MGA-634P8
Ultra Low Noise, High Linearity Low Noise Amplifier
Data Sheet
Description
Features
Avago Technologies’ MGA-634P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). The LNA
has low noise and high linearity achieved through the
use of Avago Technologies’ proprietary 0.25um GaAs
Enhancement-mode pHEMT process. It is housed in a
miniature 2.0 x 2.0 x 0.75mm3 8-pin Quad-Flat-Non-Lead
(QFN) package. It is designed for optimum use from 1.5
GHz up to 2.3 GHz. The compact footprint and low profile
coupled with low noise, high gain and high linearity make
the MGA-634P8 an ideal choice as a low noise amplifier for
cellular infrastructure for GSM and CDMA. For optimum
performance at lower frequency from 450MHz up to
1.5GHz, MGA-633P8 is recommended. For optimum performance at higher frequency from 2.3GHz up to 4GHz,
MGA-635P8 is recommended. All these 3 products, MGA633P8, MGA-634P8 and MGA-635P8 share the same
package and pinout configuration.
Pin Configuration and Package Marking
Applications
2.0 x 2.0 x 0.75 mm3 8-lead QFN
Low noise amplifier for cellular infrastructure for GSM
TDS-CDMA, and CDMA.
Other ultra low noise application.
[1]
[8]
[2]
[7]
34X
[3]
[6]
[5]
[4]
Top View
Pin 1
Pin 2
Pin 3
Pin 4
– Vbias
– RFinput
– Not Used
– Not Used
[8]
[7]
[1]
[2]
[6]
[5]
[3]
[4]
Ultra Low noise Figure
High linearity performance
GaAs E-pHEMT Technology [1]
Low cost small package size: 2.0x2.0x0.75 mm3
Excellent uniformity in product specifications
Tape-and-Reel packaging option available
Specifications
1.9 GHz; 5V, 48mA
17.4 dB Gain
0.44 dB Noise Figure
15.5 dB Input Return Loss
36 dBm Output IP3
21 dBm Output Power at 1dB gain compression
Simplified Schematic
Vdd
Rbias
Bottom View
Pin 5 – Not Used
Pin 6 – Not Used
Pin 7 – RFoutput/Vdd
Pin 8 – Not Used
Centre tab - Ground
Note:
Package marking provides orientation and identification
“34” = Device Code, where X is the month code.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 70 V (Class A)
ESD Human Body Model = 500 V (Class 1B)
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
R1
C5
C4
C3
L1
L2
[1]
RFin
C6
R2
C1
bias
[8]
[2]
[7]
[3]
[6]
[4]
[5]
C2
RFout
Notes:
The schematic is shown with the assumption that similar PCB is used
for all MGA-633P8, MGA-634P8 and MGA-635P8.
Detail of the components needed for this product is shown in Table 1.
Enhancement mode technology employs positive gate voltage,
thereby eliminating the need of negative gate voltage associated
with conventional depletion mode devices.
Good RF practice requires all unused pins to be earthed.
Absolute Maximum Rating [1] TA=25°C
Thermal Resistance
Symbol
Parameter
Units
Absolute Maximum
Vdd
Device Voltage,
RF output to ground
V
5.5
Vbias
Gate Voltage
V
0.7
Pin,max
CW RF Input Power
(Vdd = 5.0V, Id = 50 mA)
dBm
+20
Pdiss
Total Power Dissipation [2]
W
0.5
Tj
Junction Temperature
°C
150
Tstg
Storage Temperature
°C
-65 to 150
Thermal Resistance [3]
(Vdd = 5.0V, Idd = 50mA)
jc = 62°C/W
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage.
2. Power dissipation with device turned on.
Board temperature TB is 25°C. Derate at
16mW/°C for TB>119°C.
3. Thermal resistance measured using Infra-Red
Measurement Technique
Electrical Specifications [1], [4]
RF performance at TA = 25°C, Vdd = 5V, Rbias = 5.6 kOhm, 1.9 GHz, measured on demo board in Figure 1 with component
listed in Table 1 for 1.9 GHz matching.
Symbol
Parameter and Test Condition
Units
Min.
Typ.
Max.
Idd
Drain Current
mA
37
48
61
Gain
Gain
dB
16.1
17.4
19.1
OIP3 [2]
33
36
Output Third Order Intercept Point
dBm
NF [3]
Noise Figure
dB
0.44
OP1dB
Output Power at 1dB Gain Compression
dBm
21
IRL
Input Return Loss, 50 source
dB
15.5
ORL
Output Return Loss, 50 load
dB
13
REV ISOL
Reverse Isolation
dB
30
0.69
Notes:
1. Measurements at 1.9 GHz obtained using demo board described in Figure 1.
2. OIP3 test condition: FRF1 = 1.9 GHz, FRF2 = 1.901 GHz with input power of -10dBm per tone.
3. For NF data, board losses of the input have not been de-embedded.
4. Use proper bias, heatsink and derating to ensure maximum device temperature is not exceeded. See absolute maximum ratings and application
note for more details.
2
Product Consistency Distribution Charts [1, 2]
LSL
USL
USL
Idd
Max: 61
Min: 37
Mean: 48
Noise Figure
Max: 0.69
Mean: 0.44
36 38 40 42 44 46 48 50 52 54 56 58 60 62
Figure 1. Idd @ 1.9GHz, 5V, 48mA Mean = 48
0.3
0.35
0.4
0.45
0.55
0.6
LSL
0.7
USL
OIP3
Min: 33
Mean: 36
34
0.65
Figure 2. Noise Figure @1.9GHz, 5V, 48mA Mean = 0.44
LSL
33
0.5
Gain
Max: 19.1
Min: 16.1
Mean: 17.4
35
Figure 3. OIP3 @ 1.9GHz, 5V, 48mA Mean = 36
36
37
16
16.5
17
17.5
18
18.5
19
Figure 4. Gain @1.9GHz, 5V, 48mA Mean = 17.4
Notes:
1. Distribution data samples are 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere
between the upper and lower limits.
2. Circuit Losses have not been de-embedded from the actual measurements.
3
Demo Board Layout
Demo Board Schematic
Vdd
C5 (4.7uF)
C3 (10pF)
Rbias
(5.6kOhm)
R1
(49.9 Ohm)
C6 (4.7uF)
R2
(0 Ohm)
L1 (8.2nH)
L2 (8.2nH)
[1]
RFin
C1 (1000pF)
Figure 5. Demo Board Layout Diagram
– Recommended PCB material is 10 mils Rogers RO4350.
– Suggested component values may vary according to layout and PCB material.
Part
Size
Value
Detail Part Number
C1, C2
0402
1000pF (Murata)
GRM155R71H102KA01E
L1
0402
8.2nH (CoilCraft)
0402CS-8N2XGLU
L2
0402
8.2nH (Toko)
LLP1005-FH8N2C
C3, C4
0402
10pF (Murata)
GRM1555C1H100JZ01E
C5, C6
0805
4.7uF (Murata)
GRM21BR60J475KA11L
R1
0402
49.9 Ohm (Rohm)
MCR01 MZS F 49R9
R2
0402
0 Ohm (Kamaya)
RMC1/16S-JPTH
Rbias
0402
5.6 kohm (Rohm)
MCR01 MZS J 562
Note:
C1, C2 are DC Blocking capacitors
L1 input match for NF
L2 output match for OIP3
C3, C4, C5, C6 are bypass capacitors
R1 is stabilizing resistor
Rbias is the biasing resistor
4
bias
[8]
[2]
[7]
[3]
[6]
[4]
[5]
Figure 6. Demo Board Schematic Diagram
Table 1. Component list for 1.9 GHz matching
C4 (10pF)
C2 (1000pF)
MGA-634P8 Typical Performance
RF performance at TA = 25°C, Vdd = 5V, Id = 50mA, measured using 50ohm input and output board, unless otherwise
stated. OIP3 test condition: FRF1 = 1.9 GHz, FRF2 = 1.901 GHz with input power of -10dBm per tone.
0.44
0.42
Fmin (dB)
Fmin (dB)
0.4
0.38
0.36
0.34
0.32
0.3
40
50
55
Idd (mA)
70
80
40
50
55
Idd(mA)
70
40
40
35
35
30
30
25
20
15
10
5
5
70
80
Figure 11. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 1.9GHz.
50
55
Idd(mA)
70
80
20
10
55
Idd(mA)
80
25
15
50
70
Figure 10. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2GHz.
OIP3(dBm)
OIP3(dBm)
40
80
45
40
55
Idd (mA)
20
18
16
14
12
10
8
6
4
2
0
45
0
50
Figure 8. Fmin vs Idd at 5V at 2GHz.
Figure 9. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 1.9GHz.
5
40
Gain(dB)
Gain(dB)
Figure 7. Fmin vs Idd at 5V at 1.9GHz.
20
18
16
14
12
10
8
6
4
2
0
0.5
0.48
0.46
0.44
0.42
0.4
0.38
0.36
0.34
0.32
0.3
0
40
50
55
Idd(mA)
70
80
Figure 12. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2GHz.
OP1dB (dBm)
OP1dB (dBm)
24
22
20
18
16
14
12
10
8
6
4
2
0
40
50
55
Idd (mA)
70
0.7
40
0.6
35
0.4
0.3
70
80
25
20
15
10
40mA
50mA
80mA
0.1
25°C
85°C
-40°C
5
0
1.5
1.9
2.0
Frequency (GHz)
2.2
2.5
Figure 15. Fmin vs Frequency and Idd at 5V
1.5
1.9
2
Frequency (GHz)
2.2
2.5
Figure 16. OIP3 vs Frequency and Temperature for Optimum OIP3 and Fmin
at 5V 50mA
0.9
0.8
0.7
0.6
Fmin (dB)
22
20
18
16
14
12
10
8
6
4
2
0
55
Idd (mA)
30
0.5
OIP3(dBm)
Fmin (dB)
45
0
50
Figure 14. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2GHz.
0.8
0.2
Gain (dB)
40
80
Figure 13. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 1.9GHz
0.5
0.4
0.3
25°C
85°C
-40°C
1.5
1.9
2
Frequency (GHz)
2.2
2.5
Figure 17. Gain vs Frequency and Temperature for Optimum OIP3 and Fmin
at 5V 50mA
6
24
22
20
18
16
14
12
10
8
6
4
2
0
25°C
-40°C
85°C
0.2
0.1
0
1.5
1.9
2.0
Frequency (GHz)
2.2
2.5
Figure 18. Fmin vs Frequency and Temperature for Optimum OIP3 and Fmin
at 5V 50mA
OP1dB(dBm)
24
22
20
18
16
14
12
10
8
6
4
2
0
25°C
85°C
-40°C
1.5
1.9
2
Frequency (GHz)
2.2
2.5
Figure 19. OP1dB vs Frequency and Temperature for Optimum OIP3 and Fmin
at 5V 50mA
Below is the table showing the MGA-634P8 Reflection Coefficient Parameters tuned for maximum OIP3, Vdd = 5V, Idd
= 50mA
Gamma Load position
Frequency (GHz)
Magnitude
Angle
OIP3 (dBm)
OP1dB (dBm)
1.5
0.42
20
41.13
21.26
1.9
0.28
30
41.8
21.19
2
0.28
30
41.56
20.89
2.2
0.42
40.1
41.95
21.36
2.5
0.57
57.6
42.24
19.65
[1]
RFinput
Reference Plane
7
[8]
[2]
[7]
[3]
[6]
[5]
[4]
Figure 20
bias
RFoutput
Reference Plane
Notes:
1. The maximum OIP3 values are calculated based on Load pull
measurements on approximately 136 different impedances using
Focus’ Load Pull test system.
2. Measurements are conducted on 0.010 inch think ROGER 4350. The
input reference plane is at the end of the RFin pin and the output
reference plane is at the end of the RFout pin as shown in Figure 20.
3. Gamma Load for maximum OIP3 with biasing of 5V 40mA, 5V 50mA,
5V 70mA and 5V 80mA from 1.5GHz to 2.5GHz are available upon
request.
MGA-634P8 Typical Performance in Demoboard
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
25
25°C
85°C
-40°C
1.5
1.7
1.9
2.1
2.3
2.5
Frequency (GHz)
2.7
2.9
OP1dB (dBm)
OIP3 (dBm)
38
36
34
32
30
25°C
-40°C
85°C
28
26
1.9
2.1
Frequency (GHz)
2.3
3.5
IRL, ORL, Gain, Rev Iso (dB)
Figure 25. S-Parameter performance with DUT on demoboard shown in
Figure 1.
8
3.5
4
25°C
-40°C
85°C
1.5
K-factor
2.5
3
Frequency (GHz)
2.5
3
Frequency (MHz)
1.7
1.9
2.1
Frequency (GHz)
2.3
2.5
Figure 24. OP1dB vs Frequency vs Temperature
IRL
Gain
Rev Iso
ORL
2
2
23
22.5
22
21.5
21
20.5
20
19.5
19
18.5
18
2.5
Figure 23. OIP3 vs Frequency vs Temperature
1.5
1.5
Figure 22. Gain vs Frequency vs Temperature
40
1.7
10
0
3.1
42
1.5
15
5
Figure 21. NF vs Frequency vs Temperature
30
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
25°C
-40°C
85°C
20
Gain (dB)
NF (dB)
RF performance at TA = 25°C, Vdd = 5V, Rbias = 5.6 kOhm, measured on demo board in Figure. 5 with component list in
Table 1 for 1.9 GHz matching, unless or otherwise stated.
4
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
25°C
-40°C
85°C
0
2
4
6
8
10 12
Frequency (GHz)
Figure 26. K-factor vs Frequency vs Temperature
14
16
18
20
25
70
46mA
56mA
76mA
65
20
55
Gain (dB)
Idd (mA)
60
50
45
40
15
10
5
35
30
3
4
5
Rbias (KΩ)
6
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
47mA
40mA
56mA
1.5
1.7
1.9
2.1
2.3
2.5
Frequency (GHz)
2.7
2.9
3.1
Figure 29. NF vs Frequency vs Idd
40
OIP3 (dBm)
38
36
34
32
47mA
40mA
56mA
28
1.5
1.7
1.9
2.1
Frequency (GHz)
Figure 31. OIP3 vs Frequency vs Idd
9
2.5
3
Frequency (GHz)
3.5
23
22.5
22
21.5
21
20.5
20
19.5
19
18.5
18
4
47mA
40mA
56mA
1.5
1.7
1.9
2.1
Frequency (GHz)
Figure 30. OP1dB vs Frequency vs Idd
42
30
2
Figure 28. Gain vs Frequency vs Idd
OP1dB (dBm)
NF (dB)
Figure 27. Idd vs Rbias
26
0
1.5
7
2.3
2.5
2.3
2.5
MGA-634P8 Typical Scattering Parameters, Vdd = 5V, Idd = 50mA
Freq
GHz
S11
S21
Mag.
Ang.
dB
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
0.10
0.23
-163.34
8.19
2.57
-125.30
0.00
97.65
0.94
160.95
0.50
0.48
136.70
14.45
5.28
171.68
0.00
79.05
0.72
85.19
0.90
0.37
37.53
21.26
11.56
113.46
0.01
84.82
0.45
1.93
1.00
0.27
9.09
21.61
12.04
88.15
0.01
66.43
0.36
-25.00
1.50
0.09
-176.43
19.22
9.14
18.04
0.03
7.89
0.21
-60.82
1.90
0.15
115.81
17.45
7.46
-34.36
0.03
-34.00
0.20
-142.05
2.00
0.16
104.04
16.94
7.03
-47.24
0.03
-43.61
0.21
-158.67
2.50
0.21
62.05
14.92
5.57
-98.96
0.04
-84.48
0.25
141.36
3.00
0.24
24.06
13.16
4.55
-149.45
0.04
-124.96
0.29
89.94
4.00
0.28
-49.44
10.50
3.35
116.58
0.06
158.36
0.33
-3.50
5.00
0.29
-130.59
8.39
2.63
23.57
0.07
80.99
0.35
-103.34
6.00
0.32
142.80
6.26
2.06
-69.38
0.08
2.65
0.40
155.89
7.00
0.41
59.02
4.36
1.65
-162.15
0.09
-76.09
0.45
64.58
8.00
0.61
-25.71
2.84
1.39
83.27
0.12
-177.50
0.20
-45.85
9.00
0.55
-99.89
-12.65
0.23
40.36
0.03
146.66
0.60
-19.43
10.00
0.64
-158.49
-7.75
0.41
-26.75
0.07
92.57
0.69
-105.31
11.00
0.67
143.37
-8.52
0.38
-104.19
0.09
25.31
0.74
-173.97
12.00
0.62
84.82
-8.10
0.39
174.66
0.12
-48.61
0.76
113.83
13.00
0.40
10.64
-7.36
0.43
74.90
0.18
-140.59
0.61
25.16
14.00
0.17
168.38
-10.64
0.29
-46.45
0.14
97.06
0.25
-116.58
15.00
0.20
114.45
-18.47
0.12
-121.86
0.10
56.12
0.22
117.87
16.00
0.62
53.59
-21.00
0.09
151.34
0.08
-60.50
0.51
83.13
17.00
0.74
3.66
-24.22
0.06
84.71
0.04
-159.91
0.59
31.81
18.00
0.73
-35.67
-26.17
0.05
5.69
0.01
145.48
0.69
-11.95
19.00
0.69
-73.02
-28.94
0.04
-56.84
0.02
92.22
0.66
-58.62
20.00
0.61
-109.61
-34.21
0.02
-123.92
0.04
31.07
0.50
-104.19
[1]
RFinput
Reference Plane
10
[8]
[2]
[7]
[3]
[6]
[5]
[4]
Figure 32.
bias
RFoutput
Reference Plane
S12
S22
Typical Noise Parameters, Vdd = 5V, Idd = 50mA
Part Number Ordering Information
Freq GHz
Fmin dB
opt Mag.
opt Ang.
Rn/50
Part Number
No. of Devices
Container
1.5
0.36
0.138
68.4
0.0484
MGA-634P8-BLKG
100
Antistatic Bag
1.9
0.42
0.191
113.6
0.0442
MGA-634P8-TR1G
3000
7 inch Reel
2
0.47
0.177
120.4
0.0526
2.2
0.57
0.173
131.1
0.0444
2.5
0.67
0.188
151.5
0.0476
Notes:
1. The Fmin values are based on noise figure measurements at 100
different impedances using Focus source pull test system. From
these measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide
made on 0.010 inch thick ROGER 4350. The input reference plane is
at the end of the RFinput pin and the output reference plane is at the
end of the RFoutput pin as shown in figure 32.
3. S2P file with scattering and noise parameters for biasing 5V 40mA, 5V
50mA, 5V 70mA and 5V 80mA are available upon request.
SLP2X2 Package
PIN 1 DOT
BY MARKING
2.00±0.050
0.203 Ref.
2.00±0.050
34X
0.000–0.05
0.75±0.05
Top View
Side View
0.60±0.050
Exp. DAP
PIN #1 IDENTIFICATION
R0.100
0.35±0.050
1.20±0.050
Exp. DAP
1.50
Ref.
0.50 Bsc
0.25±0.050
Bottom View
11
Notes:
1. All dimensions are in millimeters.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash and metal burr.
Recommended PCB Land Pattern and Stencil Design
2.20
2.16
1.75
0.56
0.50
1.75
0.00
0.80
0.50
0.50
1.50
0.22
0.25
0.170
0.45
0.40
0.05
(all SM gaps)
0.30
R0.15
Stencil Opening
Land Pattern
1.75
0.56
0.50
0.50
Metal surface
0.21
1.50
Soldermask Open
R0.15
0.17
Combination of Land Pattern and Stencil Opening
Note:
1. Recommended Land Pattern and Stencil Opening
2. Stencil thickness is 0.1mm (4 mils)
3. All dimension are in mm unless otherwise specified
12
1.72
1.50
1.20
0.50
0.48
0.21
Device Orientation
REEL
4 mm
8 mm
CARRIER
TAPE
34X
USER
FEED
DIRECTION
COVER TAPE
Tape Dimensions
D
P
PO
P2
E
F
W
+
+
D1
t1
Tt
KO
10° MAX
AO
DESCRIPTION
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
PERFORATION DIAMETER
PITCH
POSITION
CARRIER TAPE WIDTH
CAVITY
COVER TAPE
DISTANCE
13
10° MAX
BO
THICKNESS
WIDTH
TAPE THICKNESS
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
SYMBOL
A0
B0
K0
P
D1
D
P0
E
W
t1
C
Tt
F
SIZE (mm)
2.30 ± 0.05
2.30 ± 0.05
1.00 ± 0.05
4.00 ± 0.10
1.00 + 0.25
1.50 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
8.00 ± 0.30
8.00 ± 0.10
0.254 ± 0.02
5.4 ± 0.10
0.062 ± 0.001
3.50 ± 0.05
SIZE (INCHES)
0.094 ± 0.004
0.094 ± 0.004
0.047 ± 0.004
0.157 ± 0.004
0.039 + 0.010
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
0.315 ± 0.012
0.315 ± 0.004
0.0100 ± 0.0008
0.205 ± 0.004
0.0025 ± 0.0004
0.138 ± 0.002
P2
2.00 ± 0.05
0.079 ± 0.002
34X
34X
34X
Reel Dimensions – 7 inch
6.25mm EMBOSSED LETTERS
LETTERING THICKNESS: 1.6mm
SLOT HOLE "a"
SEE DETAIL "X"
Ø178.0±0.5
SLOT HOLE "b"
FRONT
BACK
6
PS
SLOT HOLE(2x)
180° APART.
6
PS
RECYCLE LOGO
SLOT HOLE "a": 3.0±0.5mm(1x)
SLOT HOLE "b": 2.5±0.5mm(1x)
FRONT VIEW
45°
+0.5
Ø13.0 -0.2
Ø20.2 MIN.
R5.2
FRONT
BACK
°
R10.65
120
65°
1.5 MIN.
7.9 - 10.9**
+1.5*
8.4 -0.0
DETAIL "X"
60°
SLOT HOLE ‘a’
EMBOSSED RIBS
RAISED: 0.25mm, WIDTH: 1.25mm
14.4 *
MAX.
Ø51.2±0.3
BACK VIEW
For product information and a complete list of distributors, please go to our web site:
SEE DETAIL "Y"
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-2544EN - May 25, 2012
3.5
DETAIL "Y"
(Slot Hole)
1.0
Ø55.0±0.5
Ø178.0±1.0
SLOT HOLE ‘b’