0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VMMK-3503-TR2G

VMMK-3503-TR2G

  • 厂商:

    AVAGO(博通)

  • 封装:

    0402

  • 描述:

    AMPE-PHEMT6GHZ0402

  • 数据手册
  • 价格&库存
VMMK-3503-TR2G 数据手册
VMMK-3503 0.5 - 18 GHz Variable Gain Amplifier in SMT Package Data Sheet Description Features The VMMK-3503 is a small and easy-to-use, broadband, variable gain amplifier operating in various frequency bands from 0.5-18 GHz. It is housed in the Avago Technologies’ industry-leading and revolutionary sub-miniature chip scale package (GaAsCap wafer scale leadless package) which is small and ultra thin yet can be handled and placed with standard 0402 pick and place assembly equipment. The VMMK-3503 provides maximum gain of 12 dB with a typical gain range of 23 dB where the gain control is accessed from the input port by way of a large value external resistor. It can be operated from 3 V to 5 V power supply. It is fabricated using Avago Technologies unique 0.25 μm E-mode PHEMT technology which eliminates the need for negative gate biasing voltage. • 1 x 0.5 mm surface mount package • Ultrathin (0.25 mm) • Broadband frequency range: 0.5 to 18 GHz • In and output match: 50 ohm • All Positive DC Voltage Supply and Control • CMOS-compatible gain control voltage Specifications (6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω) • Small signal gain: 12 dB typ • Gain control range: 23 dB typ • Noise Figure = 3.5 dB typ Applications WLP0402, 1 mm x 0.5 mm x 0.25 mm • 2.4, 3.5, and 5-6 GHz WLAN and WiMax • 802.16 & 802.20 BWA systems LY • Radar and ECM systems • UWB • Generic IF amplifier and VGA Pin Connections (Top View) Input Input Note: “L” = Device Code “Y” = Month Code LY Amp Output Output Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 50 V ESD Human Body Model = 450 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Electrical Specifications Table 1. Absolute Maximum Rating [1] Symbol Parameters/Condition Unit Absolute Max Vdd Supply Voltage (RF Output) [2] V 6 Vc Gain Control Voltage V 2 Id Supply Current [2] mA 70 Pin, max CW RF Input Power (RF Input) [3] dBm +15 Pdiss Total Power Dissipation mW 420 Tch Max Channel Temperature °C +150 θjc Thermal Resistance [4] °C/W 103 Notes 1. Operation of this device above any one of these parameters may cause permanent damage 2. Bias is assumed DC quiescent conditions 3. With the DC (typical bias) and RF applied to the device at board temperature Tb = 25° C 4. Thermal resistance is measured from junction to board using IR method Table 2. DC and RF Specifications [1] TA = 25° C, Frequency = 6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω (unless otherwise specified) Symbol Parameters/Condition Unit Minimum Typical Maximum Id_Max_Gain Supply Current at Vc = 1.8 V mA 50 58 66 Id_Min_Gain Supply Current at Vc = 0.65 V mA 17 24 31 Max_Gain Gain at Vc = 1.8 V dB 10.5 12 Min_Gain Gain at Vc = 0.65 dB Gain Control Range Max_Gain – Min_Gain dB NF Noise Figure at Vc = 1.8 V dB -11 19.5 -9 23 3.5 4.2 Table 3. Typical Performance [2] TA = 25° C, Frequency = 6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω (unless otherwise specified) Vc V Id mA Gain dB NF dB IIP3 [3] dB OP1dB dBm OPsat dBm IRL dB ORL dB 1.8 58 12 3.5 9 8 12 -12 -13 0.9 42 -2 0.65 24 -11 -8 -18 19 0 5.8 3 -0.5 Notes 1. Measured Data obtained from G-S probing on wafer. Losses of test fixture have been de-embedded. 2. Measured Data obtained from G-S-G probing on substrate. Losses of test fixture have been de-embedded. 3. IIP3 test condition: 2-tone freq. separation = 10 MHz, Pin = -20 dBm 2 Product Consistency Distribution Charts at 6.0 GHz, Vdd = 5 V, Vc = 1.8 V unless specified otherwise LSL 0.046 0.05 USL 0.054 0.058 0.062 LSL 0.066 0.07 0.014 ID_MAX_1.8 @ Vdd = 5 V, Vc = 1.8 V, Mean = 58 mA, LSL = 50 mA, USL = 66 mA 3 0.018 0.022 0.026 0.03 0.033 ID_MIN_0.65 @ Vdd = 5 V, Vc = 0.65 V, Mean = 24 mA, LSL = 17 mA, USL = 31 mA USL 2 USL LSL 4 5 NF @ 6GHz, Mean = 3.5 dB, USL = 4.2 dB 10 11 12 13 GAIN_MAX_1.8 @ 6 GHz, Mean = 12 dB, LSL = 10.5 dB USL Notes: Distribution data based on 54 Kpcs part sample size from MPV lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. -17 -15 -13 -11 -9 -8 GAIN_MIN_0.65 @ 6 GHz, Mean = -11 dB, USL = -9 dB 3 -7 -6 -5 VMMK-3503 Typical Performance Data obtained using GSG probing on substrate, broadband bias-T’s, losses calibrated out to the package reference plane. (TA = 25° C, Vdd = 5 V, Zin = Zout = 50 Ω unless noted) 1.8 V 1.25 V 1.15 V 1.05 V 0.95 V 0.85 V 0.75 V 0.65 V 0.5 V 0.4 V 0.35 V 0V 10 -10 -20 -30 -40 0 4 8 12 Freq (GHz) 16 1.8 V 1.25 V 1.15 V 1.05 V 0.95 V 0.85 V 0.75 V 0.65 V 0.5 V 0.4 V 0.35 V 0V S11 (dB) -5 -10 -15 0 4 -70 0 4 8 12 Freq (GHz) 16 20 Figure 2. Reverse Isolation vs. Vc 0 -20 -50 -60 20 Figure 1. Gain Range vs. Vcontrol 1.8 V 1.25 V 1.15 V 1.05 V 0.95 V 0.85 V 0.75 V 0.65 V 0.5 V 0.4 V 0.35 V 0V -40 8 12 Freq (GHz) 16 -5 -15 -20 -25 20 Figure 3. Input Return Loss vs. Vc 1.8 V 1.25 V 1.15 V 1.05 V 0.95 V 0.85 V 0.75 V 0.65 V 0.5 V 0.4 V 0.35 V 0V -10 S22 (dB) S21 (dB) 0 -30 S12 (dB) 20 0 4 8 12 Freq (GHz) 16 20 Figure 4. Output Return Loss vs. Vc 20 4.50 15 4.00 S11 S22 S21 5 0 NF (dB) Response (dB) 10 -5 3.50 3.00 -10 NF_50 ohm NFmin -15 -20 0 3 6 9 12 15 Freq (GHz) 18 Figure 5. Broadband Gain and Return Losses (Vc = 1.8 V) 4 21 24 2.50 0 3 6 9 Freq (GHz) Figure 6. Noise Figure (Vc = 1.8 V) 12 15 18 VMMK-3503 Typical Performance (TA = 25° C, Vdd = 5 V, Zin = Zout = 50 Ω unless noted) 15 20 Vc = 1.8 V Vc = 0.65 V IIP3 (dBm) IIP3 (dBm) 10 5 0 -5 10 5 0 0 3 6 9 Freq (GHz) 12 15 -5 18 Figure 7. Input IP3 vs. Freq 0 0.3 0.6 0.9 Vc (V) 1.2 1.5 1.8 Figure 8. Input IP3 vs. Vc 15 14 12 10 1.8 V 0.9 V 0.65 V 8 1.8 V 0.9 V 0.65 V 5 Gain (dB) 10 Psat (dBm) 1 GHz 6 GHz 12 GHz 18 GHz 15 6 4 0 -5 2 -10 0 -2 0 3 6 9 Freq (GHz) 12 15 18 25 60 20 50 Vc = 0.65 V Vc = 1.8 V 10 0 -15 -10 -5 Pin (dBm) 0 5 Vdd = 5 V Vdd = 4 V Vdd = 3 V 40 15 30 20 5 10 0 3 6 9 Freq (GHz) Figure 11. Noise Figure at Min and Max Gain 5 -20 Figure 10. Gain vs. Pin at 6 GHz Idd (mA) NF (dB) Figure 9. Saturated Power -15 12 15 18 0 0 0.3 0.6 Figure 12. Supply Current over Bias 0.9 Vc (V) 1.2 1.5 1.8 VMMK-3503 Typical Performance (TA = 25° C, Vc = 1.8 V, Zin = Zout = 50 Ω unless noted) 17 6 5V 4V 3V 5 13 NF (dB) S21 (dB) 15 11 0 4 8 12 Freq (GHz) 16 2 20 Figure 13. Max. Gain over Vdd 11 11 9 9 P1dB (dBm) 13 IIP3 (dBm) 13 7 3 Vdd = 5 V Vdd = 4 V Vdd = 3 V 0 3 6 Figure 15. Input IP3 over Vdd 0 3 6 9 Freq (GHz) 12 15 18 Figure 14. Noise Figure over Vdd 5 6 4 3 9 7 5V 4V 3V 9 Freq (GHz) 12 15 5V 4V 3V 7 5 18 3 0 3 6 Figure 16. Output P1dB over Vdd 9 Freq (GHz) 12 15 18 VMMK-3503 Typical Performance (TA = 25° C, Vdd = 5 V, Vc = 1.8 V, Zin = Zout = 50 Ω unless noted) 17 0 -40° C +25° C +85° C -4 13 S21 (dB) S21 (dB) 15 11 9 7 0 3 6 9 Freq (GHz) 12 15 -20 18 3 6 9 Freq (GHz) 12 15 18 -35° C +25° C +85° C 22 4 NF (dB) NF (dB) 0 25 5 3 19 16 -35° C +25° C +85° C 2 13 1 0 3 6 9 Freq (GHz) 12 15 0 18 Figure 19. Noise Figure (Vc = 1.8 V) over Temp 3 6 9 Freq (GHz) 12 15 18 Figure 20. Noise Figure (Vc = 0.65 V) over Temp 13 13 11 -40° C +25° C +85° C 11 P1dB (dBm) IIP3 (dBm) -40° C +25° C +85° C Figure 18. Min. Gain (Vc = 0.65 V) over Temp 6 9 7 -40° C +25° C +85° C 5 0 3 6 Figure 21. Input IP3 over Temp 7 -12 -16 Figure 17. Max Gain (Vc = 1.8 V) over Temp 3 -8 9 Freq (GHz) 12 15 9 7 5 18 3 0 3 6 Figure 22. Output P1dB over Temp 9 Freq (GHz) 12 15 18 Typical Scattering Parameters (Data obtained using GSG probing on substrate, broadband bias-T’s, losses calibrated out to the package reference plane.) Maximum Gain State TA = 25° C, Vdd = 5 V, Vc = 1.8 V, Zin = Zout = 50 Ω Freq GHz S11 dB mag phase dB mag phase dB mag phase dB mag phase 0.1 -5.234 0.547 -36.340 17.088 7.152 -169.066 -34.704 0.018 5.347 -7.950 0.400 -29.145 0.3 -8.205 0.389 -44.110 15.553 5.993 168.608 -37.140 0.014 -33.799 -14.430 0.190 -57.539 0.5 -9.630 0.330 -55.860 14.833 5.517 163.240 -39.576 0.011 -46.674 -17.910 0.127 -57.577 1 -11.674 0.261 -68.772 14.058 5.045 154.656 -45.514 0.005 -61.653 -18.526 0.119 -35.198 1.5 -12.638 0.233 -82.810 13.785 4.890 145.361 -52.396 0.002 -56.465 -18.711 0.116 -37.816 2 -12.716 0.231 -96.505 13.608 4.791 135.797 -58.416 0.001 -27.711 -18.644 0.117 -44.636 2.5 -12.945 0.225 -105.988 13.434 4.696 126.210 -57.721 0.001 22.831 -17.464 0.134 -52.561 3 -12.724 0.231 -117.938 13.253 4.599 116.602 -51.701 0.003 55.942 -17.009 0.141 -60.588 3.5 -12.443 0.239 -129.488 13.079 4.508 107.020 -49.370 0.003 57.247 -16.530 0.149 -67.722 4 -12.086 0.249 -140.327 12.878 4.405 97.488 -47.535 0.004 58.962 -15.950 0.159 -75.685 4.5 -11.781 0.258 -151.034 12.675 4.303 88.039 -46.196 0.005 55.451 -15.499 0.168 -83.369 5 -11.624 0.262 -160.567 12.464 4.199 78.800 -45.193 0.006 54.829 -14.899 0.180 -89.351 5.5 -11.415 0.269 -169.866 12.260 4.102 69.643 -44.152 0.006 54.633 -14.361 0.191 -96.382 6 -11.337 0.271 -179.510 12.054 4.006 60.519 -42.734 0.007 53.880 -13.962 0.200 -102.828 7 -11.460 0.267 162.515 11.657 3.827 42.602 -42.499 0.008 49.735 -13.167 0.220 -113.970 8 -11.751 0.259 147.995 11.367 3.701 24.988 -40.724 0.009 48.393 -12.203 0.245 -124.427 9 -12.472 0.238 133.404 11.060 3.573 7.241 -40.265 0.010 39.885 -11.542 0.265 -134.913 10 -13.635 0.208 121.211 10.846 3.486 -10.571 -40.446 0.010 36.647 -11.010 0.282 -143.067 11 -14.866 0.181 114.429 10.711 3.432 -28.787 -39.094 0.011 35.737 -10.492 0.299 -151.617 12 -16.695 0.146 106.812 10.563 3.374 -47.576 -39.251 0.011 20.424 -10.527 0.298 -158.331 13 -17.096 0.140 95.686 10.455 3.332 -66.978 -39.743 0.010 6.426 -11.103 0.279 -163.704 14 -17.413 0.135 93.664 10.440 3.327 -87.377 -42.853 0.007 3.082 -11.239 0.274 -166.829 15 -16.893 0.143 84.178 10.301 3.274 -109.043 -45.680 0.005 -7.975 -11.493 0.266 -169.735 16 -16.467 0.150 63.202 10.045 3.179 -131.594 -49.897 0.003 -4.888 -11.866 0.255 -166.983 17 -15.945 0.160 37.802 9.750 3.073 -154.810 -55.918 0.002 -52.259 -11.681 0.261 -160.052 18 -15.614 0.166 12.088 9.197 2.883 -179.066 -51.701 0.003 158.277 -10.357 0.304 -158.139 19 -13.752 0.205 -21.118 8.448 2.645 157.015 -44.883 0.006 152.925 -8.966 0.356 -157.243 20 -12.157 0.247 -41.042 7.561 2.388 133.864 -41.310 0.009 154.431 -8.145 0.392 -162.711 21 -10.669 0.293 -63.873 6.683 2.159 111.260 -37.393 0.014 138.895 -7.153 0.439 -169.348 22 -8.874 0.360 -80.568 5.735 1.935 89.380 -36.363 0.015 136.236 -6.840 0.455 -175.654 23 -7.819 0.407 -95.270 4.875 1.753 68.283 -33.231 0.022 129.780 -7.107 0.441 173.963 24 -6.567 0.470 -112.606 4.083 1.600 46.380 -31.972 0.025 123.391 -7.300 0.432 164.987 25 -5.575 0.526 -123.992 3.420 1.483 24.873 -30.117 0.031 117.009 -8.683 0.368 155.499 26 -5.033 0.560 -138.591 2.789 1.379 1.758 -28.730 0.037 106.595 -10.707 0.292 142.046 27 -4.273 0.611 -152.269 2.192 1.287 -22.954 -27.787 0.041 101.488 -15.310 0.172 134.713 28 -3.947 0.635 -167.334 1.493 1.188 -49.141 -26.994 0.045 92.314 -32.041 0.025 144.283 29 -3.541 0.665 176.086 0.621 1.074 -77.446 -25.832 0.051 86.534 -16.851 0.144 -90.456 30 -3.351 0.680 158.427 -0.400 0.955 -106.679 -25.209 0.055 79.495 -9.935 0.319 -100.759 8 S21 S12 S22 Typical Scattering Parameters (Data obtained using GSG probing on substrate, broadband bias-T’s, losses calibrated out to the package reference plane.) Maximum Gain State TA = 25° C, Vdd = 5 V, Vc = 0.65 V, Zin = Zout = 50 Ω Freq GHz S11 dB mag phase dB mag phase dB mag phase dB mag phase 0.1 -4.384 0.604 -29.869 -12.146 0.247 129.090 -34.657 0.019 -1.087 -8.629 0.370 -52.821 0.3 -6.657 0.465 -45.824 -14.204 0.195 147.959 -37.721 0.013 -29.210 -15.050 0.177 -91.600 0.5 -8.022 0.397 -60.936 -14.780 0.182 147.676 -40.446 0.010 -44.324 -18.294 0.122 -109.111 1 -9.851 0.322 -79.444 -15.244 0.173 138.353 -47.959 0.004 -46.248 -24.837 0.057 -106.341 1.5 -10.291 0.306 -96.760 -15.254 0.173 124.975 -53.152 0.002 4.863 -27.131 0.044 -114.720 2 -9.960 0.318 -112.225 -15.095 0.176 110.896 -49.119 0.004 34.160 -27.535 0.042 -120.614 2.5 -9.789 0.324 -123.981 -14.875 0.180 97.127 -46.745 0.005 38.796 -26.321 0.048 -105.494 3 -9.279 0.344 -136.890 -14.666 0.185 83.680 -44.731 0.006 46.700 -25.368 0.054 -106.252 3.5 -8.838 0.362 -149.098 -14.434 0.190 70.694 -43.223 0.007 39.610 -24.336 0.061 -105.204 4 -8.423 0.379 -160.463 -14.186 0.195 58.511 -41.618 0.008 38.334 -22.878 0.072 -107.122 4.5 -8.112 0.393 -171.556 -13.966 0.200 46.636 -40.819 0.009 35.552 -21.766 0.082 -109.935 5 -7.983 0.399 178.119 -13.727 0.206 35.372 -40.446 0.010 31.845 -20.491 0.095 -110.216 5.5 -7.862 0.405 168.168 -13.498 0.211 24.634 -40.000 0.010 30.148 -19.307 0.108 -113.744 6 -7.896 0.403 157.747 -13.251 0.218 14.151 -39.412 0.011 27.547 -18.496 0.119 -117.260 7 -8.352 0.382 138.626 -12.765 0.230 -6.012 -39.332 0.011 22.649 -16.624 0.148 -123.666 8 -9.484 0.336 121.545 -12.174 0.246 -25.240 -38.344 0.012 20.228 -15.006 0.178 -131.066 9 -11.724 0.259 108.205 -11.457 0.267 -45.069 -37.458 0.013 10.631 -13.630 0.208 -139.041 10 -14.914 0.180 109.544 -10.704 0.292 -65.979 -37.329 0.014 -0.050 -12.634 0.234 -146.650 11 -14.746 0.183 133.101 -9.990 0.317 -87.815 -37.016 0.014 -6.566 -11.842 0.256 -153.905 12 -11.411 0.269 133.477 -9.304 0.343 -110.934 -36.954 0.014 -29.419 -11.418 0.269 -160.153 13 -8.709 0.367 113.491 -8.754 0.365 -135.002 -37.523 0.013 -52.510 -11.545 0.265 -165.869 14 -7.250 0.434 92.561 -8.327 0.383 -159.201 -39.914 0.010 -77.826 -11.764 0.258 -170.850 15 -6.417 0.478 70.306 -7.950 0.400 176.550 -40.355 0.010 -111.180 -11.941 0.253 -174.141 16 -6.028 0.500 45.905 -7.654 0.414 151.174 -40.355 0.010 -145.319 -12.206 0.245 -172.586 17 -5.647 0.522 21.999 -7.498 0.422 125.597 -39.914 0.010 -169.517 -12.385 0.240 -167.794 18 -5.552 0.528 -1.777 -7.570 0.418 99.059 -37.523 0.013 169.891 -11.299 0.272 -164.225 19 -5.004 0.562 -26.985 -8.013 0.398 72.637 -36.138 0.016 155.878 -9.984 0.317 -161.776 20 -4.614 0.588 -47.372 -8.759 0.365 47.014 -35.041 0.018 150.938 -9.134 0.349 -167.187 21 -4.252 0.613 -69.196 -9.651 0.329 22.400 -32.217 0.025 137.411 -8.097 0.394 -175.258 22 -3.650 0.657 -86.503 -10.672 0.293 -1.960 -31.437 0.027 130.598 -8.161 0.391 177.319 23 -3.451 0.672 -103.378 -11.948 0.253 -25.748 -29.422 0.034 121.759 -8.981 0.356 164.378 24 -3.045 0.704 -121.052 -13.195 0.219 -51.026 -28.683 0.037 110.392 -10.223 0.308 155.184 25 -2.790 0.725 -133.752 -14.512 0.188 -76.900 -27.723 0.041 101.985 -13.846 0.203 148.226 26 -2.787 0.726 -148.672 -15.918 0.160 -105.090 -27.033 0.045 90.855 -20.491 0.095 149.827 27 -2.648 0.737 -163.119 -17.127 0.139 -136.314 -26.878 0.045 85.725 -20.696 0.092 -122.188 28 -2.761 0.728 -178.128 -18.366 0.121 -167.459 -26.651 0.047 77.935 -13.560 0.210 -108.378 29 -2.874 0.718 165.731 -19.062 0.111 160.383 -25.934 0.051 73.541 -9.709 0.327 -115.177 30 -3.145 0.696 148.147 -19.601 0.105 131.274 -25.564 0.053 70.374 -7.404 0.426 -122.966 9 S21 S12 S22 VMMK-3503 Applications and Usage Information Table 4. VMMK-3503 Demo Board BOM Figure 23. Evaluation/Test Board (available to qualified customers upon request) Biasing and Operation The VMMK-3503 is biased with a positive supply connected to the output pin Vd through an external user supplied bias decoupling network. Nominal current draw is 59 mA from a 5 V power supply. A typical biasing scheme is shown in Figure 23. Maximum gain occurs when Vc is 1.8 V and minimum gain occurs with Vc set to 0.65 V. Vc 0.1 µF 0.1 µF Vdd 100 pF L1 10 K Input Output Amp 100 pF Input Pad 50 Ohm line Ground Pad Output Pad 100 pF 50 Ohm line Figure 24. Example demonstration circuit of VMMK-3503 for broadband operation (RF choke value selected for best performance at 12 GHz). Component Value DUT VMMK-3503 C1 100 pF C2 100 pF R1 10 KOhms C5 0.1 mF C6 100 pF L1 2 nH A layout of a typical demo board is shown in Figure 25. The demo board uses small 0402 style surface mount components. Due to the broad bandwidth of the VMMK-3503 devising a bias decoupling network to work well over the entire 0.5 to 18 GHz frequency range will be a challenge. Conical wound broad band inductors will work well but may be pricy. The demo board uses a 2.2 nH output inductor which provides good bandwidth from about a 1 GHz to beyond 6 GHz. The input and output blocking capacitors are 100 pF. Typically a passive component company like Murata does not specify S parameters at frequencies higher than 5 or 6 GHz for larger values of inductance making it difficult to properly simulate amplifier performance at higher frequencies. It has been observed that the Murata LQW15AN series of 0402 inductors actually works quite well above their normally specified frequency. Another scheme for increasing the bandwidth would be to install two small chip inductors in series. A smaller value would favor the higher frequencies while the larger value will work better at low frequencies. Putting a few ohms of resistance in series with the inductors will also tend to smooth out the response by minimizing resonances in the bias decoupling networks. The parallel combination of the 100 pF and 0.1 mF capacitors provide a low impedance in the band of operation and at lower frequencies and should be placed as close as possible to the inductor. The low frequency bypass provides good rejection of power supply noise and also provides a low impedance termination for third order low frequency mixing products that will be generated when multiple in-band signals are injected into any amplifier. The 10K ohm resistor at the input provides a reasonably wide bandwidth way of injecting Vc at the input to the device without adversely affecting RF performance. Figure 25. Biasing the VMMK-3503 10 S Parameter Measurements ESD Precautions The S parameters are measured on a 300 mm G-S-G (ground signal ground) printed circuit board substrate. Calibration is achieved with a series of through, short and open substrates from which an accurate set of S parameters is created. The test board is 0.016 inch thickness RO4350. Grounding of the device is achieved with a single plated through hole directly under the device. The effect of this plated through hole is included in the S parameter measurements and is difficult to de-embed accurately. Since the maximum recommended printed circuit board thickness is nominally 0.020 inch, then the nominal effect of printed circuit board grounding can be considered to have already been included the published S parameters. Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure that an ESD approved carrier is used when die are transported from one destination to another. Personal grounding is to be worn at all times when handling these devices. For more detail, refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control. Package and Assembly Note Part Number Devices Per Container Container For detailed description of the device package, handling and assembly, please refer to Application Note 5378. VMMK-3503-BLKG 100 Antistatic Bag VMMK-3503-TR1G 5000 7” Reel Ordering Information Package Dimension Outline D E A Dimensions Symbol Min (mm) Max (mm) E 0.500 0.585 D 1.004 1.085 A 0.225 0.275 Note: All dimensions are in mm Reel Orientation Device Orientation USER FEED DIRECTION REEL 4 mm Notes: “L” = Device Code “Y” = Month Code • LY TOP VIEW CARRIER TAPE • LY 11 • LY • LY USER FEED DIRECTION 8 mm END VIEW Tape Dimensions T Do Note: 1 Po B A A P1 Scale 5:1 Bo W Note: 2 F E 5° (Max) B D1 BB SECTION Note: 2 P2 Ao R0.1 5° (Max) Ko Ao = 0.73±0.05 mm Scale 5:1 Bo = 1.26±0.05 mm AA SECTION mm Ko = 0.35 +0.05 +0 Unit: mm Symbol Spec. K1 Po P1 P2 Do D1 E F 10Po W T – 4.0±0.10 4.0±0.10 2.0±0.05 1.55±0.05 0.5±0.05 1.75±0.10 3.50±0.05 40.0±0.10 8.0±0.20 0.20±0.02 Notice: 1. 10 Sprocket hole pitch cumulative tolerance is ±0.1 mm. 2. Pocket position relative to sprocket hole measured as true position of pocket not pocket hole. 3. Ao & Bo measured on a place 0.3 mm above the bottom of the pocket to top surface of the carrier. 4. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier. 5. Carrier camber shall be not than 1 m per 100 mm through a length of 250 mm. For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. AV02-2918EN - December 26, 2012
VMMK-3503-TR2G 价格&库存

很抱歉,暂时无法提供与“VMMK-3503-TR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货