ARIZONA MICROTEK, INC.
AZ10EP16VS AZ100EP16VS
ECL/PECL Differential Receiver with Variable Output Swing FEATURES
• • • • • Silicon-Germanium for High Speed Operation 150ps Typical Propagation Delay AZ100EP16VS Functionally Equivalent to ON Semiconductor MC100EP16VS at 3.3V Available in a 3x3mm MLP Package S-Parameter (.s2p) and IBIS Model Files available on Arizona Microtek Website PACKAGE
SOIC 8 SOIC 8 TSSOP 8 TSSOP 8 MLP 16 (3x3) MLP 16 (3x3) RoHS Compliant / Lead(Pb) Free
1 2 3
PACKAGE AVAILABILITY PART NUMBER
AZ10EP16VSD AZ100EP16VSD AZ10EP16VST AZ100EP16VST AZ10/100EP16VSL
MARKING
AZM10 EP16VS AZM100 EP16VS AZTP EP16VS AZHP EP16VS AZM 16S AZM+ 16S
NOTES
1,2,3 1,2,3 1,2,3 1,2,3 1,2
AZ10/100EP16VSL+
1,2
Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch (2.5K parts) Tape & Reel. Date code format: “Y” or “YY” for year followed by “WW” for week. Date code “YWW” or “YYWW” on underside of part.
DESCRIPTION
The AZ10/100EP16VS is a Silicon–Germanium (SiGe) differential receiver with variable output swing. The EP16VS has functionality and output transition times similar to the EP16, with an input that controls the amplitude of the Q/Q outputs. ¯ Connecting the BOOST pin to VEE increases the output swing by about 15% above standard ECL/PECL levels. The BOOST pin is internally tied to VEE for the SOIC 8 and TSSOP 8 packages, and is under external user control for the MLP 16 package. When both the BOOST pin and the VCTRL pin are not connected, the part operates with the standard ECL/PECL output and VBB levels of the AZ10/100EP16 device. To ensure best performance, the BOOST pin should be tied to VEE when the variable swing feature is used. The operational range of the EP16VS control input, VCTRL, is from VREF (full swing) to VCC (min. swing). Maximum swing is achieved by leaving the VCTRL pin open or tied to VEE. Simple control of the output swing can be obtained by a variable resistor between the VREF and VCC pins, with the wiper driving VCTRL. Typical application circuits and results are described in this Data Sheet. The EP16VS provides a VREF (VBB/VREF) output for a DC bias when AC coupling to the device. The VREF pin should be used only as a bias for the EP16VS as its current sink/source capability is limited. Whenever used, the VREF pin should be bypassed to ground via a 0.01μF capacitor. Under open input conditions for D/D, the Q/Q outputs are not guaranteed. ¯ ¯ NOTE: Specifications in ECL/PECL tables are valid when thermal equilibrium is established.
1630 S. STAPLEY DR., SUITE 127 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (480) 890-2541 www.azmicrotek.com
AZ10EP16VS AZ100EP16VS
PIN DESCRIPTION PIN D, D ¯ VCTRL Q, Q ¯ VREF, VBB/VREF BOOST VCC VEE NC FUNCTION Data Inputs Output Swing Control Data Outputs Reference Voltage Output Increases Output Swing when tied to VEE * Positive Supply Negative Supply No Connect
*BOOST should be tied to VEE for best performance when using the variable swing feature.
LOGIC DIAGRAM AND PINOUT ASSIGNMENT
VCTRL
1
8
VCC
D
2
7
Q
D
3
6
Q
VREF
4
5
VEE
SOIC 8 & TSSOP 8 TOP VIEW
NC 16 VCTRL 1 2 3 4
5 6 7 8
NC 15
NC 14
VCC 13
12
MLP 16 Package: 10K/100K Selection
NC Q Q
D D VBB/ VREF
MLP 16, 3x3 mm
11 10 9
Connect pin 10K to VEE and float (NC) pin 100K to select 10K operation. Connect pin 100K to VEE and float (NC) pin 10K to select 100K operation.
Variable Swing Selection
BOOST
Connect pin BOOST to VEE to support variable swing operation. Float (NC) pins BOOST and VCTRL to disable variable swing operation. All VEE connections must be less than 1Ω.
NC
100K
VEE
10K
Bottom Center Pad may be left open or tied to VEE
July 2007 * REV - 10
www.azmicrotek.com 2
AZ10EP16VS AZ100EP16VS
Absolute Maximum Ratings are those values beyond which device life may be impaired.
Symbol VCC VI VEE VI IOUT TA TSTG Characteristic PECL Power Supply (VEE = 0V) PECL Input Voltage (VEE = 0V) ECL Power Supply (VCC = 0V) ECL Input Voltage (VCC = 0V) Output Current --- Continuous --- Surge Operating Temperature Range Storage Temperature Range Rating 0 to +4.5 0 to +4.5 -4.5 to 0 -4.5 to 0 50 100 -40 to +85 -65 to +150 Unit Vdc Vdc Vdc Vdc mA °C °C
10K ECL DC Characteristics (VEE = -3.0V to -3.6V, VCC = GND)
Symbol VOH Characteristic
1
Output HIGH Voltage Output LOW Voltage1,2 VOL -1700 -2000 VCTRL = VREF -2000 BOOST = VEE Output LOW Voltage1,2 VOL VCTRL = VCC -1285 -1035 -1270 BOOST = VEE Output LOW Voltage1,3 VOL -1650 -1950 VCTRL = NC -1950 BOOST = NC Reference Voltage2 VREF -1700 -1500 -1670 VBB/VREF BOOST = VEE 3 Reference Voltage VBB/VREF -1430 -1300 -1380 BOOST = NC Input HIGH Current 80 IIH D,D ¯ VCTRL 400 Input LOW Current 0.5 0.5 IIL IEE Power Supply Current 21 27 36 22 28 1. Each output is terminated through a 50Ω resistor to VCC – 2V. 2. BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages. 3. Supported in MLP 16 package only.
Min -1095
-40°C Typ
Max -845
Min -1055
0° C Typ
Max -805 -1690
Min -1030 -2000
25° C Typ
Max -780 -1690
Min -970 -2000
85° C Typ
Max -720 -1655
Unit mV mV
-1020
-1265
-1015
-1255
-1005
mV
-1630 -1470 -1270 80 400 37
-1950 -1650 -1350
-1630 -1450 -1250 80 400
-1950 -1600 -1310
-1595 -1400 -1190 80 400
mV mV mV μA μA mA
0.5 22
29
38
0.5 24
30
40
10K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)
Symbol VOH Characteristic
1,2
Output HIGH Voltage Output LOW Voltage1,2,3 VOL VCTRL = VREF 1300 1600 1300 1610 1300 BOOST = VEE Output LOW Voltage1,2,3 VOL 2015 2265 2030 2280 2035 VCTRL = VCC BOOST = VEE Output LOW Voltage1,3,4 VOL VCTRL = NC 1350 1650 1350 1670 1350 BOOST = NC Reference Voltage3 VREF 1600 1800 1630 1830 1650 VBB/VREF BOOST = VEE 4 Reference Voltage 1870 2000 1920 2030 1950 VBB/VREF BOOST = NC Input HIGH Current 80 80 IIH D,D ¯ VCTRL 400 400 Input LOW Current 0.5 0.5 0.5 IIL IEE Power Supply Current 21 27 36 22 28 37 22 1. For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value. 2. Each output is terminated through a 50Ω resistor to VCC – 2V. 3. BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages. 4. Supported in MLP 16 package only.
Min 2205
-40°C Typ
Max 2455
Min 2245
0° C Typ
Max 2495
Min 2270
25°C Typ
Max 2520 1610
Min 2330 1300
85°C Typ
Max 2580 1645
Unit mV mV
2285
2045
2295
mV
1670 1850 2050 80 400 29 38
1350 1700 1990
1670 1900 2110 80 400
mV mV mV μA μA mA
0.5 24
30
40
July 2007 * REV - 10
www.azmicrotek.com 3
AZ10EP16VS AZ100EP16VS
100K ECL DC Characteristics (VEE = -3.0V to -3.6V, VCC = GND)
Symbol VOH Characteristic
1
Output HIGH Voltage Output LOW Voltage1,2 VOL VCTRL = VREF -1950 -1700 -1950 BOOST = VEE Output LOW Voltage1,2 VOL VCTRL = VCC -1200 -940 -1190 BOOST = VEE 1,3 Output LOW Voltage VOL VCTRL = NC -1900 -1640 -1890 BOOST = NC Reference Voltage2 VREF -1650 -1450 -1650 VBB/VREF BOOST = VEE Reference Voltage3 VBB/VREF -1440 -1320 -1380 BOOST = NC Input HIGH Current IIH 80 D,D ¯ VCTRL 400 Input LOW Current 0.5 0.5 IIL IEE Power Supply Current 20 26 35 21 27 1. Each output is terminated through a 50Ω resistor to VCC – 2V. 2. BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages. 3. Supported in MLP 16 package only.
Min -1130
-40°C Typ
Max -840
Min -1090
0° C Typ
Max -840 -1700
Min -1090 -1950
25° C Typ
Max -840 -1700
Min -1090 -1950
85° C Typ
Max -840 -1700
Unit mV mV
-940
-1190
-940
-1190
-940
mV
-1640 -1450 -1260 80 400 36
-1890 -1650 -1380 -1550
-1640 -1450 -1260 80 400
-1890 -1650 -1380
-1640 -1450 -1260 80 400
mV mV mV μA μA mA
0.5 22
28
38
0.5 25
31
41
100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)
Symbol VOH Characteristic
1,2
Output HIGH Voltage Output LOW Voltage1,2,3 VOL VCTRL = VREF 1350 1600 1350 1600 1350 BOOST = VEE Output LOW Voltage1,2,3 VOL 2100 2360 2110 2360 2110 VCTRL = VCC BOOST = VEE Output LOW Voltage1,3,4 VOL VCTRL = NC 1410 1660 1410 1660 1410 BOOST = NC Reference Voltage3 VREF 1650 1850 1650 1850 1650 VBB/VREF BOOST = VEE 4 Reference Voltage 1860 1980 1920 2040 1920 VBB/VREF BOOST = NC Input HIGH Current 80 80 IIH D,D ¯ VCTRL 400 400 Input LOW Current 0.5 0.5 0.5 IIL IEE Power Supply Current 20 26 35 21 27 36 22 1. For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value. 2. Each output is terminated through a 50Ω resistor to VCC – 2V. 3. BOOST is internally bonded to VEE for both the SOIC 8 and TSSOP 8 packages. 4. Supported in MLP 16 package only.
Min 2170
-40°C Typ
Max 2460
Min 2210
0° C Typ
Max 2460
Min 2210
25°C Typ
Max 2460 1600
Min 2210 1350
85°C Typ
Max 2460 1600
Unit mV mV
2360
2110
2360
mV
1660 1850 2040 80 400 28 38
1410 1650 1920
1660 1850 2040 80 400
mV mV mV μA μA mA
0.5 25
31
41
July 2007 * REV - 10
www.azmicrotek.com 4
AZ10EP16VS AZ100EP16VS
AC Characteristics (VEE = -3.0 to -3.6V, VCC = GND, VCTRL=VREF or VEE = GND, VCC = +3.0V to 3.6V, VCTRL = VREF)
Symbol fmax tPLH / tPHL tSKEW Vpp VCMR Av Characteristic Maximum Toggle Frequency5 Input to Output (Diff) Delay (SE) Duty Cycle Skew1 (Diff) Minimum Input Swing2 Common Mode Range3
4
Min
-40°C Typ >4
Max
Min
0° C Typ >4
Max
Min
25° C Typ >4
Max
Min
85° C Typ >4
Max
Unit GHz
100
150 155 4
240 20 VCC
100
150 155 4
240 15 VCC
100
150 155 4
240 15 VCC
120
170 175 4
280 15 VCC
ps ps mV V dB ps
150 VEE + 2.0
150 VEE + 2.0
150 VEE + 2.0
150 VEE + 2.0
Small Signal Gain 28 Output Rise/Fall Times Q tr / t f 120 170 120 180 120 180 120 200 (20% - 80%) 1. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device. 2. VPP is the minimum peak-to-peak differential input swing for which AC parameters are guaranteed. 3. The VCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP(min) and 1V. 4. Differential input, differential output. 240Ω to VEE on Q/Q outputs, VCTRL = NC and BOOST = VEE (for MLP 16 package). ¯ 5. See graph below.
Typical Large Signal Performance, AZ100EP16VS*
1000 900 800 700 VOUTpp (mV) 600 500 400 300 200 100 0 0 1000 2000 3000 FREQUENCY (MHz) 4000 5000 6000
VCTRL=VCC-0.5V VCTRL=VCC-1.0V VCTRL=VCC-1.5V VCTRL=VCC-2.0V
VCTRL=VCC
*Measured using a 750mV differential input source at 50% duty cycle. Valid for SOIC 8, TSSOP 8, or MLP 16 with BOOST = VEE.
July 2007 * REV - 10
www.azmicrotek.com 5
AZ10EP16VS AZ100EP16VS
T ypical AZ100EP16VS Voltage Output Swing at +25C, Nominal Supply (see Figure 1 and Figure 2)
100 1.240 V (100K ECL) 75 %OUT 100K ECL 50
VSWING (% pk-pk differential)
25
0 0.0 0.4 0.8 1.2 1.6
VCTRL (V) (BOOST tied to VEE forMLP 16, or SOIC 8/TSSOP 8 Package)
Figure 1: Voltage Source Implementation VCTRL VCC
D
Q
VSWING
(pk-pk)
D
Q
50 VEE - 3.3V Figure 2: Alternative Implementation 1k VCTRL VCC
50
-2V
+ 3.3V
D
Q
VSWING
(pk-pk)
D
Q
VREF VEE
240
240
July 2007 * REV - 10
www.azmicrotek.com 6
AZ10EP16VS AZ100EP16VS PACKAGE DIAGRAM SOIC 8
NOTES: DIMENSIONS D AND E DO NOT 1. INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 2. FOR D IS 0.15mm. MAXIMUM MOLD PROTRUSION 3. FOR E IS 0.25mm.
DIM A A1 A2 A3 bp c D E e HE L Lp Q v w y Z θ
MILLIMETERS MIN MAX 1.75 0.10 0.25 1.25 1.45 0.25 0.36 0.49 0.19 0.25 4.8 5.0 3.8 4.0 1.27 5.80 6.20 1.05 0.40 1.00 0.60 0.70 0.25 0.25 0.10 0.30 0.70 8O 0O
INCHES MIN MAX 0.069 0.004 0.010 0.049 0.057 0.01 0.014 0.019 0.0075 0.0100 0.19 0.20 0.15 0.16 0.050 0.228 0.244 0.041 0.016 0.039 0.024 0.028 0.01 0.01 0.004 0.012 0.028 0O 8O
July 2007 * REV - 10
www.azmicrotek.com 7
AZ10EP16VS AZ100EP16VS PACKAGE DIAGRAM TSSOP 8
NOTES: DIMENSIONS D AND E DO NOT 1. INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 2. FOR D IS 0.15mm. MAXIMUM MOLD PROTRUSION 3. FOR E IS 0.25mm.
DIM A A1 A2 A3 bp c D E e HE L Lp v w y Z θ
MILLIMETERS MIN MAX 1.10 0.05 0.15 0.80 0.95 0.25 0.25 0.45 0.15 0.28 2.90 3.10 2.90 3.10 0.65 4.70 5.10 0.94 0.40 0.70 0.10 0.10 0.10 0.35 0.70 6O 0O
July 2007 * REV - 10
www.azmicrotek.com 8
AZ10EP16VS AZ100EP16VS PACKAGE DIAGRAM MLP 16 3x3mm
D
2. INDEX AREA (D/2 x E/2)
A D 2 E 2 E
3x e e
B
D2 D2/2 E2/2 E2
2 1
5.
2x 2x
aaa C aaa C TOP VIEW bbb M C A B
16 x b 3. 3x e BOTTOM VIEW
L
ccc C
A
4. 0.08 C SIDE VIEW
A3 C SEATING PLANE
A1
MILLIMETERS
NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME T14-1994. 2. THE TERMINAL #1 AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. 3. DIMENSION b APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM PAD TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS. 5. INSIDE CORNERS OF METALLIZED PAD MAY BE SQUARE OR ROUNDED
DIM A A1 A3 b D D2 E E2 e L aaa bbb ccc
MIN MAX 0.80 1.00 0.05 0.00 0.25 REF 0.18 0.30 3.10 2.90 1.95 0.25 3.10 2.90 1.95 0.25 0.50 BSC 0.50 0.30 0.25 0.10 0.10
July 2007 * REV - 10
www.azmicrotek.com 9
AZ10EP16VS AZ100EP16VS
Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part.
July 2007 * REV - 10
www.azmicrotek.com 10