 8 15 mA 6 10 mA 4 2 0 IF = 5 mA 0 VO – OUTPUT VOLTAGE – V VO – OUTPUT VOLTAGE – V 40 mA 35 mA 16 20 10 VO – OUTPUT VOLTAGE – V Figure 2: Current Transfer Ratio vs. Input Current HCPL-4504/0454 0.5 0.0 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5.0 V TA = 25°C 0 2 4 6 8 10 12 14 16 18 20 22 24 26 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5.0 V TA = 25° C 1.5 1.0 0.5 0 0 IF – INPUT CURRENT – mA 5 10 15 20 25 IF – INPUT CURRENT – mA NORMALIZED CURRENT TRANSFER RATIO 1.0 HCNW4504 HCPL-J454 2.0 NORMALIZED CURRENT TRANSFER RATIO NORMALIZED CURRENT TRANSFER RATIO 1.5 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5.0 V TA = 25°C 2.0 1.6 1.2 0.8 0.4 0 0 5 10 15 20 25 IF – INPUT CURRENT – mA Figure 3: Input Current vs. Forward Voltage HCPL-4504/0454 100 10 1.0 IF 1000 IF – FORWARD CURRENT – mA IF – FORWARD CURRENT – mA 1000 TA = 25°C + VF – 0.1 0.01 0.001 1.1 1.2 1.3 1.4 1.5 VF – FORWARD VOLTAGE – VOLTS Broadcom 1.6 HCPL-J454/HCNW4504 TA = 25°C 100 10 1.0 IF + VF – 0.1 0.01 0.001 1.2 1.3 1.4 1.5 1.6 1.7 VF – FORWARD VOLTAGE – VOLTS AV02-0867EN 20 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Figure 4: Current Transfer Ratio vs. Temperature 0.9 0.8 0.7 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5.0 V TA = 25°C 0.6 -60 -40 -20 0 20 40 60 80 100 120 1.05 1.0 HCPL-J454 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5.0 V TA = 25° C 0.95 0.9 0.85 -60 -40 -20 TA – TEMPERATURE – °C 0 20 40 60 80 100 TA – TEMPERATURE – °C NORMALIZED CURRENT TRANSFER RATIO NORMALIZED CURRENT TRANSFER RATIO 1.0 NORMALIZED CURRENT TRANSFER RATIO HCPL-4504/0454 1.1 HCNW4504 1.05 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5.0 V TA = 25°C 1.0 0.95 0.9 0.85 -60 -40 -20 0 20 40 60 80 100 120 TA – TEMPERATURE – °C IOH – LOGIC HIGH OUTPUT CURRENT – nA Figure 5: Logic High Output Current vs. Temperature 10 4 10 3 10 2 IF = 0 mA VO = V CC = 5.0 V 10 1 10 0 10 -1 10-2 -60 -40 -20 0 20 40 60 80 100 120 TA – TEMPERATURE – °C Figure 6: Switching Test Circuit IF 0 VCC VO V THHL VTHLH VOL t PHL Broadcom IF PULSE GEN. Z =O50 : tr = 5 ns t PLH 1 8 2 7 3 6 4 5 VCC RL VO 0.1μF IF MONITOR RM CL AV02-0867EN 21 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Figure 7: Test Circuit for Transient Immunity and Typical Waveforms VCM 0V 90% 10% 90% IF 10% tr A tf VO B 1 8 2 7 3 6 VCC 4 5 VFF VO CL VCM + – VOL SWITCH AT B: I =F12 mA, 16 mA RL 0.1μF SWITCH AT A: I =F0 mA VO VCC PULSE GEN. Figure 8: Propagation Delay Time vs. Temperature HCPL-4504/0454 VCC = 5.0 V 0.45 R L = 1.9 k: C L = 15 pF 0.40 V THHL = V THLH = 1.5 V 10% DUTY CYCLE 0.35 t PHL 0.30 tPLH 0.25 0.20 IF = 10 mA IF = 16 mA 0.15 0.10 -60 -40 -20 0 HCPL-J454/HCNW4504 0.50 tp – PROPAGATION DELAY – μs tp – PROPAGATION DELAY – μs 0.50 VCC = 5.0 V 0.45 R L = 1.9 k: C L = 15 pF 0.40 V THHL = V THLH = 1.5 V 10% DUTY CYCLE 0.35 0.30 t PHL 0.25 0.20 IF = 10 mA IF = 16 mA 0.15 0.10 -60 -40 -20 20 40 60 80 100 120 TA – TEMPERATURE – °C Figure 10: Propagation Delay Time vs. Load Resistance 1.2 tPLH 0.6 t PHL 0.4 IF = 10 mA IF = 16 mA 0.2 0.0 0 2 4 6 8 10 12 14 16 18 20 RL – LOAD RESISTANCE – k: Broadcom tp – PROPAGATION DELAY – μs tp – PROPAGATION DELAY – μs 1.4 0.8 20 40 60 80 100 120 0 TA – TEMPERATURE – °C Figure 9: Propagation Delay Time vs. Load Resistance VCC = 5.0 V TA = 25° C C L = 15 pF 1.0 V THHL = V THLH = 1.5 V 10% DUTY CYCLE tPLH 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 VCC = 5.0 V TA = 25° C C L = 100 pF V THHL = 1.5 V VTHLH = 2.0 V 50% DUTY CYCLE t PLH t PHL 0 2 4 6 8 IF = 10 mA IF = 16 mA 10 12 14 16 18 20 RL– LOAD RESISTANCE – k: AV02-0867EN 22 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Figure 11: Propagation Delay Time vs. Temperature HCPL-4504/0454 t PLH 50% DUTY CYCLE 0.7 0.6 0.5 tPHL 0.4 0.3 -60 -40 -20 0 HCPL-J454/HCNW4504 1.1 IF = 10 mA IF = 16 mA VCC = 15.0 V 1.0 R L = 20 k: C L = 100 pF 0.9 V THHL = 1.5 V V THLH = 2.0 V 0.8 50% DUTY CYCLE 0.6 0.5 tPHL 0.4 TA – TEMPERATURE – °C tp – PROPAGATION DELAY – μs tp – PROPAGATION DELAY – μs t PLH t PHL 0.4 0.0 IF = 10 mA IF = 16 mA 0 Figure 14: Propagation Delay Time vs. Supply Voltage 3.5 VCC = 15.0 V 1.6 TA = 25° C C L = 100 pF 1.4 V THHL = 1.5 V 1.2 VTHLH = 2.0 V 50% DUTY CYCLE 1.0 0.2 20 40 60 80 100 120 Figure 13: Propagation Delay Time vs. Load Capacitance 1.8 0.6 0 TA – TEMPERATURE – °C Figure 12: Propagation Delay Time vs. Load Resistance 0.8 t PLH 0.7 0.3 -60 -40 -20 20 40 60 80 100 120 IF = 10 mA IF = 16 mA VCC = 15.0 V 3.0 TA = 25° C R L = 20 k: 2.5 V THHL = 1.5 V V THLH = 2.0 V 2.0 50% DUTY CYCLE t PHL 1.5 1.0 IF = 10 mA IF = 16 mA 0.5 0.0 5 10 15 20 25 30 35 40 45 50 1.2 t PLH tp – PROPAGATION DELAY – μs VCC = 15.0 V 1.0 R L = 20 k: C L = 100 pF 0.9 V THHL = 1.5 V V THLH = 2.0 V 0.8 tp – PROPAGATION DELAY – μs tp – PROPAGATION DELAY – μs 1.1 0 100 200 300 400 500 600 700 800 900 1000 CL – LOAD CAPACITANCE – pF RL – LOAD RESISTANCE – k: 1.1 1.0 0.9 0.8 0.7 t PLH TA = 25° C R L = 20 k: C L = 100 pF V THHL = 1.5 V V THLH = 2.0 V 50% DUTY CYCLE 0.6 0.5 0.4 0.3 t PHL IF = 10 mA IF = 16 mA 0.2 10 11 12 13 14 15 16 17 18 19 20 VCC – SUPPLY VOLTAGE – V Figure 15: Thermal Derating Curve, Dependence of Safety Limiting Valve with Case Temperature per IEC/EN/DIN EN 60747-5-2 HCPL-4504 OPTION 060/HCPL-J454 700 600 500 400 300 (230) 200 100 0 0 25 50 75 100 125 150 175 TS – CASE TEMPERATURE – °C Broadcom HCPL-0454 OPTION 060/HCNW4504 1000 PS (mW) IS (mA) for HCPL-4504 OPTION 060 IS (mA) for HCPL-J454 OUTPUT POWER – PS, INPUT CURRENT – IS OUTPUT POWER – PS, INPUT CURRENT – IS 800 200 PS (mW) for HCNW4504 IS (mA) for HCNW4504 PS (mW) for HCPL-0454 OPTION 060 IS (mA) for HCPL-0454 OPTION 060 900 800 700 600 500 400 300 200 (150) 100 0 0 25 50 75 100 125 150 175 TS – CASE TEMPERATURE – °C AV02-0867EN 23 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Figure 16: Typical Power Inverter +HV HCPL-4504/0454/J454 HCNW4504 LED 1 2 + 8 7 6 3 OUT 1 BASE/GATE DRIVE CIRCUIT Q1 BASE/GATE DRIVE CIRCUIT Q2 5 HCPL-4504/0454/J454 HCNW4504 LED 2 2 + 8 7 6 3 OUT 2 5 –HV Broadcom AV02-0867EN 24 HCPL-4504/J454/0454, HCNW4504 Data Sheet High CMR, High-Speed Optocouplers Figure 17: LED Delay and Dead Time Diagram PHL Power Inverter Dead Time and Propagation Delay Specifications The HCPL-4504/0454/J454 and HCNW4504 include a specification intended to help designers minimize “dead time” in their power inverter designs. The new “propagation delay difference” specification (tPLH – tPHL) is useful for determining not only how much optocoupler switching delay is needed to prevent “shoot-through” current, but also for determining the best achievable worst-case dead time for a given design. When inverter power transistors switch (Q1 and Q2 in Figure 17), it is essential that they never conduct at the same time. Extremely large currents flow if there is any overlap in their conduction during switching transitions, potentially damaging the transistors and even the surrounding circuitry. This “shoot-through” current is eliminated by delaying the turn-on of one transistor (Q2) long enough to ensure that the opposing transistor (Q1) has completely turned off. This delay introduces a small amount of “dead time” at the output of the inverter during which both transistors are off during switching transitions. Minimizing this dead time is an important design goal for an inverter designer. Broadcom The amount of turn-on delay needed depends on the propagation delay characteristics of the optocoupler, as well as the characteristics of the transistor base/gate drive circuit. Considering only the delay characteristics of the optocoupler (the characteristics of the base/gate drive circuit can be analyzed in the same way), it is important to know the minimum and maximum turn-on (tPHL) and turnoff (tPLH) propagation delay specifications, preferably over the desired operating temperature range. The importance of these specifications is illustrated in Figure 17. The waveforms labeled “LED1”, “LED2”, “OUT1”, and “OUT2” are the input and output voltages of the optocoupler circuits driving Q1 and Q2 respectively. Most inverters are designed such that the power transistor turns on when the optocoupler LED turns on; this ensures that both power transistors will be off in the event of a power loss in the control circuit. Inverters can also be designed such that the power transistor turns off when the optocoupler LED turns on; this type of design, however, requires additional fail-safe circuitry to turn off the power transistor if an overcurrent condition is detected. The timing illustrated in Figure 17 assumes that the power transistor turns on when the optocoupler LED turns on. AV02-0867EN 25 HCPL-4504/J454/0454, HCNW4504 Data Sheet The LED signal to turn on Q2 should be delayed enough so that an optocoupler with the very fastest turn-on propagation delay (tPHLmin) never turns on before an optocoupler with the very slowest turn-off propagation delay (tPLHmax) turns off. To ensure this, the turn-on of the optocoupler should be delayed by an amount no less than (tPLHmax – tPHLmin), which also happens to be the maximum data sheet value for the propagation delay difference specification, (tPLH – tPHL). The HCPL-4504/0454/J454 and HCNW4504 specify a maximum (tPLH – tPHL) of 1.3 µs over an operating temperature range of 0°C to 70°C. Although (tPLH – tPHL)max tells the designer how much delay is needed to prevent shoot-through current, it is insufficient to tell the designer how much dead time a design will have. Assuming that the optocoupler turn-on delay is exactly equal to (tPLH – tPHL)max, the minimum dead time is zero (that is, there is zero time between the turn-off of the very slowest optocoupler and the turn-on of the very fastest optocoupler). Calculating the maximum dead time is slightly more complicated. Assuming that the LED turn-on delay is still exactly equal to (tPLH – tPHL)max, it can be seen in Figure 17 that the maximum dead time is the sum of the maximum difference in turn-on delay plus the maximum difference in turnoff delay, High CMR, High-Speed Optocouplers This expression can be rearranged to obtain [(tPLHmax – tPHLmin) – (tPHLmin – tPHLmax)], and further rearranged to obtain [(tPLH – tPHL)max – (tPLH – tPHL)min], which is the maximum minus the minimum data sheet values of (tPLH – tPHL). The difference between the maximum and minimum values depends directly on the total spread in propagation delays and sets the limit on how good the worst-case dead time can be for a given design. Therefore, optocouplers with tight propagation delay specifications (and not just shorter delays or lower pulse-width distortion) can achieve short dead times in power inverters. The HCPL-4504/0454/J454 and HCNW4504 specify a minimum (tPLH – tPHL) of –0.7 µs over an operating temperature range of 0°C to 70°C, resulting in a maximum dead time of 2.0 µs when the LED turn-on delay is equal to (tPLH – tPHL)max, or 1.3 µs. It is important to maintain accurate LED turn-on delays because delays shorter than (tPLH – tPHL)max may allow shoot-through currents, while longer delays will increase the worst-case dead time. [(tPLHmax – tPLHmin) + (tPHLmax – tPHLmin)]. Broadcom AV02-0867EN 26 Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU. Copyright © 2014–2021 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
HCPL-4504-000E 价格&库存

很抱歉,暂时无法提供与“HCPL-4504-000E”相匹配的价格&库存,您可以联系我们找货

免费人工找货
HCPL-4504-000E
  •  国内价格
  • 1+3.66601
  • 10+3.38401
  • 30+3.32761
  • 100+3.15841

库存:0