VMMK-3503
0.5 - 18 GHz Variable Gain Amplifier in SMT Package
Data Sheet
Description
Features
The VMMK-3503 is a small and easy-to-use, broadband,
variable gain amplifier operating in various frequency
bands from 0.5-18 GHz. It is housed in the Avago Technologies’ industry-leading and revolutionary sub-miniature chip scale package (GaAsCap wafer scale leadless
package) which is small and ultra thin yet can be handled
and placed with standard 0402 pick and place assembly
equipment. The VMMK-3503 provides maximum gain of
12 dB with a typical gain range of 23 dB where the gain
control is accessed from the input port by way of a large
value external resistor. It can be operated from 3 V to 5 V
power supply. It is fabricated using Avago Technologies
unique 0.25 μm E-mode PHEMT technology which eliminates the need for negative gate biasing voltage.
• 1 x 0.5 mm surface mount package
• Ultrathin (0.25 mm)
• Broadband frequency range: 0.5 to 18 GHz
• In and output match: 50 ohm
• All Positive DC Voltage Supply and Control
• CMOS-compatible gain control voltage
Specifications (6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω)
• Small signal gain: 12 dB typ
• Gain control range: 23 dB typ
• Noise Figure = 3.5 dB typ
Applications
WLP0402, 1 mm x 0.5 mm x 0.25 mm
• 2.4, 3.5, and 5-6 GHz WLAN and WiMax
• 802.16 & 802.20 BWA systems
LY
• Radar and ECM systems
• UWB
• Generic IF amplifier and VGA
Pin Connections (Top View)
Input
Input
Note:
“L” = Device Code
“Y” = Month Code
LY
Amp
Output
Output
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 50 V
ESD Human Body Model = 450 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Electrical Specifications
Table 1. Absolute Maximum Rating [1]
Symbol
Parameters/Condition
Unit
Absolute Max
Vdd
Supply Voltage (RF Output) [2]
V
6
Vc
Gain Control Voltage
V
2
Id
Supply Current [2]
mA
70
Pin, max
CW RF Input Power (RF Input) [3]
dBm
+15
Pdiss
Total Power Dissipation
mW
420
Tch
Max Channel Temperature
°C
+150
θjc
Thermal Resistance [4]
°C/W
103
Notes
1. Operation of this device above any one of these parameters may cause permanent damage
2. Bias is assumed DC quiescent conditions
3. With the DC (typical bias) and RF applied to the device at board temperature Tb = 25° C
4. Thermal resistance is measured from junction to board using IR method
Table 2. DC and RF Specifications [1]
TA = 25° C, Frequency = 6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω (unless otherwise specified)
Symbol
Parameters/Condition
Unit
Minimum
Typical
Maximum
Id_Max_Gain
Supply Current at Vc = 1.8 V
mA
50
58
66
Id_Min_Gain
Supply Current at Vc = 0.65 V
mA
17
24
31
Max_Gain
Gain at Vc = 1.8 V
dB
10.5
12
Min_Gain
Gain at Vc = 0.65
dB
Gain Control Range
Max_Gain – Min_Gain
dB
NF
Noise Figure at Vc = 1.8 V
dB
-11
19.5
-9
23
3.5
4.2
Table 3. Typical Performance [2]
TA = 25° C, Frequency = 6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω (unless otherwise specified)
Vc
V
Id
mA
Gain
dB
NF
dB
IIP3 [3]
dB
OP1dB
dBm
OPsat
dBm
IRL
dB
ORL
dB
1.8
58
12
3.5
9
8
12
-12
-13
0.9
42
-2
0.65
24
-11
-8
-18
19
0
5.8
3
-0.5
Notes
1. Measured Data obtained from G-S probing on wafer. Losses of test fixture have been de-embedded.
2. Measured Data obtained from G-S-G probing on substrate. Losses of test fixture have been de-embedded.
3. IIP3 test condition: 2-tone freq. separation = 10 MHz, Pin = -20 dBm
2
Product Consistency Distribution Charts at 6.0 GHz, Vdd = 5 V, Vc = 1.8 V unless specified otherwise
LSL
0.046
0.05
USL
0.054
0.058
0.062
LSL
0.066
0.07
0.014
ID_MAX_1.8 @ Vdd = 5 V, Vc = 1.8 V, Mean = 58 mA, LSL = 50 mA, USL = 66 mA
3
0.018
0.022
0.026
0.03
0.033
ID_MIN_0.65 @ Vdd = 5 V, Vc = 0.65 V, Mean = 24 mA, LSL = 17 mA,
USL = 31 mA
USL
2
USL
LSL
4
5
NF @ 6GHz, Mean = 3.5 dB, USL = 4.2 dB
10
11
12
13
GAIN_MAX_1.8 @ 6 GHz, Mean = 12 dB, LSL = 10.5 dB
USL
Notes:
Distribution data based on 54 Kpcs part sample size from MPV lots.
Future wafers allocated to this product may have nominal values
anywhere between the upper and lower limits.
-17
-15
-13
-11
-9
-8
GAIN_MIN_0.65 @ 6 GHz, Mean = -11 dB, USL = -9 dB
3
-7
-6
-5
VMMK-3503 Typical Performance
Data obtained using GSG probing on substrate, broadband bias-T’s, losses calibrated out to the package reference plane.
(TA = 25° C, Vdd = 5 V, Zin = Zout = 50 Ω unless noted)
1.8 V
1.25 V
1.15 V
1.05 V
0.95 V
0.85 V
0.75 V
0.65 V
0.5 V
0.4 V
0.35 V
0V
10
-10
-20
-30
-40
0
4
8
12
Freq (GHz)
16
1.8 V
1.25 V
1.15 V
1.05 V
0.95 V
0.85 V
0.75 V
0.65 V
0.5 V
0.4 V
0.35 V
0V
S11 (dB)
-5
-10
-15
0
4
-70
0
4
8
12
Freq (GHz)
16
20
Figure 2. Reverse Isolation vs. Vc
0
-20
-50
-60
20
Figure 1. Gain Range vs. Vcontrol
1.8 V
1.25 V
1.15 V
1.05 V
0.95 V
0.85 V
0.75 V
0.65 V
0.5 V
0.4 V
0.35 V
0V
-40
8
12
Freq (GHz)
16
-5
-15
-20
-25
20
Figure 3. Input Return Loss vs. Vc
1.8 V
1.25 V
1.15 V
1.05 V
0.95 V
0.85 V
0.75 V
0.65 V
0.5 V
0.4 V
0.35 V
0V
-10
S22 (dB)
S21 (dB)
0
-30
S12 (dB)
20
0
4
8
12
Freq (GHz)
16
20
Figure 4. Output Return Loss vs. Vc
20
4.50
15
4.00
S11
S22
S21
5
0
NF (dB)
Response (dB)
10
-5
3.50
3.00
-10
NF_50 ohm
NFmin
-15
-20
0
3
6
9
12
15
Freq (GHz)
18
Figure 5. Broadband Gain and Return Losses (Vc = 1.8 V)
4
21
24
2.50
0
3
6
9
Freq (GHz)
Figure 6. Noise Figure (Vc = 1.8 V)
12
15
18
VMMK-3503 Typical Performance
(TA = 25° C, Vdd = 5 V, Zin = Zout = 50 Ω unless noted)
15
20
Vc = 1.8 V
Vc = 0.65 V
IIP3 (dBm)
IIP3 (dBm)
10
5
0
-5
10
5
0
0
3
6
9
Freq (GHz)
12
15
-5
18
Figure 7. Input IP3 vs. Freq
0
0.3
0.6
0.9
Vc (V)
1.2
1.5
1.8
Figure 8. Input IP3 vs. Vc
15
14
12
10
1.8 V
0.9 V
0.65 V
8
1.8 V
0.9 V
0.65 V
5
Gain (dB)
10
Psat (dBm)
1 GHz
6 GHz
12 GHz
18 GHz
15
6
4
0
-5
2
-10
0
-2
0
3
6
9
Freq (GHz)
12
15
18
25
60
20
50
Vc = 0.65 V
Vc = 1.8 V
10
0
-15
-10
-5
Pin (dBm)
0
5
Vdd = 5 V
Vdd = 4 V
Vdd = 3 V
40
15
30
20
5
10
0
3
6
9
Freq (GHz)
Figure 11. Noise Figure at Min and Max Gain
5
-20
Figure 10. Gain vs. Pin at 6 GHz
Idd (mA)
NF (dB)
Figure 9. Saturated Power
-15
12
15
18
0
0
0.3
0.6
Figure 12. Supply Current over Bias
0.9
Vc (V)
1.2
1.5
1.8
VMMK-3503 Typical Performance
(TA = 25° C, Vc = 1.8 V, Zin = Zout = 50 Ω unless noted)
17
6
5V
4V
3V
5
13
NF (dB)
S21 (dB)
15
11
0
4
8
12
Freq (GHz)
16
2
20
Figure 13. Max. Gain over Vdd
11
11
9
9
P1dB (dBm)
13
IIP3 (dBm)
13
7
3
Vdd = 5 V
Vdd = 4 V
Vdd = 3 V
0
3
6
Figure 15. Input IP3 over Vdd
0
3
6
9
Freq (GHz)
12
15
18
Figure 14. Noise Figure over Vdd
5
6
4
3
9
7
5V
4V
3V
9
Freq (GHz)
12
15
5V
4V
3V
7
5
18
3
0
3
6
Figure 16. Output P1dB over Vdd
9
Freq (GHz)
12
15
18
VMMK-3503 Typical Performance
(TA = 25° C, Vdd = 5 V, Vc = 1.8 V, Zin = Zout = 50 Ω unless noted)
17
0
-40° C
+25° C
+85° C
-4
13
S21 (dB)
S21 (dB)
15
11
9
7
0
3
6
9
Freq (GHz)
12
15
-20
18
3
6
9
Freq (GHz)
12
15
18
-35° C
+25° C
+85° C
22
4
NF (dB)
NF (dB)
0
25
5
3
19
16
-35° C
+25° C
+85° C
2
13
1
0
3
6
9
Freq (GHz)
12
15
0
18
Figure 19. Noise Figure (Vc = 1.8 V) over Temp
3
6
9
Freq (GHz)
12
15
18
Figure 20. Noise Figure (Vc = 0.65 V) over Temp
13
13
11
-40° C
+25° C
+85° C
11
P1dB (dBm)
IIP3 (dBm)
-40° C
+25° C
+85° C
Figure 18. Min. Gain (Vc = 0.65 V) over Temp
6
9
7
-40° C
+25° C
+85° C
5
0
3
6
Figure 21. Input IP3 over Temp
7
-12
-16
Figure 17. Max Gain (Vc = 1.8 V) over Temp
3
-8
9
Freq (GHz)
12
15
9
7
5
18
3
0
3
6
Figure 22. Output P1dB over Temp
9
Freq (GHz)
12
15
18
Typical Scattering Parameters (Data obtained using GSG probing on substrate, broadband bias-T’s, losses calibrated
out to the package reference plane.)
Maximum Gain State
TA = 25° C, Vdd = 5 V, Vc = 1.8 V, Zin = Zout = 50 Ω
Freq
GHz
S11
dB
mag
phase
dB
mag
phase
dB
mag
phase
dB
mag
phase
0.1
-5.234
0.547
-36.340
17.088
7.152
-169.066
-34.704
0.018
5.347
-7.950
0.400
-29.145
0.3
-8.205
0.389
-44.110
15.553
5.993
168.608
-37.140
0.014
-33.799
-14.430
0.190
-57.539
0.5
-9.630
0.330
-55.860
14.833
5.517
163.240
-39.576
0.011
-46.674
-17.910
0.127
-57.577
1
-11.674
0.261
-68.772
14.058
5.045
154.656
-45.514
0.005
-61.653
-18.526
0.119
-35.198
1.5
-12.638
0.233
-82.810
13.785
4.890
145.361
-52.396
0.002
-56.465
-18.711
0.116
-37.816
2
-12.716
0.231
-96.505
13.608
4.791
135.797
-58.416
0.001
-27.711
-18.644
0.117
-44.636
2.5
-12.945
0.225
-105.988
13.434
4.696
126.210
-57.721
0.001
22.831
-17.464
0.134
-52.561
3
-12.724
0.231
-117.938
13.253
4.599
116.602
-51.701
0.003
55.942
-17.009
0.141
-60.588
3.5
-12.443
0.239
-129.488
13.079
4.508
107.020
-49.370
0.003
57.247
-16.530
0.149
-67.722
4
-12.086
0.249
-140.327
12.878
4.405
97.488
-47.535
0.004
58.962
-15.950
0.159
-75.685
4.5
-11.781
0.258
-151.034
12.675
4.303
88.039
-46.196
0.005
55.451
-15.499
0.168
-83.369
5
-11.624
0.262
-160.567
12.464
4.199
78.800
-45.193
0.006
54.829
-14.899
0.180
-89.351
5.5
-11.415
0.269
-169.866
12.260
4.102
69.643
-44.152
0.006
54.633
-14.361
0.191
-96.382
6
-11.337
0.271
-179.510
12.054
4.006
60.519
-42.734
0.007
53.880
-13.962
0.200
-102.828
7
-11.460
0.267
162.515
11.657
3.827
42.602
-42.499
0.008
49.735
-13.167
0.220
-113.970
8
-11.751
0.259
147.995
11.367
3.701
24.988
-40.724
0.009
48.393
-12.203
0.245
-124.427
9
-12.472
0.238
133.404
11.060
3.573
7.241
-40.265
0.010
39.885
-11.542
0.265
-134.913
10
-13.635
0.208
121.211
10.846
3.486
-10.571
-40.446
0.010
36.647
-11.010
0.282
-143.067
11
-14.866
0.181
114.429
10.711
3.432
-28.787
-39.094
0.011
35.737
-10.492
0.299
-151.617
12
-16.695
0.146
106.812
10.563
3.374
-47.576
-39.251
0.011
20.424
-10.527
0.298
-158.331
13
-17.096
0.140
95.686
10.455
3.332
-66.978
-39.743
0.010
6.426
-11.103
0.279
-163.704
14
-17.413
0.135
93.664
10.440
3.327
-87.377
-42.853
0.007
3.082
-11.239
0.274
-166.829
15
-16.893
0.143
84.178
10.301
3.274
-109.043
-45.680
0.005
-7.975
-11.493
0.266
-169.735
16
-16.467
0.150
63.202
10.045
3.179
-131.594
-49.897
0.003
-4.888
-11.866
0.255
-166.983
17
-15.945
0.160
37.802
9.750
3.073
-154.810
-55.918
0.002
-52.259
-11.681
0.261
-160.052
18
-15.614
0.166
12.088
9.197
2.883
-179.066
-51.701
0.003
158.277
-10.357
0.304
-158.139
19
-13.752
0.205
-21.118
8.448
2.645
157.015
-44.883
0.006
152.925
-8.966
0.356
-157.243
20
-12.157
0.247
-41.042
7.561
2.388
133.864
-41.310
0.009
154.431
-8.145
0.392
-162.711
21
-10.669
0.293
-63.873
6.683
2.159
111.260
-37.393
0.014
138.895
-7.153
0.439
-169.348
22
-8.874
0.360
-80.568
5.735
1.935
89.380
-36.363
0.015
136.236
-6.840
0.455
-175.654
23
-7.819
0.407
-95.270
4.875
1.753
68.283
-33.231
0.022
129.780
-7.107
0.441
173.963
24
-6.567
0.470
-112.606
4.083
1.600
46.380
-31.972
0.025
123.391
-7.300
0.432
164.987
25
-5.575
0.526
-123.992
3.420
1.483
24.873
-30.117
0.031
117.009
-8.683
0.368
155.499
26
-5.033
0.560
-138.591
2.789
1.379
1.758
-28.730
0.037
106.595
-10.707
0.292
142.046
27
-4.273
0.611
-152.269
2.192
1.287
-22.954
-27.787
0.041
101.488
-15.310
0.172
134.713
28
-3.947
0.635
-167.334
1.493
1.188
-49.141
-26.994
0.045
92.314
-32.041
0.025
144.283
29
-3.541
0.665
176.086
0.621
1.074
-77.446
-25.832
0.051
86.534
-16.851
0.144
-90.456
30
-3.351
0.680
158.427
-0.400
0.955
-106.679
-25.209
0.055
79.495
-9.935
0.319
-100.759
8
S21
S12
S22
Typical Scattering Parameters (Data obtained using GSG probing on substrate, broadband bias-T’s, losses calibrated
out to the package reference plane.)
Maximum Gain State
TA = 25° C, Vdd = 5 V, Vc = 0.65 V, Zin = Zout = 50 Ω
Freq
GHz
S11
dB
mag
phase
dB
mag
phase
dB
mag
phase
dB
mag
phase
0.1
-4.384
0.604
-29.869
-12.146
0.247
129.090
-34.657
0.019
-1.087
-8.629
0.370
-52.821
0.3
-6.657
0.465
-45.824
-14.204
0.195
147.959
-37.721
0.013
-29.210
-15.050
0.177
-91.600
0.5
-8.022
0.397
-60.936
-14.780
0.182
147.676
-40.446
0.010
-44.324
-18.294
0.122
-109.111
1
-9.851
0.322
-79.444
-15.244
0.173
138.353
-47.959
0.004
-46.248
-24.837
0.057
-106.341
1.5
-10.291
0.306
-96.760
-15.254
0.173
124.975
-53.152
0.002
4.863
-27.131
0.044
-114.720
2
-9.960
0.318
-112.225
-15.095
0.176
110.896
-49.119
0.004
34.160
-27.535
0.042
-120.614
2.5
-9.789
0.324
-123.981
-14.875
0.180
97.127
-46.745
0.005
38.796
-26.321
0.048
-105.494
3
-9.279
0.344
-136.890
-14.666
0.185
83.680
-44.731
0.006
46.700
-25.368
0.054
-106.252
3.5
-8.838
0.362
-149.098
-14.434
0.190
70.694
-43.223
0.007
39.610
-24.336
0.061
-105.204
4
-8.423
0.379
-160.463
-14.186
0.195
58.511
-41.618
0.008
38.334
-22.878
0.072
-107.122
4.5
-8.112
0.393
-171.556
-13.966
0.200
46.636
-40.819
0.009
35.552
-21.766
0.082
-109.935
5
-7.983
0.399
178.119
-13.727
0.206
35.372
-40.446
0.010
31.845
-20.491
0.095
-110.216
5.5
-7.862
0.405
168.168
-13.498
0.211
24.634
-40.000
0.010
30.148
-19.307
0.108
-113.744
6
-7.896
0.403
157.747
-13.251
0.218
14.151
-39.412
0.011
27.547
-18.496
0.119
-117.260
7
-8.352
0.382
138.626
-12.765
0.230
-6.012
-39.332
0.011
22.649
-16.624
0.148
-123.666
8
-9.484
0.336
121.545
-12.174
0.246
-25.240
-38.344
0.012
20.228
-15.006
0.178
-131.066
9
-11.724
0.259
108.205
-11.457
0.267
-45.069
-37.458
0.013
10.631
-13.630
0.208
-139.041
10
-14.914
0.180
109.544
-10.704
0.292
-65.979
-37.329
0.014
-0.050
-12.634
0.234
-146.650
11
-14.746
0.183
133.101
-9.990
0.317
-87.815
-37.016
0.014
-6.566
-11.842
0.256
-153.905
12
-11.411
0.269
133.477
-9.304
0.343
-110.934
-36.954
0.014
-29.419
-11.418
0.269
-160.153
13
-8.709
0.367
113.491
-8.754
0.365
-135.002
-37.523
0.013
-52.510
-11.545
0.265
-165.869
14
-7.250
0.434
92.561
-8.327
0.383
-159.201
-39.914
0.010
-77.826
-11.764
0.258
-170.850
15
-6.417
0.478
70.306
-7.950
0.400
176.550
-40.355
0.010
-111.180
-11.941
0.253
-174.141
16
-6.028
0.500
45.905
-7.654
0.414
151.174
-40.355
0.010
-145.319
-12.206
0.245
-172.586
17
-5.647
0.522
21.999
-7.498
0.422
125.597
-39.914
0.010
-169.517
-12.385
0.240
-167.794
18
-5.552
0.528
-1.777
-7.570
0.418
99.059
-37.523
0.013
169.891
-11.299
0.272
-164.225
19
-5.004
0.562
-26.985
-8.013
0.398
72.637
-36.138
0.016
155.878
-9.984
0.317
-161.776
20
-4.614
0.588
-47.372
-8.759
0.365
47.014
-35.041
0.018
150.938
-9.134
0.349
-167.187
21
-4.252
0.613
-69.196
-9.651
0.329
22.400
-32.217
0.025
137.411
-8.097
0.394
-175.258
22
-3.650
0.657
-86.503
-10.672
0.293
-1.960
-31.437
0.027
130.598
-8.161
0.391
177.319
23
-3.451
0.672
-103.378
-11.948
0.253
-25.748
-29.422
0.034
121.759
-8.981
0.356
164.378
24
-3.045
0.704
-121.052
-13.195
0.219
-51.026
-28.683
0.037
110.392
-10.223
0.308
155.184
25
-2.790
0.725
-133.752
-14.512
0.188
-76.900
-27.723
0.041
101.985
-13.846
0.203
148.226
26
-2.787
0.726
-148.672
-15.918
0.160
-105.090
-27.033
0.045
90.855
-20.491
0.095
149.827
27
-2.648
0.737
-163.119
-17.127
0.139
-136.314
-26.878
0.045
85.725
-20.696
0.092
-122.188
28
-2.761
0.728
-178.128
-18.366
0.121
-167.459
-26.651
0.047
77.935
-13.560
0.210
-108.378
29
-2.874
0.718
165.731
-19.062
0.111
160.383
-25.934
0.051
73.541
-9.709
0.327
-115.177
30
-3.145
0.696
148.147
-19.601
0.105
131.274
-25.564
0.053
70.374
-7.404
0.426
-122.966
9
S21
S12
S22
VMMK-3503 Applications and Usage Information
Table 4. VMMK-3503 Demo Board BOM
Figure 23. Evaluation/Test Board (available to qualified customers upon
request)
Biasing and Operation
The VMMK-3503 is biased with a positive supply connected
to the output pin Vd through an external user supplied
bias decoupling network. Nominal current draw is 59
mA from a 5 V power supply. A typical biasing scheme is
shown in Figure 23. Maximum gain occurs when Vc is 1.8 V
and minimum gain occurs with Vc set to 0.65 V.
Vc
0.1 µF
0.1 µF
Vdd
100 pF
L1
10 K
Input
Output
Amp
100 pF
Input
Pad
50 Ohm line
Ground
Pad
Output
Pad
100 pF
50 Ohm line
Figure 24. Example demonstration circuit of VMMK-3503 for broadband
operation (RF choke value selected for best performance at 12 GHz).
Component
Value
DUT
VMMK-3503
C1
100 pF
C2
100 pF
R1
10 KOhms
C5
0.1 mF
C6
100 pF
L1
2 nH
A layout of a typical demo board is shown in Figure 25. The
demo board uses small 0402 style surface mount components. Due to the broad bandwidth of the VMMK-3503
devising a bias decoupling network to work well over the
entire 0.5 to 18 GHz frequency range will be a challenge.
Conical wound broad band inductors will work well
but may be pricy. The demo board uses a 2.2 nH output
inductor which provides good bandwidth from about a
1 GHz to beyond 6 GHz. The input and output blocking
capacitors are 100 pF.
Typically a passive component company like Murata does
not specify S parameters at frequencies higher than 5 or
6 GHz for larger values of inductance making it difficult
to properly simulate amplifier performance at higher frequencies. It has been observed that the Murata LQW15AN
series of 0402 inductors actually works quite well above
their normally specified frequency.
Another scheme for increasing the bandwidth would be
to install two small chip inductors in series. A smaller value
would favor the higher frequencies while the larger value
will work better at low frequencies. Putting a few ohms
of resistance in series with the inductors will also tend to
smooth out the response by minimizing resonances in the
bias decoupling networks.
The parallel combination of the 100 pF and 0.1 mF capacitors provide a low impedance in the band of operation
and at lower frequencies and should be placed as close
as possible to the inductor. The low frequency bypass
provides good rejection of power supply noise and also
provides a low impedance termination for third order low
frequency mixing products that will be generated when
multiple in-band signals are injected into any amplifier.
The 10K ohm resistor at the input provides a reasonably
wide bandwidth way of injecting Vc at the input to the
device without adversely affecting RF performance.
Figure 25. Biasing the VMMK-3503
10
S Parameter Measurements
ESD Precautions
The S parameters are measured on a 300 mm G-S-G
(ground signal ground) printed circuit board substrate.
Calibration is achieved with a series of through, short
and open substrates from which an accurate set of S parameters is created. The test board is 0.016 inch thickness
RO4350. Grounding of the device is achieved with a single
plated through hole directly under the device. The effect
of this plated through hole is included in the S parameter
measurements and is difficult to de-embed accurately.
Since the maximum recommended printed circuit board
thickness is nominally 0.020 inch, then the nominal effect
of printed circuit board grounding can be considered to
have already been included the published S parameters.
Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure that an ESD
approved carrier is used when die are transported from
one destination to another. Personal grounding is to be
worn at all times when handling these devices. For more
detail, refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.
Package and Assembly Note
Part Number
Devices Per
Container
Container
For detailed description of the device package, handling
and assembly, please refer to Application Note 5378.
VMMK-3503-BLKG
100
Antistatic Bag
VMMK-3503-TR1G
5000
7” Reel
Ordering Information
Package Dimension Outline
D
E
A
Dimensions
Symbol
Min (mm)
Max (mm)
E
0.500
0.585
D
1.004
1.085
A
0.225
0.275
Note:
All dimensions are in mm
Reel Orientation
Device Orientation
USER FEED DIRECTION
REEL
4 mm
Notes:
“L” = Device Code
“Y” = Month Code
• LY
TOP VIEW
CARRIER
TAPE
• LY
11
• LY
• LY
USER
FEED
DIRECTION
8 mm
END VIEW
Tape Dimensions
T
Do
Note: 1
Po
B
A
A
P1
Scale 5:1
Bo
W
Note: 2
F
E
5° (Max)
B
D1
BB SECTION
Note: 2
P2
Ao
R0.1
5° (Max)
Ko
Ao = 0.73±0.05 mm
Scale 5:1
Bo = 1.26±0.05 mm
AA SECTION
mm
Ko = 0.35 +0.05
+0
Unit: mm
Symbol
Spec.
K1
Po
P1
P2
Do
D1
E
F
10Po
W
T
–
4.0±0.10
4.0±0.10
2.0±0.05
1.55±0.05
0.5±0.05
1.75±0.10
3.50±0.05
40.0±0.10
8.0±0.20
0.20±0.02
Notice:
1. 10 Sprocket hole pitch cumulative tolerance is ±0.1 mm.
2. Pocket position relative to sprocket hole measured as true position
of pocket not pocket hole.
3. Ao & Bo measured on a place 0.3 mm above the bottom of the
pocket to top surface of the carrier.
4. Ko measured from a plane on the inside bottom of the pocket to
the top surface of the carrier.
5. Carrier camber shall be not than 1 m per 100 mm through a length
of 250 mm.
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-2918EN - December 26, 2012