0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AZ100LVE111EFN

AZ100LVE111EFN

  • 厂商:

    AZM

  • 封装:

  • 描述:

    AZ100LVE111EFN - ECL/PECL 1:9 Differential Clock Driver with Enable - Arizona Microtek, Inc

  • 详情介绍
  • 数据手册
  • 价格&库存
AZ100LVE111EFN 数据手册
ARIZONA MICROTEK, INC. AZ10LVE111E AZ100LVE111E ECL/PECL 1:9 Differential Clock Driver with Enable FEATURES • • • • • • • • Operating Range of 3.0V to 5.5V Low Skew Guaranteed Skew Spec Differential Design Enable VBB Output 75kΩ Internal Input Pulldown Resistors Direct Replacement for ON Semiconductor MC10E111 & MC100E111 PACKAGE PLCC 28 PACKAGE AVAILABILITY PART NO. AZ10LVE111EFN AZ100LVE111EFN MARKING AZ10 LVE111E AZ100 LVE111E NOTES 1,2 PLCC 28 1 2 1,2 Add R2 at end of part number for 13 inch (750 parts) Tape & Reel. Date code format: “YY” for year followed by “WW” for week. DESCRIPTION The AZ10/100LVE111E is a low skew 1-to-9 differential driver, designed with clock distribution in mind. The IN signal is fanned-out to nine identical differential outputs. An Enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all Q outputs HIGH. ¯ The AZ100LVE111E provides a VBB output for single-ended use or a DC bias reference for AC coupling to the device. For single–ended input applications, the VBB reference should be connected to one side of the IN/IN ¯¯ differential input pair. The input signal is then fed to the other IN/IN input. The VBB pin should be used only as a ¯¯ bias for the AZ100LVE111E as its current sink/source capability is limited. When used, the VBB pin should be bypassed to ground via a 0.01μF capacitor. The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate-to-gate within-device skew, and empirical modeling is used to determine process control limits that ensure consistent tpd distributions from lot-to-lot. The net result is a dependable, guaranteed low skew device. To ensure that the tight skew specification is met, both sides of the differential output must be terminated into 50Ω, even if only one side is used. In most applications all nine differential pairs will be used and therefore terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i.e. sharing the same VCCO) as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10-20ps) of the output(s) being used that, while not being catastrophic to most designs, will mean a loss of skew margin. NOTE: Specifications in the ECL/PECL tables are valid when thermal equilibrium is established. 1630 S. STAPLEY DR., SUITE 127 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (480) 890-2541 www.azmicrotek.com AZ10LVE111E AZ100LVE111E Q0 25 VEE EN 26 Q0 24 Q1 23 VCCO Q1 21 Q2 20 Q2 19 18 17 Q3 Q3 LOGIC SYMBOL Q0 Q0 Q1 Q1 22 27 IN 28 16 Q4 V CC 1 Pinout: 28-Lead PLCC (top view) 15 VCCO IN 2 14 Q4 Q2 Q2 IN IN Q3 Q3 Q4 Q4 Q5 Q5 Q6 Q6 Q7 Q7 Q8 Q8 VBB 3 13 Q5 NC 4 12 Q5 5 6 7 8 9 10 11 EN Q8 Q8 Q7 VCCO Q7 Q6 Q6 PIN DESCRIPTION PIN IN, IN ¯¯ EN ¯¯ Q0, Q0 - Q8, Q8 ¯¯ ¯¯ VBB VCC , VCCO VEE NC FUNCTION Differential Input Pair Enable Differential Outputs VBB Output Positive Supply Negative Supply No Connect V BB Absolute Maximum Ratings are those values beyond which device life may be impaired. Symbol VCC VI VEE VI IOUT TA TSTG Characteristic PECL Power Supply (VEE = 0V) PECL Input Voltage (VEE = 0V) ECL Power Supply (VCC = 0V) ECL Input Voltage (VCC = 0V) Output Current --- Continuous --- Surge Operating Temperature Range Storage Temperature Range Rating 0 to +8.0 0 to +6.0 -8.0 to 0 -6.0 to 0 50 100 -40 to +85 -65 to +150 Unit Vdc Vdc Vdc Vdc mA °C °C 10K ECL DC Characteristics (VEE = -3.0V to -5.5V, VCC = VCCO = GND) Symbol Characteristic 1 VOH Output HIGH Voltage VOL Output LOW Voltage1 VIH Input HIGH Voltage VIL Input LOW Voltage VBB Reference Voltage Input HIGH Current IIH Input LOW Current 0.5 IIL IEE Power Supply Current 48 60 1. Each output is terminated through a 50Ω resistor to VCC – 2V. Min -1080 -1950 -1230 -1950 -1430 -40°C Typ Max -890 -1650 -890 -1500 -1300 150 Min -1020 -1950 -1170 -1950 -1380 0.5 0° C Typ Max -840 -1630 -840 -1480 -1270 150 60 Min -980 -1950 -1130 -1950 -1350 0.5 25° C Typ Max -810 -1630 -810 -1480 -1250 150 60 Min -910 -1950 -1060 -1950 -1310 0.5 85° C Typ Max -720 -1595 -720 -1445 -1190 150 60 Unit mV mV mV mV mV μA μA mA 48 48 48 November 2006 * REV - 4 www.azmicrotek.com 2 AZ10LVE111E AZ100LVE111E 10K LVPECL DC Characteristics (VEE = GND, VCC = VCCO = +3.3V) Symbol Characteristic 1,2 VOH Output HIGH Voltage VOL Output LOW Voltage1,2 VIH Input HIGH Voltage1 VIL Input LOW Voltage1 VBB Reference Voltage1 IIH Input HIGH Current Input LOW Current 0.5 0.5 0.5 IIL IEE Power Supply Current 48 60 48 60 1. For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value 2. Each output is terminated through a 50Ω resistor to VCC – 2V. Min 2220 1350 2070 1350 1870 -40°C Typ Max 2410 1650 2410 1800 2000 150 Min 2280 1350 2130 1350 1920 0° C Typ Max 2460 1670 2460 1820 2030 150 Min 2320 1350 2170 1350 1950 25°C Typ Max 2490 1670 2490 1820 2050 150 60 Min 2390 1350 2240 1350 1990 0.3 85°C Typ Max 2580 1705 2580 1855 2110 150 60 Unit mV mV mV mV mV μA μA mA 48 48 10K PECL DC Characteristics (VEE = GND, VCC = VCCO = +5.0V) Symbol Characteristic VOH Output HIGH Voltage1,2 VOL Output LOW Voltage1,2 VIH Input HIGH Voltage1 VIL Input LOW Voltage1 VBB Reference Voltage1 IIH Input HIGH Current Input LOW Current 0.5 0.5 0.5 IIL IEE Power Supply Current 48 60 48 60 1. For supply voltages other that 5.0V, use the ECL table values and ADD supply voltage value. 2. Each output is terminated through a 50Ω resistor to VCC – 2V. Min 3920 3050 3770 3050 3570 -40°C Typ Max 4110 3350 4110 3500 3700 150 Min 3980 3050 3830 3050 3620 0° C Typ Max 4160 3370 4160 3520 3730 150 Min 4020 3050 3870 3050 3650 25°C Typ Max 4190 3370 4190 3520 3750 150 60 Min 4090 3050 3940 3050 3690 0.3 48 48 60 85°C Typ Max 4280 3405 4280 3555 3810 150 Unit mV mV mV mV mV μA μA mA 100K ECL DC Characteristics (VEE = -3.0V to -5.5V, VCC = VCCO = GND) Symbol Characteristic 1 VOH Output HIGH Voltage VOL Output LOW Voltage1 VIH Input HIGH Voltage VIL Input LOW Voltage VBB Reference Voltage Input HIGH Current IIH Input LOW Current 0.5 IIL IEE Power Supply Current 48 60 1. Each output is terminated through a 50Ω resistor to VCC – 2V. Min -1085 -1830 -1165 -1810 -1380 -40°C Typ -1005 -1695 Max -880 -1555 -880 -1475 -1260 150 Min -1025 -1810 -1165 -1810 -1380 0.5 0° C Typ -955 -1705 Max -880 -1620 -880 -1475 -1260 150 60 Min -1025 -1810 -1165 -1810 -1380 0.5 25° C Typ -955 -1705 Max -880 -1620 -880 -1475 -1260 150 60 Min -1025 -1810 -1165 -1810 -1380 0.5 85° C Typ -955 -1705 Max -880 -1620 -880 -1475 -1260 150 69 Unit mV mV mV mV mV μA μA mA 48 48 55 100K LVPECL DC Characteristics (VEE = GND, VCC = VCCO = +3.3V) Symbol Characteristic 1,2 VOH Output HIGH Voltage VOL Output LOW Voltage1,2 VIH Input HIGH Voltage1 VIL Input LOW Voltage1 VBB Reference Voltage1 IIH Input HIGH Current Input LOW Current 0.5 0.5 0.5 IIL IEE Power Supply Current 48 60 48 60 1. For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value. 2. Each output is terminated through a 50Ω resistor to VCC – 2V. Min 2215 1470 2135 1490 1920 -40°C Typ 2295 1605 Max 2420 1745 2420 1825 2040 150 Min 2275 1490 2135 1490 1920 0° C Typ 2345 1595 Max 2420 1680 2420 1825 2040 150 Min 2275 1490 2135 1490 1920 25°C Typ 2345 1595 Max 2420 1680 2420 1825 2040 150 60 Min 2275 1490 2135 1490 1920 0.5 85°C Typ 2345 1595 Max 2420 1680 2420 1825 2040 150 69 Unit mV mV mV mV mV μA μA mA 48 55 November 2006 * REV - 4 www.azmicrotek.com 3 AZ10LVE111E AZ100LVE111E 100K PECL DC Characteristics (VEE = GND, VCC = VCCO = +5.0V) Symbol Characteristic 1,2 VOH Output HIGH Voltage VOL Output LOW Voltage1,2 VIH Input HIGH Voltage1 VIL Input LOW Voltage1 VBB Reference Voltage1 IIH Input HIGH Current Input LOW Current 0.5 0.5 0.5 IIL IEE Power Supply Current 48 60 48 60 1. For supply voltages other that 5.0V, use the ECL table values and ADD supply voltage value. 2. Each output is terminated through a 50Ω resistor to VCC – 2V. Min 3915 3170 3835 3190 3620 -40°C Typ 3995 3305 Max 4120 3445 4120 3525 3740 150 Min 3975 3190 3835 3190 3620 0° C Typ 4045 3295 Max 4120 3380 4120 3525 3740 150 Min 3975 3190 3835 3190 3620 25°C Typ 4045 3295 Max 4120 3380 4120 3525 3740 150 60 Min 3975 3190 3835 3190 3620 0.5 85°C Typ 4045 3295 Max 4120 3380 4120 3525 3740 150 69 Unit mV mV mV mV mV μA μA mA 48 55 AC Characteristics (VEE = -3.0V to -5.5V, VCC = VCCO = GND or VEE = GND, VCC = VCCO = +3.0 to +5.5V) Symbol Characteristic Propagation Delay to Output IN (Diff)1 IN (SE)2 Enable3 Disable3 Setup Time EN to IN5 ¯¯ Hold Time IN to EN6 ¯¯ Release Time EN to IN7 ¯¯ Within-Device Skew4 Minimum Input Swing8 Min 380 280 400 400 250 50 350 -40°C Typ Max 650 700 900 900 0 -200 100 25 Min 460 410 450 450 200 0 300 0° C Typ Max 560 610 850 850 0 -200 100 25 Min 480 430 450 450 200 0 300 25° C Typ Max 580 630 850 850 0 -200 100 25 Min 510 460 450 450 200 0 300 85° C Typ Max 610 660 850 850 0 -200 100 25 Unit tPLH / tPHL ps 75 50 50 50 250 250 250 250 VCC VEE + VCC VEE + VCC VEE + VCC VEE + VCMR Common Mode Range9 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 tr / t f Rise/Fall Time 250 650 275 600 275 600 275 600 1. The differential propagation delay is defined as the delay from the crossing point of the differential input signals to the crossing point of the differential output signals. 2. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. 3. Enable is defined as the propagation delay from the 50% point of a negative transition on EN to the 50% point of a positive transition on Q (or a ¯¯ negative transition on Q). Disable is defined as the propagation delay from the 50% point of a positive transition on EN to the 50% point of a ¯ ¯¯ negative transition on Q (or a positive transition on Q). ¯ 4. The within-device skew is defined as the worst-case difference between any two similar delay paths within a single device. 5. The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ¯¯ ¯¯ ±75mV to that IN/IN transition (see Figure 1). ¯¯ 6. The hold time is the minimum time that EN must remain asserted after a negative going IN or a positive going IN to prevent an output response ¯¯ ¯¯ greater than ±75 mV to that IN/IN transition (see Figure 2). ¯¯ 7. The release time is the minimum time that EN must be de-asserted prior to the next IN/IN transition to ensure an output response that meets the ¯¯ ¯¯ specified IN to Q propagation delay and output transition times (see Figure 3). 8. VPP is defined as the minimum peak-to-peak differential input swing for which AC parameters are guaranteed. The VPP(min) is AC limited for the LVE111E, because differential input as low as 50 mV will still produce full ECL levels at the output. 9. VCMR is defined as the range within which the VIH level may vary, with the device still meeting the propagation delay specification. The VIL level must be such that the peak-to-peak voltage is less than 1.0 V and greater than or equal to VPP(min). tS tH tR tskew VPP (AC) ps ps ps ps mV V ps IN IN IN IN IN IN H EN EN EN November 2006 * REV - 4 www.azmicrotek.com 4 AZ10LVE111E AZ100LVE111E PACKAGE DIAGRAM PLCC 28 DIM A B C E F G H J K R U V W X T Z G1 K1 MILLIMETERS MIN MAX 12.32 12.57 12.32 12.57 4.20 4.57 2.29 2.79 0.33 0.48 1.27 BSC 0.66 0.81 0.51 0.64 11.43 11.58 11.43 11.58 1.07 1.21 1.07 1.21 1.07 1.42 0.50 2O 10O 10.42 10.92 1.02 INCHES MIN MAX 0.485 0.495 0.485 0.495 0.165 0.180 0.090 0.110 0.013 0.019 0.050 BSC 0.026 0.032 0.020 0.025 0.450 0.456 0.450 0.456 0.042 0.048 0.042 0.048 0.042 0.056 0.020 2O 10O 0.410 0.430 0.040 NOTES: 1. DATUMS –L-, -M-, AND –N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM –T-, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALOWABLE MOLD FLASH IS 0.010mm (0.250in.) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKGE BOTTOM BY UP TO 0.012mm (0.300in.). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025mm (0.635in.). November 2006 * REV - 4 www.azmicrotek.com 5 AZ10LVE111E AZ100LVE111E Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part. November 2006 * REV - 4 www.azmicrotek.com 6
AZ100LVE111EFN
物料型号 - AZ10LVE111E - AZ100LVE111E

器件简介 AZ10/100LVE111E是一款低偏差1:9差分驱动器,专为时钟分配设计。输入信号被分配到九个相同的差分输出。同时提供了一个使能输入,高电平将禁用设备,将所有Q输出强制为低,所有Q̄输出强制为高。AZ100LVE111E提供了一个VBB输出,用于单端使用或作为交流耦合到设备的直流偏置参考。

引脚分配 | PIN | 功能 | | --- | --- | | IN.IN | 差分输入对 | | EN | 使能 | | Q0,Q0-Q8,Q8 | 差分输出 | | VBB | VBB输出 | | Vcc, Vcco | 正电源 | | VEE | 负电源 | | NC | 无连接 |

参数特性 - 工作电压范围3.0V至5.5V - 差分设计,保证低偏差 - 内部输入下拉电阻为75kΩ - 直接替换ON Semiconductor的MC10E111和MC100E111

功能详解 该设备特别设计、建模和生产,以低偏差为主要目标。优化的设计与布局有助于最小化设备内的门到门偏差,并使用实证建模来确定确保一致的传播延迟分布的处理控制限制。结果是一个可靠、保证低偏差的设备。

应用信息 确保满足紧密的偏差规格,差分输出的两侧都必须终止到50Ω,即使只使用其中一侧。在大多数应用中,将使用所有九对差分对,因此需要终止。如果使用的少于九对,则需要至少终止与正在使用的一对(s)在同一包装侧(即共享相同的Vcc)上的输出对,以保持最小偏差。不这样做将导致正在使用的输出的传播延迟出现小幅度降低(大约10-20ps),虽然对大多数设计来说并非灾难性的,但将意味着失去了偏差余量。

封装信息 - PLCC 28 - 零件编号:AZ10LVE111EFN、AZ100LVE111EFN - 标记:AZ10 LVE11IE<日期代码>、AZ100 LVE11IE<日期代码>
AZ100LVE111EFN 价格&库存

很抱歉,暂时无法提供与“AZ100LVE111EFN”相匹配的价格&库存,您可以联系我们找货

免费人工找货