0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HLMA-KL00-I0000

HLMA-KL00-I0000

  • 厂商:

    AVAGO(博通)

  • 封装:

    径向

  • 描述:

    LED AMBER CLEAR 3MM ROUND T/H

  • 数据手册
  • 价格&库存
HLMA-KL00-I0000 数据手册
HLMA-KL00 & HLMA-KH00 SunPower Series T-1 (3 mm), High Performance AlInGaP LED Lamps Data Sheet Description Features These untinted, non-diffused, solid state lamps utilize the latest absorbing substrate aluminum indium gallium phosphide (AlInGaP) LED technology. These materials have a very high luminous efficiency, capable of producing high light output over a wide range of drive currents. In addition, these LED lamps are at wavelengths ranging from amber to red orange. • Outstanding LED Material Efficiency • High Light Output over a Wide Range of Currents • Low Electrical Power Dissipation • Colors: Amber 590 nm Red-Orange 615 nm Applications Package Dimensions 3.18 (0.125) 2.67 (0.105) 3.43 (0.135) 2.92 (0.115) 6.35 (0.250) 5.58 (0.220) 4.70 (0.185) 4.19 (0.165) 1.02 NOM. (0.040) 24.10 MIN. (0.95) 0.45 SQUARE (0.018) NOMINAL 1.27 (0.050) NOM. 2.54 NOM. (0.100) CATHODE NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 0.8 MM (0.032") DOWN THE LEADS, UNLESS OTHERWISE NOTED. • • • • • • • • • Outdoor Message Boards Safety Lighting Equipment Signaling Applications Emitter for Emitter/Detector Applications Changeable Message Signs Portable Equipment Medical Equipment Automotive Lighting Alternative to Incandescent Lamps Device Selection Guide Dominant Wavelength ld (nm) Typ Luminous Intensity Iv (mcd) at 20 mA-Min Luminous Intensity Iv (mcd) at 20 mA-Max Amber 590nm 42.3 - Red Orange 615nm 39.6 - Part Number Color HLMA-KL00-I0000 HLMA-KH00-J0000 Tolerance for each intensity bin limit is ± 15%. Absolute Maximum Ratings at TA = 25°C Parameter Value Unit DC Forward Current [1,4,5] 50 mA Peak Forward Current [2] 200 mA Time Average Input Power [2] 103 mW Transient Forward Current [3] (10 ms Pulse) 500 mA Reverse Voltage (IR = 100 mA) 5 V Operating Temperature Range -40 to 100 °C Storage Temperature -40 to 100 °C Junction Temperature 110 °C Notes: 1. Derate linearly as shown in Figure 4. 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the Max Allowable Time Average Power as specified in Figure 5. 3. The transient peak current is the maximum nonrecurring peak current the device can withstand without damaging the LED die and wire bonds. 4. Drive Currents between 10 mA and 30 mA are recommended for best long term performance. 5. Operation at currents below 10 mA is not recommended, please contact your Avago Technologies sales representative. Optical Characteristics at TA = 25°C Part Number HLMA- Luminous Intensity I (mcd) @ 20 mA [1] Peak Wavelength l (nm) Color, Dominant Wavelength l [2] (nm) Viewing Angle 2q½ Degrees [3] Luminous Flux (mlm) @20 mA Typ. Min, Typ. Typ. Min. Max. Typ. Luminous Efficacy h(lm/w) KL00 35 200 592 584.5 597.0 45 480 500 KH00 35 200 621 611.0 623.0 45 263 500 V peak d v Notes: 1. The luminous intensity, Iv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis. 2. The dominant wavelength, ?d, is derived from the CIE Chromaticity Diagram and represents the color of the device. 3. θ1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity. Electrical Characteristics at TA = 25°C Reverse Breakdown V (Volts) @ I = 100 mA Typ. Max. Min. Typ. Typ. Thermal Resistance R (°C/W) KL00 1.9 2.4 5 25 40 290 13 KH00 1.9 2.4 5 25 40 290 13 F F PART NUMBERHLMA- 2 R R Capacitance C (pF) V = 0, f = 1 MHz Speed of Response (ns) Time Constant e-t/ts Forward Voltage V (Volts) @ I = 20 mA F Ts QJ-PIN Typ. 1.0 RELATIVE INTENSITY AMBER REDDISH-ORANGE 0.5 0 550 594 600 621 630 WAVELENGTH 650 700 Figure 1. Relative Intensity vs. Wavelength. 2.5 RELATIVE LUMINOUS INTENSITY (NORMALIZED AT 20 mA) 1.5 2.0 2.5 V F - FORWARD VOLTAGE - V IF - FORWARD CURRENT - mA Figure 2. Forward Current vs. Forward Voltage, AS-AlInGaP. 50 45 40 35 30 25 20 15 10 5 0 RθJ-A = 618 °C/W RθJ-A = 412 °C/W 0 10 20 30 40 0 60 70 80 90 100 T A - AMBIENT TEMPERATURE - °C Figure 4. Maximum Forward Current vs. Ambient Temperature. Derating Based on TJMAX = 110 °C. 3 2.0 1.5 1.0 0.5 0.0 3.0 0 10 20 30 40 IF - DC FORWARD CURRENT - mA 50 Figure 3. Relative Luminous Intensity vs. Forward Current. IAVG - AVERAGE CURRENT - mA IF - FORWARD CURRENT - mA 200 180 160 140 120 100 80 60 40 20 0 1.0 f ³ 1 KHz 50 40 30 f ³ 300 Hz f ³ 100 Hz 20 10 0 50 150 100 IPEAK - PEAK FORWARD CURRENT - mA Figure 5. Maximum Average Current vs. Peak Forward Current. 200 1.0 0.9 NORMALIZED INTENSITY 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° θ - ANGULAR DISPLACEMENT - (°)DEGREES Figure 6. Normalized Luminous Intensity vs. Angular Displacement. 10 RELATIVE LOP Red-orange Amber 1 0.1 -50 -25 0 25 50 75 JUNCTION TEMPERATURE - °C 100 125 150 Figure 7. Relative light output vs. junction temperature Amber Intensity Bin Limits (mcd at 20 mA) Reddish-Orange Intensity Bin Limits (mcd at 20 mA) Bin Name Min. Max. Bin Name Min. Max. I 42.3 67.7 J 39.6 63.4 J 67.7 108.2 K 63.4 101.5 K 108.2 173.2 L 101.5 162.4 L 173.2 250.0 M 162.4 234.6 M 250.0 360.0 N 234.6 340.0 N 360.0 510.0 O 340.0 540.0 O 510.0 800.0 P 540.0 850.0 P 800.0 1250.0 Q 850.0 1200.0 Q 1250.0 1800.0 Tolerance for each bin limit is ± 15%. Tolerance for each bin limit is ± 15%. Amber Color Bin Limits (nm at 20mA) Bin Name Min. Max. 3 584.5 587.0 2 587.0 598.5 4 589.5 592.0 6 592.0 594.5 7 594.5 597.0 Tolerance for each bin limit is ± 0.5nm. 4 Precautions: Lead Forming: • The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering on PC board. • For better control, it is recommended to use proper tool to precisely form and cut the leads to applicable length rather than doing it manually. • If manual lead cutting is necessary, cut the leads after the soldering process. The solder connection forms a mechanical ground which prevents mechanical stress due to lead cutting from traveling into LED package. This is highly recommended for hand solder operation, as the excess lead length also acts as small heat sink. Soldering and Handling: • Care must be taken during PCB assembly and soldering process to prevent damage to the LED component. • LED component may be effectively hand soldered to PCB. However, it is only recommended under unavoidable circumstances such as rework. The closest manual soldering distance of the soldering heat source (soldering iron’s tip) to the body is 1.59mm. Soldering the LED using soldering iron tip closer than 1.59mm might damage the LED. 1.59mm • ESD precaution must be properly applied on the soldering station and personnel to prevent ESD damage to the LED component that is ESD sensitive. Do refer to Avago application note AN 1142 for details. The soldering iron used should have grounded tip to ensure electrostatic charge is properly grounded. • Recommended soldering condition: Wave Soldering [1, 2] Manual Solder Dipping Pre-heat temperature 105 °C Max. - Preheat time 60 sec Max - Peak temperature 250 °C Max. 260 °C Max. Dwell time 3 sec Max. 5 sec Max Note: 1. PCB with different size and design (component density) will have different heat mass (heat capacity). This might cause a change in temperature experienced by the board if same wave soldering setting is used. So, it is recommended to re-calibrate the soldering profile again before loading a new type of PCB. 2. Avago Technologies’ high brightness LED are using high efficiency LED die with single wire bond as shown below. Customer is advised to take extra precaution during wave soldering to ensure that the maximum wave temperature does not exceed 250°C and the solder contact time does not exceeding 3sec. Over-stressing the LED during soldering process might cause premature failure to the LED due to delamination. Avago Technologies LED configuration CATHODE AlInGaP Device • Any alignment fixture that is being applied during wave soldering should be loosely fitted and should not apply weight or force on LED. Non metal material is recommended as it will absorb less heat during wave soldering process. • At elevated temperature, LED is more susceptible to mechanical stress. Therefore, PCB must allowed to cool down to room temperature prior to handling, which includes removal of alignment fixture or pallet. • If PCB board contains both through hole (TH) LED and other surface mount components, it is recommended that surface mount components be soldered on the top side of the PCB. If surface mount need to be on the bottom side, these components should be soldered using reflow soldering prior to insertion the TH LED. • Recommended PC board plated through holes (PTH) size for LED component leads. Note: 1) Above conditions refers to measurement with thermocouple mounted at the bottom of PCB. 2) It is recommended to use only bottom preheaters in order to reduce thermal stress experienced by LED. • Wave soldering parameters must be set and maintained according to the recommended temperature and dwell time. Customer is advised to perform daily check on the soldering profile to ensure that it is always conforming to recommended soldering conditions. 5 Note: Electrical connection between bottom surface of LED die and the lead frame is achieved through conductive paste. LED component lead size Diagonal Plated through hole diameter 0.45 x 0.45 mm (0.018x 0.018 inch) 0.636 mm (0.025 inch) 0.98 to 1.08 mm (0.039 to 0.043 inch) 0.50 x 0.50 mm (0.020x 0.020 inch) 0.707 mm (0.028 inch) 1.05 to 1.15 mm (0.041 to 0.045 inch) • Over-sizing the PTH can lead to twisted LED after clinching. On the other hand under sizing the PTH can cause difficulty inserting the TH LED. Refer to Application Note 5334 for more information about soldering and handling of high brightness TH LED lamps. Example of Wave Soldering Temperature Profile for TH LED Recommended solder: Sn63 (Leaded solder alloy) SAC305 (Lead free solder alloy) LAMINAR WAVE HOT AIR KNIFE TURBULENT WAVE 250 Flux: Rosin flux Solder bath temperature: 245°C± 5°C (maximum peak temperature = 250°C) TEMPERATURE (°C) 200 Dwell time: 1.5 sec - 3.0 sec (maximum = 3sec) 150 Note: Allow for board to be sufficiently cooled to room temperature before exerting mechanical force. 100 50 PREHEAT 0 10 20 30 40 60 50 TIME (SECONDS) 70 80 90 Packaging Label (i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box) (1P) Item: Part Number STANDARD LABEL LS0002 RoHS Compliant e3 max temp 250C (1T) Lot: Lot Number (Q) QTY: Quantity LPN: CAT: Intensity Bin (9D)MFG Date: Manufacturing Date BIN: Refer to below information (P) Customer Item: 6 (V) Vendor ID: (9D) Date Code: Date Code DeptID: Made In: Country of Origin Lamps Baby Label (1P) PART #: Part Number (1T) LOT #: Lot Number RoHS Compliant e3 max temp 250C 100 DeptID: Made In: Country of Origin (ii) Avago Baby Label (Only available on bulk packaging) Lamps Baby Label (1P) PART #: Part Number RoHS Compliant e3 max temp 250C (1T) LOT #: Lot Number (9D)MFG DATE: Manufacturing Date QUANTITY: Packing Quantity C/O: Country of Origin Customer P/N: CAT: Intensity Bin Supplier Code: BIN: Refer to below information DATECODE: Date Code Acronyms and Definition: Example: BIN: (i) Color bin only or VF bin only (Applicable for part number with color bins but without VF bin OR part number with VF bins and no color bin) (i) Color bin only or VF bin only BIN: 2 (represent color bin 2 only) BIN: VB (represent VF bin “VB” only) (ii) Color bin incorporate with VF Bin BIN: 2VB OR (ii) Color bin incorporated with VF Bin VB: VF bin “VB” (Applicable for part number that have both color bin and VF bin) 2: Color bin 2 only DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE. For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved. Obsoletes AV02-0648EN AV02-1524EN - July 21, 2014
HLMA-KL00-I0000 价格&库存

很抱歉,暂时无法提供与“HLMA-KL00-I0000”相匹配的价格&库存,您可以联系我们找货

免费人工找货