0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MGA-631P8-TR1G

MGA-631P8-TR1G

  • 厂商:

    AVAGO(博通)

  • 封装:

    WFDFN8_EP

  • 描述:

    IC RF AMP GAAS MMIC 1.6GHZ 8TSLP

  • 详情介绍
  • 数据手册
  • 价格&库存
MGA-631P8-TR1G 数据手册
MGA-631P8 Low Noise, High Linearity, Active Bias Low Noise Amplifier Data Sheet Description Features Avago Technologies’ MGA-631P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA) with active bias. The LNA has low noise with excellent input return loss and high linearity achieved through the use of Avago Technologies’ proprietary 0.5um GaAs Enhancement-mode pHEMT process. The LNA has an extra feature that allows a designer to adjust supply current and gain externally. Due to the high isolation between the input and output, gain can be adjusted independently through a resistor in series with a blocking capacitor from the output pin to FB1 pin, without affecting the noise figure. It is housed in a miniature 2.0 x 2.0 x 0.75mm3 8-pin Thin Small Leadless Package (TSLP) package. The compact footprint and low profile coupled with low noise, high gain, excellent input return loss and high linearity make the MGA-631P8 an ideal choice as an LNA for cellular infrastructure for GSM, CDMA, GPS and ISM applications. x x x x x x x It is designed for optimum use between 400MHz to 1.5GHz. For optimum performance at higher frequency from 1.4GHz to 3.8GHz, the MGA-632P8 is recommended. Both MGA-631P8 and MGA-632P8 share the same package and pinout. Pin Configuration and Package Marking Low noise figure Good input return loss High linearity performance High Isolation Externally adjustable supply current, 40-80mA Externally adjustable gain, 15-20dB GaAs E-pHEMT Technology[1] x Low cost small package size: 2.0x2.0x0.75 mm3 x Excellent uniformity in product specifications Specifications 900MHz; 4V, 54mA (typ) x x x x x x 17.5 dB Gain 0.53 dB Noise Figure -19.4dB S11 -34dB S12 32.6 dBm Output IP3 18.0 dBm Output Power at 1dB gain compression Applications 2.0 x 2.0 x 0.75 mm3 8-lead TSLP x Low noise amplifier for cellular infrastructure for GSM, CDMA, GPS and ISM. x Other ultra low noise applications. Note: 1. Enhancement mode technology employs positive Vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Top View Bottom View Note: Package marking provides orientation and identification “G1” is Device Code “X” is month code Note: Pin 1 : not used Pin 2 : RFin Pin 3 : RF ground Pin 4 : Vbias Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 50 V ESD Human Body Model = 200 V Pin 5 : FB1 Pin 6 : not used Pin 7 : RFout Pin 8 : Gnd Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. MGA-631P8 Absolute Maximum Rating [1] Symbol Parameter Units Absolute Max. Vd Device Supply Voltage V 5.5 Pin,max CW RF Input Power (Vd=4.0V, Vbias=4.0V) dBm 20 Pdiss Total Power Dissipation [2] W 0.55 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 Thermal Resistance [3] (Vd = 4.0V, Vbias=4.0V), θJC = 47 °C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Board temperature TB is 25 °C. Derate 21.2mW/ °C for TB>124 °C. 3. Thermal resistance measured using Infra-Red Microscopy Technique. Product Consistency Distribution Charts [4] Process Capability for Gain Process Capability for NF 300 Nominal = 0.53, USL = 1.0 120 Frequency Frequency CPK Lower = 3.72 CPK Upper = 3.85 Std Dev = 0.13 LSL = 16.0, Nominal = 17.5, USL = 19.0 250 150 200 150 100 CPK=4.04 Std Dev=0.04 90 60 30 50 0 16 16.5 17 17.5 18 Gain (dB) 18.5 0 0.41 19 0.51 0.61 0.71 NF (dB) Figure 1. Gain distribution at 54mA CPK Lower = 2.45 CPK = 2.68 Std Dev = 1.26 LSL = 41, Nominal = 54, USL = 67 250 500 CPK Lower = 1.550 Std Dev = 0.369 400 Count 200 Count Nominal = 32.6 LSL = 30.8 150 300 100 200 50 100 40 45 50 55 60 Id (mA) Figure 3. Id distribution at 54mA 65 70 31 32 33 OIP3U (dBm) 34 35 Figure 4. OIP3U distribution at 54mA 4. Distribution data sample size is 500 samples taken from 3 different wafer lots. Future wafer allocated to this product may have nominal values anywhere between the upper and lower limits. Circuit losses have been de-embedded from actual measurements. 2 Electrical Specifications [1,2] TA = 25 °C, Vd =4V @ 54mA, R1=91ohm unless otherwise specified. Symbol Parameter and Test Condition Units Min. Typ. Max. 41 54 67 16.0 18.4 17.9 17.5 19.0 30.8 34.2 33.8 32.6 Id Operational Current Vbias=4.0V mA Gain Freq=800 MHz Freq=850 MHz Freq=900 MHz Associated Gain dB OIP3 Freq=800 MHz Freq=850 MHz Freq=900 MHz Output Third Order Intercept Point (2-tone @ FRF +/- 5MHz, Pin = -20dBm) dBm Freq=800 MHz Freq=850 MHz Freq=900 MHz Noise Figure in 50: system OP1dB Freq=800 MHz Freq=850 MHz Freq=900 MHz Output Power at 1dB Gain Compression dBm 18.3 18.0 18.0 IRL Freq=800 MHz Freq=850 MHz Freq=900 MHz Input Return Loss dB -20.9 -30.6 -19.4 ORL Freq=800 MHz Freq=850 MHz Freq=900 MHz Output Return Loss dB -21.3 -22.1 -22.5 S12 Freq=800 MHz Freq=850 MHz Freq=900 MHz Reverse Isolation dB -34.0 -34.0 -34.0 NF50Ω dB 0.57 0.51 0.53 1.0 Notes: 1. Measurements obtained using demo board described in Figure 28 and Table 1, List 1. Input and output board losses have been de-embedded. 2. Guaranteed specifications are 100% tested in production test circuit. Typical Electrical Specifications at 700MHz [3] TA = 25 °C, Vd =4V @ 54mA, R1=91ohm unless otherwise specified. Symbol Parameter and Test Condition Units Typ. Gain Freq=700MHz Associated Gain dB 17.1 OIP3 Freq=700MHz Output Third Order Intercept Point (2-tone @ FRF +/- 5MHz, Pin = -20dBm) dBm 35.7 NF50Ω Freq=700MHz Noise Figure in 50: system dB 1.12 OP1dB Freq=700MHz Output Power at 1dB Gain Compression dBm 15.1 IRL Freq=700MHz Input Return Loss dB -12.1 ORL Freq=700MHz Output Return Loss dB -3.2 S12 Freq=700MHz Reverse Isolation dB -38.4 Notes: 3. Measurements obtained using demo board described in Figure 28 and Table 1, List 4. Input and output board losses have been de-embedded. 3 MGA-631P8 Typical Performance[1] TA = 25 °C, Vd = 4V, Id = 54mA, R1=91ohm unless stated otherwise. 1 21 0.9 19 0.8 17 0.7 0.6 NF (dB) Gain (dB) 15 13 0.5 0.4 11 0.3 9 20mA 40mA 60mA 80mA 7 5 780 800 820 840 860 Frequency (MHz) 880 20mA 40mA 60mA 80mA 0.2 0.1 900 0 780 920 Figure 5. Gain Vs Frequency and Id 800 820 840 860 Frequency (MHz) 880 900 920 Figure 6. NF Vs Frequency and Id 20 40 18 16 30 14 25 12 Gain (dB) OIP3 (dBm) 35 20 10 15 8 6 20mA 40mA 60mA 80mA 10 5 0 780 3V Vd 4V Vd 5V Vd 4 2 0 800 820 840 860 Frequency (MHz) 880 900 10 920 20 30 40 50 Id (mA) 60 70 80 90 Figure 8. Gain Vs Id and Vd Figure 7. OIP3 Vs Frequency and Id 1 40 0.9 35 0.8 30 0.7 25 OIP3 (dBm) NF (dB) 0.6 0.5 0.4 20 15 0.3 0.2 10 3V Vd 4V Vd 5V Vd 0.1 0 10 20 30 Figure 9. NF Vs Id and Vd 40 50 Id (mA) 60 70 80 3V Vd 4V Vd 5V Vd 5 90 0 10 20 40 Figure 10. OIP3 Vs Id and Vd Notes: 1. Measurements obtained using demo board described in Figure 28 and Table 1, List 1. 4 30 50 Id (mA) 60 70 80 90 MGA-631P8 Typical Performance[1] TA = 25 °C, Vd = 4V, Id = 54mA, R1=91ohm unless stated otherwise. 19 70 18 60 17 16 40 Gain (dB) Id (mA) 50 30 14 13 20 0 1 2 3 4 Vd (V) 5 6 -40°C 25°C 85°C 12 -40°C 85°C 25°C 10 0 15 11 7 10 780 8 Figure 11. Id Vs Vd and Temperature 800 820 840 860 Frequency (MHz) 880 900 920 Figure 12. Gain Vs Frequency and Temperature 0.8 40 0.7 35 0.6 30 OIP3 (dBm) NF (dB) 0.5 25 0.4 0.3 20 -40°C -30°C 25°C 85°C 0.2 -40°C 25°C 85°C 0.1 0.0 780 800 820 840 860 880 Frequency (MHz) 900 15 920 Figure 13. NF Vs Frequency and Temperature 10 780 800 820 840 860 Frequency (MHz) 880 900 920 Figure 14. OIP3 vs Frequency and Temperature 20 0.8 18 0.7 16 0.6 0.5 12 NF (dB) Gain (dB) 14 10 8 0.4 0.3 6 0.2 -40°C 25°C 85°C 4 2 0 10 20 30 40 50 Id (mA) Figure 15. Gain vs Id and Temperature 60 70 80 90 0.0 10 20 30 40 50 Id (mA) Figure 16. NF Vs Id and Temperature Notes: 1. Measurements obtained using demo board described in Figure 28 and Table 1, List 1. 5 -40°C 25°C 85°C 0.1 60 70 80 90 MGA-631P8 Typical Performance[1] TA = 25 °C, Vd = 4V, Id = 54mA, R1=91ohm unless stated otherwise. 40 25 35 20 25 15 Gain (dB) OIP3 (dBm) 30 20 15 10 -40°C -30°C 25°C 85°C 5 20 30 40 50 Id (mA) 60 70 80 R1=56ohms R1=91ohms R1=560ohms 5 0 780 0 10 10 90 Figure 17. OIP3 vs Id and Temperature 800 820 840 860 880 Frequency (MHz) 900 920 Figure 18. Gain Vs Frequency and R1 40 1 R1=56ohms R1=91ohms R1=560ohms 0.9 0.8 35 30 OIP3 (dBm) 0.7 NF (dB) 0.6 0.5 0.4 25 20 0.3 0.2 R1=56ohms R1=91ohms R1=560ohms 15 0.1 0 780 800 820 840 860 Frequency (MHz) 880 900 10 780 920 Figure 19. NF Vs Frequency and R1 820 840 860 Frequency (MHz) 880 900 920 Figure 20. OIP3 Vs Frequency and R1 0 0 R1=56ohms R1=91ohms R1=560ohms -5 R1=56ohms R1=91ohms R1=560ohms -5 Output Return Loss (dB) -10 Input Return Loss 800 -15 -20 -25 -10 -15 -20 -30 -35 780 800 820 840 860 Frequency (MHz) Figure 21. Input Return Loss Vs Frequency and R1 880 900 920 -25 780 820 840 860 Frequency (MHz) 880 Figure 22. Output Return Loss Vs Frequency and R1 Notes: 1. Measurements obtained using demo board described in Figure 28 and Table 1, List 1. 6 800 900 920 MGA-631P8 Typical Performance for 450 Mz Matching [1] MGA-631P8 Typical Performance for 1.5 GHz Matching [2] TA = +25 °C, Vd = 4V, Id = 54mA TA = +25 °C, Vd = 4V, Id = 54mA 1.2 16 1.2 20 1.0 15 1.0 18 0.8 16 0.6 14 12 0.40 0.43 0.45 0.48 Frequency (GHz) 0.50 0.53 14 0.8 13 0.6 0.4 12 0.4 0.2 11 0.2 0.0 0.55 10 1.3 Figure 23. Gain and NF Vs Frequency 45 30 40 OIP3 20 15 25 20 5 15 10 1.30 0 0.45 Frequency (GHz) 0.475 0.5 Figure 24. OIP3 vs Frequency 1.40 1.45 1.50 1.55 Frequency (GHz) -6 1.65 1.70 -15 -9 -25 Input Return Los s -12 Output Return Los s -15 -30 -18 -35 -21 -40 -24 -20 0.45 0.5 0.55 0.6 Frequency (GHz) -27 0.65 0 Input Return Loss Output Return Loss -5 Input Return Loss (dB) -3 Output Return Loss (dB) -5 -10 Figure 25. Input and output Return Loss vs Frequency -2 -10 -4 -15 -6 -20 -8 -25 -10 -30 -12 -35 -14 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Frequency (GHz) Figure 28. Input and output Return Loss vs Frequency Notes: 1. For Figure 22, 23 and 24, measurements obtained using demo board described in Figure28 and Table 1, List 2. 2. For Figure 25, 26 and 27, measurements obtained using demo board described in Figure28 and Table 1, List 3. 7 1.60 0 0 0.4 1.35 Figure 27. OIP3 vs Frequency 0 0.35 OIP3 30 10 -45 0.3 0 1.7 1.6 35 OIP3 (dBm) OIP3 (dBm) 25 0.425 1.5 Frequency (GHz) Figure 26. Gain and NF vs Frequency 35 0.4 1.4 1.9 2.0 Output Return Loss (dB) 0.38 1.4 Gain (dB) 22 NF (dB) 17 10 0.35 Input Return Loss (dB) 1.6 Gain NF 1.4 24 Gain (dB) 18 1.6 Gain NF NF (dB) 26 Demo Board Layout Figure 29. Demo Board Layout Diagram - Recommended PCB material is 10 mils Rogers RO4350. - Suggested component values may vary according to layout and PCB material. Demo Board Schematic for Table 1, List 1 (900 MHz Matching) and List 2 (450 MHz Matching). Vd C7 C6 Rbias C5 L2 Gnd RFin RFout RFin RFout C2 C1 R1 L1 RFgnd C4 Bias Vbias C3 FB1 Figure 30. Demo Board Schematic. Note: This demo board is used for measuring Electrical Specifications and plots of Fig. 4 to Fig. 24. Table 1, List 1 shows the components values used while measuring Fig. 4 to Fig. 21. Table 1, List 2 shows the components values used while measuring Fig. 22 to Fig. 24. 8 Demo Board Schematic for Table 1, List 3 (1.5 GHz Matching) Vd C7 C6 Rbias C5 L2 Gnd RFin RFout RFin RFout C2 C1 R1 L1 L3 RFgnd C4 Bias Vbias C3 FB1 Figure 31. Demo Board Schematic with additional shunt inductor, L3, at RFout. This demo board is used for measuring plots of Fig. 25 to Fig. 27. Table1, List 3 shows the components values. Demo Board Schematic for Table 1, List 4 (700MHz Matching) Figure 32. Demo Board Schematic with additional C8 and R3. Table 1, List4 shows the component values. 9 Table 1 List 1 – Demo board component values for Demo board Schematic of Fig. 29. These component values are used when measuring Electrical Specifications and plots of Fig. 4 to Fig. 21. List 2 – Demo Board Component values for Demo board Schematic of Fig. 29. These component values are used while measuring plots of Fig. 22 to Fig. 24. List 3 – Demo Board Component values for Demo board Schematic of Fig. 30. These component values are used while measuring plots of Fig. 25 to Fig. 27. List 4 – Demo Board Component values for Demo board Schematic of Figure 31. Part Size List 1 (900 MHz Matching) List 2 (450 MHz Matching) List 3 (1.5 GHz Matching) List 4 (700MHz Matching) L1 0402 13.0nH (Coilcraft 0402CS-13NXJBW) 27.0nH (Toko LL1005-FHL27NS) 4.7nH (Toko LL1005-FHL4N7S) 15nH (Toko LL1005-FHL15NS) L2 0402 18.0nH (Coilcraft 0402CS-18NXJBW) 27.0nH (Toko LL1005-FHL27NS) 18.0nH (Toko LL1005-FHL18NS) 15nH (Toko LL1005-FHL15NS) L3 0402 Not Placed Not Placed 6.8nH (Toko LL1005-FHL6N8S) Not Placed C1 0402 2.4pF (Rohm MCH155A024CK) 3.9pF (Rohm MCH155A3R9JK) 1.5pF (Rohm MCH155A1R5CK) 3pF C2 0402 100pF (Rohm MCH155A101JK) 100pF (Rohm MCH155A101JK) 100pF (Rohm MCH155A101JK) 2.2pF (Rohm MCH155A2R2CK) C3 0402 5.6pF (Rohm MCH155A056CK) 5.6pF (Rohm MCH155A5R6CK) 5.6pF (Rohm MCH155A5R6CK) 2.2pF (Rohm MCH155A4R7CK) C4 0402 100pF (Rohm MCH155A101JK) 100pF (Rohm MCH155A101JK) 100pF (Rohm MCH155A101JK) 33pF C5 0402 0.1uF (Kyocera CM05X5R104K10AH) 0.1uF (Kyocera CM05X5R104K10AH) 0.1uF (Kyocera CM05X5R104K10AH) 0.1uF (Kyocera CM05X5R104K10AH) C6 0402 9pF (Rohm MCH155A090DK) 9.0pF (Rohm MCH155A090DK) 9.0pF (Rohm MCH155A090DK) 33pF C7 0402 0.1uF (Kyocera CM05X5R104K10AH) 0.1uF (Kyocera CM05X5R104K10AH) 0.1uF (Kyocera CM05X5R104K10AH) 0.1uF (Kyocera CM05X5R104K10AH) C8 R1 10nF 0402 91 : (Rohm MCR01MZSJ910) 56 : (Rohm MCR0 MZSJ560) 300 : (Rohm MCR01MZSJ301) 100R (Rohm MCR01MZS101) R2 620R (Rohm MCR01MZ621) R3 56R (Rohm MCR0MZSJ560) Rbias 10 0402 620 : (Rohm MCR01MZS621) 620 : (Rohm MCR01MZS621) 620 : (Rohm MCR01MZS621) Load pull test set up Vbias C5 Dielectric: RO4350 Thickness: 0.254mm Vd C6 Rbias Gnd 1.44mm C1 Input Output Load pull L1 R1 3.30mm RFgnd 0.40mm C3 Bias C4 Vbias FB1 C7 1.41mm Figure 33. Test setup for load pull data The input port is matched for good NF and IRL. Because of the high reverse isolation, any change on the output port has a minimum change on the input port. Therefore, only the output port is tuned for the maximum OIP3. R1 is varied for different level of gain Test condition for the OIP3: -20dBm at 900MHz ±5MHz. 11 Bias Tee Measured results Test condition: 4V/54mA, 900MHz Refer to Table 1, List 1 for SMT component value and description, unless otherwise stated. Resistor, R1 * OIP3 (max) 91ohm 0.81 < 44.3o +39.0dBm 56ohm 0.65
MGA-631P8-TR1G
物料型号:MGA-631P8 器件简介:MGA-631P8是Avago Technologies生产的一款经济实惠、易于使用的GaAs MMIC低噪声放大器(LNA),具有主动偏置功能。该LNA采用Avago Technologies专有的0.5um GaAs增强型pHEMT工艺,具有低噪声、优异的输入回波损耗和高线性度。它还具有一个额外特性,允许设计者通过外部调整供电电流和增益。由于输入和输出之间隔离度高,可以通过在输出引脚和FB1引脚之间串联一个电阻和一个阻断电容器,独立调整增益,而不影响噪声系数。该器件采用小型2.0 x 2.0 x 0.75mm3 8引脚无引线封装(TSLP)。

引脚分配:1-未用;2-RFin;3-RF地;4-Vbias;5-未用;6-FB1;7-RFout;8-GND。

参数特性:设计工作频率范围为400MHz至1.5GHz,900MHz频率下,典型工作电压为4V,工作电流为54mA,增益为17.5dB,噪声系数为0.53dB,输出三阶截断点(OIP3)为32.6dBm。

功能详解:MGA-631P8适用于GSM、CDMA、GPS和ISM应用的蜂窝基础设施的低噪声放大器,以及其他超低噪声应用。

应用信息:作为蜂窝基础设施的低噪声放大器,适用于GSM、CDMA、GPS和ISM等应用。

封装信息:采用2.0 x 2.0 x 0.75 mm3的8引脚无引线封装(TSLP)。
MGA-631P8-TR1G 价格&库存

很抱歉,暂时无法提供与“MGA-631P8-TR1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货