Z5U Dielectric
General Specifications
Z5U formulations are “general-purpose” ceramics which are
meant primarily for use in limited temperature applications
where small size and cost are important. Z5U show wide
variations in capacitance under influence of environmental
and electrical operating conditions.
Despite their capacitance instability, Z5U formulations
are very popular because of their small size, low ESL, low
ESR and excellent frequency response. These features are
particularly important for decoupling application where only a
minimum capacitance value is required.
PART NUMBER (see page 3 for complete part number explanation)
0805
5
E
104
Z
A
T
2
A
Size
(L" x W")
Voltage
25V = 3
50V = 5
Dielectric
Z5U = E
Capacitance
Code
Capacitance
Tolerance
Preferred
Z = +80%
–20%
M = ±20%
Failure
Rate
A = Not
Applicable
Terminations
T = Plated Ni
and Solder
Packaging
2 = 7" Reel
4 = 13" Reel
Special
Code
A = Std.
Product
PERFORMANCE CHARACTERISTICS
Capacitance Range
Capacitance Tolerances
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Dissipation Factor
Insulation Resistance (+25°C, RVDC)
Dielectric Strength
Test Voltage
Test Frequency
12
0.01 µF to 1.0 µF
Preferred +80 –20%
others available: ±20%, +100 –0%
+10°C to +85°C
+22% to –56% max.
25 and 50VDC (+85°C)
4% max.
10,000 megohms min. or 1000 MΩ - µF min., whichever is less
250% of rated voltage for 5 seconds at 50 mamp max. current
0.5 ± 0.2 Vrms
1 KHz
Z5U Dielectric
Typical Characteristic Curves**
Temperature Coefficient
Variation of Impedance with Cap Value
Impedance vs. Frequency
1206 -Z5U
100.00
10.00
Impedance, ⍀
% ⌬ Capacitance
+30
+20
+10
0
-10
-20
-30
-40
-50
-60
+10 +25 +30 +35 +40 +45 +50 +55 +65 +85
Temperature °C
10,000 pF
1.00
100,000 pF
0.10
0.01
1
100
10
1,000
Frequency, MHz
Variation of Impedance with Chip Size
Impedance vs. Frequency
.33 F - Z5U
1000
0
-10
Z5U 1206
Z5U 1210
Z5U 1812
100
|Z| (ohms)
% ⌬ Capacitance
⌬ Capacitance vs. Frequency
-20
-30
10
1
-40
1KHz
10 KHz
100 KHz
1 MHz
10 MHz
0.1
0.001
Frequency
0.01
0.1
1
10
100
1,000
Variation of Impedance with Ceramic Formulation
Impedance vs. Frequency
.1F X7R vs. Z5U
0805
nsu ation Resistance vs Temperature
100,000
10000
10,000
X7R 0805
Z5U 0805
1000
1,000
|Z| (ohms)
Insulation Resistance (Ohm-Farads)
Frequency, MHz
100
0
+20
+30
+40
+50
+60
+70
100
10
1
0.1
+80
Temperature °C
0.01
0.001
0.01
0.1
1
10
100
1,000
Frequency, MHz
SUMMARY OF CAPACITANCE RANGES VS. CHIP SIZE
Style
0603*
0805*
1206*
1210*
1808
1812*
1825*
2225
25V
.01µF - .047µF
.01µF - .12µF
.01µF - .33µF
.01µF - .56µF
.01µF - .56µF
.01µF - 1.0µF
.01µF - 1.0µF
.01µF - 1.0µF
50V
.01µF - .027µF
.01µF - 0.1µF
.01µF - .33µF
.01µF - .47µF
.01µF - .47µF
.01µF - 1.0µF
.01µF - 1.0µF
.01µF - 1.0µF
* Standard Sizes
** For additional information on performance changes with operating conditions consult AVX’s software SpiCap.
13
Z5U Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE
0603*
0805
1206
1210
Standard Reel Packaging
All Paper
Paper/Embossed
Paper/Embossed
Paper/Embossed
1.60 ± .15
(.063 ± .006)
.81 ± .15
(.032 ± .006)
.90
(.035)
.35 ± .15
(.014 ± .006)
2.01 ± .20
(.079 ± .008)
1.25 ± .20
(.049 ± .008)
1.30
(.051)
.50 ± .25
(.020 ± .010)
3.20 ± .20
(.126 ± .008)
1.60 ± .20
(.063 ± .008)
1.50
(.059)
.50 ± .25
(.020 ± .010)
3.20 ± .20
(.126 ± .008)
2.50 ± .20
(.098 ± .008)
1.70
(.067)
.50 ± .25
(.020 ± .010)
WVDC
50
25
50
25
L
50
W
䉲
䉲
*Reflow soldering only.
50
䉲
.010
.012
.015
.018
.022
.027
.033
.039
.047
.056
.068
.082
.10
.12
.15
.18
.22
.27
.33
.39
.47
.56
.68
.82
1.0
1.5
25
䉲
Cap
(µF)
25
䉲
(t) Terminal
䉲
(T) Max. Thickness
T
䉲
(W) Width
MM
(in.)
MM
(in.)
MM
(in.)
MM
(in.)
䉲
(L) Length
t
= Paper Tape
= Embossed Tape
NOTES: For low profile chips, see page 19.
14
Z5U Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
1808*
1812*
1825*
2225*
All Embossed
All Embossed
All Embossed
All Embossed
04.57 ± .25
(.180 ± .010)
2.03 ± .25
(.080 ± .010)
1.52
(.060)
.64 ± .39
(.025 ± .015)
4.50 ± .30
(.177 ± .012)
3.20 ± .20
(.126 ± .008)
1.70
(.067)
.61 ± .36
(.024 ± .014)
4.50 ± .30
(.177 ± .012)
6.40 ± .40
(.252 ± .016)
1.70
(.067)
.61 ± .36
(.024 ± .014)
5.72 ± .25
(.225 ± .010)
6.35 ± .25
(.250 ± .010)
1.70
(.067)
.64 ± .39
(.025 ± .015)
(t) Terminal
25
25
50
25
50
25
L
50
W
䉲
䉲
*Reflow soldering only.
50
䉲
.010
.012
.015
.018
.022
.027
.033
.039
.047
.056
.068
.082
.10
.12
.15
.18
.22
.27
.33
.39
.47
.56
.68
.82
1.0
1.5
䉲
WVDC
Cap
(µF)
䉲
(T) Max. Thickness
T
䉲
(W) Width
MM
(in.)
MM
(in.)
MM
(in.)
MM
(in.)
䉲
(L) Length
䉲
SIZE
Standard Reel Packaging
t
= Paper Tape
= Embossed Tape
NOTES: For low profile chips, see page 19.
15
Basic Capacitor Formulas
I. Capacitance (farads)
English: C = .224 K A
TD
Metric: C = .0884 K A
TD
XI. Equivalent Series Resistance (ohms)
E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC)
XII. Power Loss (watts)
Power Loss = (2 π fCV2) (D.F.)
XIII. KVA (Kilowatts)
KVA = 2 π fCV2 x 10 -3
II. Energy stored in capacitors (Joules, watt - sec)
E = 1⁄2 CV2
XIV. Temperature Characteristic (ppm/°C)
T.C. = Ct – C25 x 106
C25 (Tt – 25)
III. Linear charge of a capacitor (Amperes)
dV
I=C
dt
XV. Cap Drift (%)
C1 – C2
C.D. =
C1
IV. Total Impedance of a capacitor (ohms)
Z = 冑 RS + (XC - XL )
V. Capacitive Reactance (ohms)
1
xc =
2 π fC
2
2
XVI. Reliability of Ceramic Capacitors
Vt
L0
X
Tt
Y
=
Lt
Vo
To
( ) ( )
VI. Inductive Reactance (ohms)
xL = 2 π fL
XVII. Capacitors in Series (current the same)
Any Number:
1 = 1 + 1 --- 1
CT
C1
C2
CN
C1 C2
Two: CT =
C1 + C2
VII. Phase Angles:
Ideal Capacitors: Current leads voltage 90°
Ideal Inductors: Current lags voltage 90°
Ideal Resistors: Current in phase with voltage
XVIII. Capacitors in Parallel (voltage the same)
CT = C1 + C2 --- + CN
VIII. Dissipation Factor (%)
D.F.= tan ␦ (loss angle) = E.S.R. = (2 πfC) (E.S.R.)
Xc
IX. Power Factor (%)
P.F. = Sine ␦ (loss angle) = Cos (phase angle)
f
P.F. = (when less than 10%) = DF
XIX. Aging Rate
A.R. = %
D C/decade of time
XX. Decibels
db = 20 log V1
V2
X. Quality Factor (dimensionless)
Q = Cotan ␦ (loss angle) = 1
D.F.
METRIC PREFIXES
Pico
Nano
Micro
Milli
Deci
Deca
Kilo
Mega
Giga
Tera
2
X 10-12
X 10-9
X 10-6
X 10-3
X 10-1
X 10+1
X 10+3
X 10+6
X 10+9
X 10+12
x 100
SYMBOLS
K
= Dielectric Constant
f
= frequency
Lt
= Test life
A
= Area
L
= Inductance
Vt
= Test voltage
TD
= Dielectric thickness
␦
= Loss angle
Vo
= Operating voltage
V
= Voltage
f
= Phase angle
Tt
= Test temperature
t
= time
X&Y
= exponent effect of voltage and temp.
To
= Operating temperature
Rs
= Series Resistance
Lo
= Operating life
How to Order
Part Number Explanation
EXAMPLE: 08055A101JAT2A
0805
Size
(L" x W")
0402
0504
0603
0805
1005
0907
1206
1210
1505
1805
1808
1812
1825
2225
3640
5
A
101
Dielectric
C0G (NP0) = A
X7R = C
X5R = D
Z5U = E
Y5V = G
Voltage
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
250V = V
500V = 7
600V = C
1000V = A
1500V = S
2000V = G
2500V = W
3000V = H
4000V = J
5000V = K
J
C
D
F
G
J
K
M
Z
P
A
Capacitance
Tolerance
= ±.25 pF*
= ±.50 pF*
= ±1% (≥ 25 pF)
= ±2% (≥ 13 pF)
= ±5%
= ±10%
= ±20%
= +80%, -20%
= +100%, -0%
Capacitance
Code
(2 significant
digits + no. of
zeros)
Examples:
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 µF = 105
For values below 10 pF,
use “R” in place of
decimal point, e.g., 9.1
pfd = 9R1.
T
2
Terminations
Standard:
T = Ni and Tin
Plated
Others:
7 = Plated Ni
Gold Plated
1 = Pd/Ag
Failure
Rate
A = Not
Applicable
A
Special**
Code
A = Standard
Product
Non-Standard
P = Embossed
unmarked
M = Embossed
marked
E = Standard
packaging
marked
Low Profile
Chips Only
Max. Thickness
T = .66mm (.026")
S = .56mm (.022")
R = .46mm (.018")
Packaging**
Recommended:
2 =7" Reel
4 =13" Reel
Others:
7 = Bulk Cassette
9 = Bulk
* C&D tolerances for ⱕ10 pF values.
** Standard Tape and Reel material depends upon chip size and thickness.
See individual part tables for tape material type for each capacitance value.
Note: Unmarked product is standard. Marked product is available on special request, please contact AVX.
Standard packaging is shown in the individual tables.
Non-standard packaging is available on special request, please contact AVX.
3
General Specifications
Environmental
THERMAL SHOCK
MOISTURE RESISTANCE
Specification
Appearance
No visual defects
Capacitance Variation
C0G (NP0): ± 2.5% or ± .25pF, whichever is greater
X7R: ≤ ± 7.5%
Z5U: ≤ ± 20%
Y5V: ≤ ± 20%
Q, Tan Delta
To meet initial requirement
Insulation Resistance
C0G (NP0), X7R: To meet initial requirement
Z5U, Y5V: ≥ Initial Value x 0.1
Dielectric Strength
No problem observed
Measuring Conditions
Step
Temperature °C
Time (minutes)
C0G (NP0), X7R: -55° ± 2°
1
Z5U: +10° ± 2°
30 ± 3
Y5V: -30° ± 2°
2
Room Temperature
#3
C0G
(NP0),
X7R:
+125°
±
2°
3
30 ± 3
Z5U, Y5V: +85° ± 2°
4
Room Temperature
#3
Repeat for 5 cycles and measure after 48 hours ± 4 hours
(24 hours for C0G (NP0)) at room temperature.
Specification
Appearance
No visual defects
Capacitance Variation
C0G (NP0): ± 5% or ± .5pF, whichever is greater
X7R: ≤ ± 10%
Z5U: ≤ ± 30%
Y5V: ≤ ± 30%
Q, Tan Delta
C0G (NP0):≥ 30pF........................Q ≥ 350
≥ 10pF, < 30pF ...........Q ≥ 275+5C/2
< 10pF ........................Q ≥ 200+10C
X7R: Initial requirement + .5%
Z5U: Initial requirement + 1%
Y5V: Initial requirement + 2%
IMMERSION
Specification
Appearance
No visual defects
Capacitance Variation
C0G (NP0): ± 2.5% or ± .25pF, whichever is greater
X7R: ≤ ± 7.5%
Z5U: ≤ ± 20%
Y5V: ≤ ± 20%
Q, Tan Delta
To meet initial requirement
Insulation Resistance
C0G (NP0), X7R: To meet initial requirement
Z5U, Y5V: ≥ Initial Value x 0.1
Dielectric Strength
No problem observed
Measuring Conditions
Step
Temperature °C
Time (minutes)
+65
+5/-0
1
15 ± 2
Pure Water
0±3
2
15 ± 2
NaCl solution
Repeat cycle 2 times and wash with water and dry.
Store at room temperature for 48 ± 4 hours (24 hours for
C0G (NP0)) and measure.
22
Insulation Resistance
≥ Initial Value x 0.3
Measuring Conditions
Step
Temp. °C
Humidity % Time (hrs)
1
+25->+65
90-98
2.5
2
+65
90-98
3.0
3
+65->+25
80-98
2.5
4
+25->+65
90-98
2.5
5
+65
90-98
3.0
6
+65->+25
80-98
2.5
7
+25
90-98
2.0
7a
-10
uncontrolled
–
7b
+25
90-98
–
Repeat 20 cycles (1-7) and store for 48 hours (24 hours
for C0G (NP0)) at room temperature before measuring.
Steps 7a & 7b are done on any 5 out of first 9 cycles.
General Specifications
Environmental
STEADY STATE HUMIDITY
(No Load)
Specification
Appearance
No visual defects
Capacitance Variation
C0G (NP0): ± 5% or ± .5pF, whichever is greater
X7R: ≤ ± 10%
Z5U: ≤ ± 30%
Y5V: ≤ ± 30%
Q, Tan Delta
C0G (NP0): ≥ 30pF......................Q ≥ 350
≥ 10pF, < 30pF.........Q ≥ 275+5C/2
< 10pF ....................Q ≥ 200+10C
X7R: Initial requirement + .5%
Z5U: Initial requirement + 1%
Y5V: Initial requirement + 2%
Insulation Resistance
≥ Initial Value x 0.3
Measuring Conditions
Store at 85 ± 5% relative humidity and 85°C for 1000
hours, without voltage. Remove from test chamber
and stabilize at room temperature and humidity for
48 ± 4 hours (24 ±2 hours for C0G (NP0)) before
measuring.
Charge and discharge currents must be less than
50ma.
LOAD HUMIDITY
Specification
Appearance
No visual defects
Capacitance Variation
C0G (NP0): ± 5% or ± .5pF, whichever is greater
X7R: ≤ ± 10%
Z5U: ≤ ± 30%
Y5V: ≤ ± 30%
Q, Tan Delta
C0G (NP0): ≥ 30pF .....................Q ≥ 350
≥ 10pF,< 30pF .........Q ≥ 275+5C/2
< 10pF ....................Q ≥ 200+10C
X7R: Initial requirement + .5%
Z5U: Initial requirement + 1%
Y5V: Initial requirement + 2%
Insulation Resistance
C0G (NP0), X7R: To meet initial value x 0.3
Z5U, Y5V: ≥ Initial Value x 0.1
Charge devices with rated voltage in test chamber set
at 85 ± 5% relative humidity and 85°C for 1000
(+48,-0) hours. Remove from test chamber and
stabilize at room temperature and humidity for 48 ± 4
hours (24 ±2 hours for C0G (NP0)) before measuring.
Charge and discharge currents must be less than
50ma.
LOAD LIFE
Specification
Appearance
No visual defects
Capacitance Variation
C0G (NP0): ± 3% or ± .3pF, whichever is greater
X7R: ≤ ± 10%
Z5U: ≤ ± 30%
Y5V: ≤ ± 30%
Q, Tan Delta
C0G (NP0): ≥ 30pF......................Q ≥ 350
≥ 10pF, < 30pF.........Q ≥ 275+5C/2
< 10pF ....................Q ≥ 200+10C
X7R: Initial requirement + .5%
Z5U: Initial requirement + 1%
Y5V: Initial requirement + 2%
Insulation Resistance
C0G (NP0), X7R: To meet initial value x 0.3
Z5U, Y5V: ≥ Initial Value x 0.1
Charge devices with twice rated voltage in test
chamber set at +125°C ± 2°C for C0G (NP0) and X7R,
+85° ± 2°C for Z5U, and Y5V for 1000 (+48,-0) hours.
Remove from test chamber and stabilize at room
temperature for 48 ± 4 hours (24 ±2 hours for C0G
(NP0)) before measuring.
Charge and discharge currents must be less than
50ma.
23
General Specifications
Mechanical
END TERMINATION ADHERENCE
Specification
No evidence of peeling of end terminal
Measuring Conditions
After soldering devices to circuit board apply 5N
(0.51kg f) for 10 ± 1 seconds, please refer to Figure 1.
BEND STRENGTH
Speed = 1mm/sec
2mm
Deflection
R340mm
45mm
5N FORCE
45mm
Supports
Figure 2. Bend Strength
DEVICE UNDER TEST
TEST BOARD
Figure 1.
Terminal Adhesion
RESISTANCE TO VIBRATION
Specification
Appearance:
No visual defects
Capacitance
Within specified tolerance
Q, Tan Delta
To meet initial requirement
Insulation Resistance
C0G (NP0), X7R ⱖ Initial Value x 0.3
Z5U, Y5V ⱖ Initial Value x 0.1
Measuring Conditions
Vibration Frequency
10-2000 Hz
Maximum Acceleration
20G
Swing Width
1.5mm
Test Time
X, Y, Z axis for 2 hours each, total 6 hours of test
SOLDERABILITY
Specification
ⱖ 95% of each termination end should be covered with
fresh solder
Measuring Conditions
Dip device in eutectic solder at 230 ± 5°C for
2 ± .5 seconds
24
Specification
Appearance:
No visual defects
Capacitance Variation
C0G (NP0): ± 5% or ± .5pF, whichever is larger
X7R: ≤ ± 12%
Z5U: ≤ ± 30%
Y5V: ≤ ± 30%
Insulation Resistance
C0G (NP0): ≥ Initial Value x 0.3
X7R: ≥ Initial Value x 0.3
Z5U: ≥ Initial Value x 0.1
Y5V: ≥ Initial Value x 0.1
Measuring Conditions
Please refer to Figure 2
Deflection:
2mm
Test Time:
30 seconds
RESISTANCE TO SOLDER HEAT
Specification
Appearance:
No serious defects,