HLMP-EGxx, HLMP-ELxx
T-1¾ (5 mm) High Brightness AlInGaP Red and Amber LEDs
Data Sheet
Description
Features
These Precision Optical Performance AlInGaP LEDs
provide superior light output for excellent readability in
sunlight and are extremely reliable. AlInGaP LED technology provides extremely stable light output over long
periods of time. Precision Optical Performance lamps
utilize the aluminum indium gallium phosphide (AlInGaP)
technology.
• Viewing angle: 15°, 23° and 30°
These LED lamps are untinted. T-1¾ packages incorporating second generation optics producing well defined
spatial radiation patterns at specific viewing cone angles.
• Superior resistance to moisture
These lamps are made with an advanced optical grade
epoxy offering superior high temperature and high
moisture resistance performance in outdoor signal and
sign application. The maximum LED junction temperature limit of +130° C enables high temperature operation
in bright sunlight conditions. The epoxy contains uv
inhibitor to reduce the effects of long term exposure to
direct sunlight.
Benefits
• Superior performance for outdoor environment
• Suitable for auto-insertion onto PC board
• Well defined spatial radiation pattern
• High brightness material
• Available in Red and Amber
– Red AlInGaP 626 nm
– Amber AlInGaP 590 nm
• Standoff and non-standoff Package
Applications
• Traffic management:
– Traffic signals
– Pedestrian signals
– Work zone warning lights
– Variable message signs
• Solar Power signs
• Commercial outdoor advertising
– Signs
– Marquee
Package Dimension
B: Standoff
A: Non-standoff
5.00 ± 0.20
(0.197 ± 0.008)
5.00 ± 0.20
(0.197 ± 0.008)
1.14 ± 0.20
(0.045 ± 0.008)
8.71 ± 0.20
(0.343 ± 0.008)
d
8.71 ± 0.20
(0.343 ± 0.008)
1.14 ± 0.20
(0.045 ± 0.008)
2.35 (0.093)
MAX.
0.70 (0.028)
MAX.
31.60
MIN.
(1.244)
1.50 ± 0.15
(0.059 ± 0.006)
31.60
MIN.
(1.244)
0.70 (0.028)
MAX.
CATHODE
LEAD
CATHODE
LEAD
0.50 ± 0.10
SQ. TYP.
(0.020 ± 0.004)
1.00 MIN.
(0.039)
5.80 ± 0.20
(0.228 ± 0.008)
CATHODE
FLAT
2.54 ± 0.38
(0.100 ± 0.015)
Part Number
Dimension ‘d’
HLMP-EG1H-xxxxx
12.30 ± 0.25mm
HLMP-EL1H-xxxxx
12.64 ± 0.25mm
HLMP-EG2H-xxxxx
12.10 ± 0.25mm
HLMP-EL2H-xxxxx
12.14 ± 0.25mm
HLMP-EG3H-xxxxx/HLMP-EL3H-xxxxx
12.10 ± 0.25mm
Notes:
1. All dimensions in millimeters (inches).
2. Tolerance is ± 0.20 mm unless other specified.
3. Leads are mild steel with tin plating.
4. The epoxy meniscus is 1.21 mm max.
5. For identification of polarity after the leads are trimmed off, please
refer to the illustration below:
CATHODE
2
ANODE
1.00 MIN.
(0.039)
CATHODE
FLAT
0.50 ± 0.10
SQ. TYP.
(0.020 ± 0.004)
5.80 ± 0.20
(0.228 ± 0.008)
2.54 ± 0.38
(0.100 ± 0.015)
Device Selection Guide
Luminous Intensity Iv (mcd) at
20 mA [1,2,5]
Part Number
Color and Dominant
Wavelength λd (nm)
Typ [3]
Min
Max
Standoff
Typical Viewing
angle (°) [4]
HLMP-EG1G-Y10DD
Red 626
9300
21000
No
15
HLMP-EG1H-Y10DD
Red 626
9300
21000
Yes
HLMP-EL1G-Y10DD
Amber 590
9300
21000
No
HLMP-EL1H-Y10DD
Amber 590
9300
21000
Yes
HLMP-EG2G-XZ0DD
Red 626
7200
16000
No
HLMP-EG2H-XZ0DD
Red 626
7200
16000
Yes
HLMP-EL2G-WY0DD
Amber 590
5500
12000
No
HLMP-EL2H-WY0DD
Amber 590
5500
12000
Yes
HLMP-EG3G-VX0DD
Red 626
4200
9300
No
HLMP-EG3H-VX0DD
Red 626
4200
9300
Yes
HLMP-EL3G-VX0DD
Amber 590
4200
9300
No
HLMP-EL3H-VX0DD
Amber 590
4200
9300
Yes
Notes:
1. The luminous intensity is measured on the mechanical axis of the lamp package and it is tested with pulsing condition.
2. The optical axis is closely aligned with the package mechanical axis.
3. Dominant wavelength, λd, is derived from the CIE Chromaticity Diagram and represents the color of the lamp.
4. θ½ is the off-axis angle where the luminous intensity is half the on-axis intensity.
5. Tolerance for each bin limit is ± 15%
Part Numbering System
HLMP – E x xx – x x x xx
Packaging Option
DD: Ammopack
Color Bin Selection
0 : Full Distribution
K: Color bin 2 and 4
L: Color bin 4 and 6
Maximum Intensity Bin
Refer to Device Selection Guide
Minimum Intensity Bin
Refer to Device Selection Guide
Viewing Angle and Lead Standoff
1G :
1H :
2G :
2H :
3G :
3H :
15 without standoff
15 with standoff
23 without standoff
23 with standoff
30 without standoff
30 with standoff
Color
G : Red
L : Amber
Package
E: 5 mm Standard Round
Note: Refer to AB 5337 for complete information on the part numbering system.
3
23
30
Absolute Maximum Ratings
TJ = 25° C
Parameter
Red/ Amber
Unit
DC Forward Current [1]
50
mA
Peak Forward Current
100 [2]
mA
Power Dissipation
120
mW
LED Junction Temperature
130
°C
Operating Temperature Range
-40 to +100
°C
Storage Temperature Range
-40 to +100
°C
Notes:
1. Derate linearly as shown in Figure 4.
2. Duty Factor 30%, frequency 1 kHz.
Electrical / Optical Characteristics
TJ = 25° C
Parameter
Symbol
Min.
Typ.
Max.
Units
Test Conditions
Forward Voltage
Red & Amber
VF
1.8
2.1
2.4
V
IF = 20 mA
Reverse Voltage [3]
Red & Amber
VR
5
V
IR = 100 μA
Dominant Wavelength [1]
Red
Amber
ld
nm
IF = 20 mA
Peak Wavelength
Red
Amber
lPEAK
nm
Peak of Wavelength of Spectral Distribution at IF = 20 mA
Thermal resistance
RqJ-PIN
°C/W
LED junction to pin
Luminous Efficacy [2]
ηv
lm/W
Emitted Luminous Power/
Emitted Radiant Power
nm/°C
IF = 20 mA;
+25° C ≤ TJ ≤ +100° C
Red
Amber
Thermal coefficient of ld
Red
Amber
618.0
584.5
626.0
590.0
634
594
240
190
490
0.05
0.09
630.0
594.5
Notes:
1. The dominant wavelength is derived from the Chromaticity Diagram and represents the color of the lamp.
2. The radiant intensity, Ie in watts per steradian, maybe found from the equation Ie = Iv / ηV where Iv is the luminous intensity in candela and ηV is
the luminous efficacy in lumens/ watt.
3. Indicates product final testing condition, long term reverse bias is not recommended.
4
1.0
100
Amber
Red
FORWARD CURRENT-mA
RELATIVE INTENSITY
0.8
0.6
0.4
0.2
0.0
500
550
600
WAVELENGTH - nm
650
0
20
40
60
DC FORWARD CURRENT - mA
80
-60
-30
0
30
60
ANGULAR DISPLACEMENT - DEGREES
NORMALIZED INTENSITY
Figure 5. Representative Radiation pattern for 15° Viewing Angle Lamp
5
0
1
2
FORWARD VOLTAGE-V
3
50
40
30
20
10
0
100
0
20
40
60
80
TA - AMBIENT TEMPERATURE - ºC
100
120
Figure 4. Maximum Forward Current vs Ambient Temperature
NORMALIZED INTENSITY
-90
20
60
Figure 3. Relative Intensity vs Forward Current
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
40
Figure 2. Forward Current vs Forward Voltage
IF - FORWARD CURRENT - mA
RELATIVE LUMINOUS INTENSITY
(NORMALIZED AT 20 mA)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
60
0
700
Figure 1. Relative Intensity vs Wavelength
80
90
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-90
-60
-30
0
30
60
ANGULAR DISPLACEMENT - DEGREES
Figure 6. Representative Radiation pattern for 23° Viewing Angle Lamp
90
10
RELATIVE LIGHT OUTPUT
NORMALIZED AT TJ = 25° C
NORMALIZED INTENSITY
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-90
-60
-30
0
30
60
ANGULAR DISPLACEMENT - DEGREES
90
Figure 7. Representative Radiation pattern for 30° Viewing Angle Lamp
Amber
Red
FORWARD VOLTAGE SHIFT - V
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-40
-20
0
20
40
60
80 100
TJ - JUNCTION TEMPERATURE
Figure 9. Forward Voltage Shift vs Junction Temperature
6
120
1
0.1
-40
-20
0
20
40
60
80 100
TJ - JUNCTION TEMPERATURE
Figure 8. Relative Light Output vs Junction Temperature
0.6
0.5
Amber
Red
140
120
140
Intensity Bin Limit Table (1.3 : 1 Iv Bin Ratio)
Red Color Range
Intensity (mcd) at 20 mA
Bin
Min
Max
Min
Dom
U
3200
4200
618.0
Max
Dom
X min
Y Min
X max
Y max
630.0
0.6872
0.3126
0.6890
0.2943
0.6690
0.3149
0.7080
0.2920
V
4200
5500
W
5500
7200
Tolerance for each bin limit is ± 0.5 nm
X
7200
9300
Y
9300
12000
Amber Color Range
Z
12000
16000
1
16000
21000
Tolerance for each bin limit is ± 15%
Bin
Min
Dom
Max
Dom
Xmin
Ymin
Xmax
Ymax
1
584.5
587.0
0.5420
0.4580
0.5530
0.4400
0.5370
0.4550
0.5570
0.4420
2
587.0
589.5
0.5570
0.4420
0.5670
0.4250
0.5530
0.4400
0.5720
0.4270
0.5720
0.4270
0.5820
0.4110
0.5670
0.4250
0.5870
0.4130
0.5870
0.4130
0.5950
0.3980
0.5820
0.4110
0.6000
0.3990
VF Bin Table (V at 20 mA)
Bin ID
Min
Max
VD
1.8
2.0
VA
2.0
2.2
VB
2.2
2.4
4
589.5
592.0
6
592.0
594.5
Tolerance for each bin limit is ± 0.5 nm
Tolerance for each bin limit is ± 0.05 V
Note:
All bin categories are established for classification of products. Products
may not be available in all bin categories. Please contact your Avago
representative for further information.
Avago Color Bin on CIE 1931 Chromaticity Diagram
0.480
0.460
0.440
0.420
1
Amber 2
4
6
Y
0.400
0.380
0.360
0.340
0.320
Red
0.300
0.280
0.500
7
0.550
0.600
0.650
X
0.700
0.750
0.800
Precautions:
Lead Forming:
• The leads of an LED lamp may be preformed or cut to
length prior to insertion and soldering on PC board.
• For better control, it is recommended to use proper
tool to precisely form and cut the leads to applicable
length rather than doing it manually.
• If manual lead cutting is necessary, cut the leads after
the soldering process. The solder connection forms a
mechanical ground which prevents mechanical stress
due to lead cutting from traveling into LED package.
This is highly recommended for hand solder operation,
as the excess lead length also acts as small heat sink.
Note:
1. PCB with different size and design (component density) will have
different heat mass (heat capacity). This might cause a change in
temperature experienced by the board if same wave soldering
setting is used. So, it is recommended to re-calibrate the soldering
profile again before loading a new type of PCB.
2. Avago Technologies’ high brightness LED are using high efficiency
LED die with single wire bond as shown below. Customer is advised
to take extra precaution during wave soldering to ensure that the
maximum wave temperature does not exceed 260°C and the solder
contact time does not exceeding 5sec. Over-stressing the LED during
soldering process might cause premature failure to the LED due to
delamination.
Avago Technologies LED Configuration
Soldering and Handling:
• Care must be taken during PCB assembly and soldering
process to prevent damage to the LED component.
• LED component may be effectively hand soldered
to PCB. However, it is only recommended under
unavoidable circumstances such as rework. The closest
manual soldering distance of the soldering heat source
(soldering iron’s tip) to the body is 1.59mm. Soldering
the LED using soldering iron tip closer than 1.59mm
might damage the LED.
1.59 mm
• ESD precaution must be properly applied on the
soldering station and personnel to prevent ESD
damage to the LED component that is ESD sensitive.
Do refer to Avago application note AN 1142 for details.
The soldering iron used should have grounded tip to
ensure electrostatic charge is properly grounded.
• Recommended soldering condition:
Wave Soldering Manual Solder
[1, 2]
Dipping
Pre-heat temperature
105 °C Max.
-
Preheat time
60 sec Max
-
Peak temperature
260 °C Max.
260 °C Max.
Dwell time
5 sec Max.
5 sec Max
Note:
1) Above conditions refers to measurement with thermocouple
mounted at the bottom of PCB.
2) It is recommended to use only bottom preheaters in order to reduce
thermal stress experienced by LED.
• Wave soldering parameters must be set and maintained
according to the recommended temperature and dwell
time. Customer is advised to perform daily check on the
soldering profile to ensure that it is always conforming
to recommended soldering conditions.
8
Anode
Note: Electrical
InGaN connection
Device between bottom surface of LED die and
the lead frame is achieved through conductive paste.
• Any alignment fixture that is being applied during
wave soldering should be loosely fitted and should
not apply weight or force on LED. Non metal material
is recommended as it will absorb less heat during wave
soldering process.
Note: In order to further assist customer in designing jig accurately
that fit Avago Technologies’ product, 3D model of the product is
available upon request.
• At elevated temperature, LED is more susceptible to
mechanical stress. Therefore, PCB must allowed to cool
down to room temperature prior to handling, which
includes removal of alignment fixture or pallet.
• If PCB board contains both through hole (TH) LED and
other surface mount components, it is recommended
that surface mount components be soldered on the
top side of the PCB. If surface mount need to be on the
bottom side, these components should be soldered
using reflow soldering prior to insertion the TH LED.
• Recommended PC board plated through holes (PTH)
size for LED component leads.
LED component
lead size
Diagonal
Plated through
hole diameter
0.45 x 0.45 mm
(0.018x 0.018 inch)
0.636 mm
(0.025 inch)
0.98 to 1.08 mm
(0.039 to 0.043 inch)
0.50 x 0.50 mm
(0.020x 0.020 inch)
0.707 mm
(0.028 inch)
1.05 to 1.15 mm
(0.041 to 0.045 inch)
• Over-sizing the PTH can lead to twisted LED after
clinching. On the other hand under sizing the PTH can
cause difficulty inserting the TH LED.
Refer to application note AN5334 for more information about soldering and handling of high brightness TH LED lamps.
Example of Wave Soldering Temperature Profile for TH LED
260 °C Max
TEMPERATURE (°C)
Recommended solder:
Sn63 (Leaded solder alloy)
SAC305 (Lead free solder alloy)
Flux: Rosin flux
Solder bath temperature: 255°C ± 5°C
(maximum peak temperature = 260°C)
105 °C Max
Dwell time: 3.0 sec - 5.0 sec
(maximum = 5sec)
60sec Max
Note: Allow for board to be sufficiently
cooled to room temperature before
exerting mechanical force.
TIME (sec)
Ammo Packs Drawing
6.35 ±1.30
0.250 ±0.051
12.70 ±1.00
0.500 ±0.039
CATHODE
20.5 ±1.00
0.8070 ±0.0394
9.125 ±0.625
0.3595 ±0.0245
18.00 ±0.50
0.7085 ±0.0195
12.70 ±0.30
0.500 ±0.012
0.70 ±0.20
0.0275 ±0.0075 A
A
VIEW A-A
Note: The ammo-packs drawing is applicable for packaging option –DD & -ZZ and regardless standoff or non-standoff
9
4.00 ±0.20 TYP.
ø 0.1575
±0.0075
Packaging Box for Ammo Packs
Note: The dimension for ammo pack is applicable for the device with standoff and without standoff.
Packaging Label:
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)
(1P) Item: Part Number
STANDARD LABEL LS0002
RoHS Compliant
e3
max temp 260C
(1T) Lot: Lot Number
(Q) QTY: Quantity
LPN:
CAT: Intensity Bin
(9D)MFG Date: Manufacturing Date
BIN: Refer to below information
(P) Customer Item:
(V) Vendor ID:
(9D) Date Code: Date Code
DeptID:
Made In: Country of Origin
10
Lamps Baby Label
RoHS Compliant
e3
max temp 260C
DeptID:
Made In: Country of Origin
(ii) Avago Baby Label (Only available on bulk packaging)
Lamps Baby Label
(1P) PART #: Part Number
RoHS Compliant
e3
max temp 260C
(1T) LOT #: Lot Number
(9D)MFG DATE: Manufacturing Date
QUANTITY: Packing Quantity
C/O: Country of Origin
Customer P/N:
CAT: Intensity Bin
Supplier Code:
BIN: Refer to below information
DATECODE: Date Code
Acronyms and Definition:
BIN:
Example:
(i) Color bin only or VF bin only
(i) Color bin only or VF bin only
BIN: 2 (represent color bin 2 only)
BIN: VB (represent VF bin “VB” only)
(Applicable for part number with color bins but without
VF bin OR part number with VF bins and no color bin)
OR
(ii) Color bin incorporated with VF Bin
(Applicable for part number that have both color bin
and VF bin)
(ii) Color bin incorporate with VF Bin
BIN: 2 VB
VB: VF bin “VB”
2: Color bin 2 only
DISCLAIMER: Avago’s products and software are not specifically designed, manufactured or authorized for sale
as parts, components or assemblies for the planning, construction, maintenenace or direct operation of a
nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to
make claims against Avago or its suppliers, for all loss, damage, expense or liability in connection with such use.
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved.
AV02-3139EN - April 3, 2014
很抱歉,暂时无法提供与“HLMP-EL3G-VX0DD”相匹配的价格&库存,您可以联系我们找货
免费人工找货- 国内价格 香港价格
- 1+9.068411+1.08465
- 10+5.5045210+0.65838
- 100+3.71525100+0.44438
- 500+3.01334500+0.36042
- 1000+2.797971000+0.33466
- 国内价格 香港价格
- 2000+2.621322000+0.31353
- 4000+2.476574000+0.29622
- 6000+2.404306000+0.28758
- 10000+2.3244110000+0.27802
- 14000+2.2778214000+0.27245
- 20000+2.2330820000+0.26710