0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PI4IOE5V9539LEX

PI4IOE5V9539LEX

  • 厂商:

    BCDSEMI(美台)

  • 封装:

    TSSOP24

  • 描述:

    ICI/OEXPANDER16BIT24TSSOP

  • 数据手册
  • 价格&库存
PI4IOE5V9539LEX 数据手册
PI4IOE5V9539 2 16-bit I C-bus and SMBus low power I/O port with interrupt and reset Features Description  Operation power supply voltage from 2.3V to 5.5V  16-bit I2C-bus GPIO with interrupt and reset  5V tolerant I/Os  Polarity inversion register  Active LOW interrupt output  Active LOW reset input  Low current consumption  0Hz to 400KHz clock frequency  Noise filter on SCL/SDA inputs  Power-on reset  ESD protection (4KV HBM and 1KV CDM)  Offered in two different packages: TSSOP-24 and TQFN 4x4-24 The PI4IOE5V9539 provide 16 bits of General Purpose parallel Input/Output (GPIO) expansion for I2Cbus/ SMBus applications. It includes the features such as higher driving capability, 5V tolerance, lower power supply, individual I/O configuration, and smaller packaging. It provides a simple solution when additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc. The PI4IOE5V9539 consists of two 8-bit registers to configure the I/Os as either inputs or outputs, and two 8bit polarity registers to change the polarity of the input port register data. The data for each input or output is kept in the corresponding Input port or Output port register. All registers can be read by the system master. The PI4IOE5V9539 open-drain interrupt output is activated and indicate to the system when any input state has changed. The power-on reset sets the registers to their default values and initializes the device state machine. The RESET pin causes the same reset/default I/O input configuration to occur without de-powering the device, holding the registers and I2C-bus state machine in their default state until the RESET input is once again HIGH. Two hardware pins (A0, A1) vary the fixed I2C-bus address and allow up to four devices to share the same I2C-bus/SMBus. Pin Configuration Figure 2: TQFN 4x4-24 ( Top View ) Figure 1: TSSOP-24 ( Top View ) All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 1 9/26/2016 PT0549-4 PI4IOE5V9539 Pin Description Table 1: Pin Description Pin Name Type 22 INT O Interrupt input (open-drain) 2 23 A1 I Address input 1 3 24 RESET I Active low reset pin. Driving this pin LOW causes: PI4IOE5V9539 to reset its state machine and register. 4 1 IO0_0 I/O Port 0 input/output 0 5 2 IO0_1 I/O Port 0 input/output 1 6 3 IO0_2 I/O Port 0 input/output 2 7 4 IO0_3 I/O Port 0 input/output 3 8 5 IO0_4 I/O Port 0 input/output 4 9 6 IO0_5 I/O Port 0 input/output 5 10 7 IO0_6 I/O Port 0 input/output 6 11 8 IO0_7 I/O Port 0 input/output 7 12 9 GND G 13 10 IO1_0 I/O Port 1 input/output 0 14 11 IO1_1 I/O Port 1 input/output 1 15 12 IO1_2 I/O Port 1 input/output 2 16 13 IO1_3 I/O Port 1 input/output 3 17 14 IO1_4 I/O Port 1 input/output 4 18 15 IO1_5 I/O Port 1 input/output 5 19 16 IO1_6 I/O Port 1 input/output 6 20 17 IO1_7 I/O Port 1 input/output 7 21 18 A0 I Address input 0 22 19 SCL I Serial clock line input 23 20 SDA I Serial data line open-drain 24 21 VCC P Supply voltage TSSOP24 TQFN24 1 Description Ground * I = Input; O = Output; P = Power; G = Ground All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 2 9/26/2016 PT0549-4 PI4IOE5V9539 Maximum Ratings Power supply......................................................................................................-0.5V to +6.0V Voltage on an I/O pin ..........................................................................GND-0.5V to +6.0V Input current.....................................................................................................................±20mA Output current on an I/O pin ......................................................................................±50mA Supply current................................................................................................................. 160mA Ground supply current................................................................................................... 200mA Total power dissipation ................................................................................................200mW Operation temperature............................................................................................... -40~85℃ Storage temperature ................................................................................................-65~150℃ Maximum Junction temperature ,T j(max) ................................................................125℃ Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Static characteristics VCC = 2.3 V to 5.5 V; GND = 0 V; Tamb= -40 °C to +85 °C; unless otherwise specified. Table 2: Static characteristics Symbol Parameter Conditions Min. Typ. Max. Unit 2.3 - 5.5 V - 135 200 μA - 0.25 1 uA - 0.25 1 μA - 1.16 1.41 V Power supply VCC Supply voltage ICC Supply current Istb Standby current VPOR Power-on reset voltage Operating mode; VCC = 5.5 V; no load; fSCL= 100 kHz Standby mode; VCC = 5.5 V; no load; VI = GND; fSCL= 0 kHz; I/O = inputs Standby mode; VCC = 5.5 V; no load; VI = VCC; fSCL= 0 kHz; I/O = inputs [1] Input SCL, input/output SDA VIL Low level input voltage -0.5 - +0.3VCC V VIH High level input voltage 0.7VCC - 5.5 V IOL Low level output current 3 - - mA IL Leakage current VI=VCC=GND -1 - 1 μA Ci Input capacitance VI =GND - 6 10 pF VOL=0.4V All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 3 9/26/2016 PT0549-4 PI4IOE5V9539 Symbol Parameter Conditions Min. Typ. Max. Unit I/Os VIL Low level input voltage -0.5 - +0.81 V VIH High level input voltage +1.8 - 5.5 V VCC = 2.3 V to 5.5 V; VOL = 0.5 V[2] 8 9 - mA VCC = 2.3 V to 5.5 V; VOL = 0.7 V[2] 10 11 - mA IOH=-8mA;VCC=2.3V[3] 1.8 - - V IOH=-10mA;VCC=2.3V[3] 1.7 - - V IOH=-8mA;VCC=3.0V[3] 2.6 - - V IOH=-10mA;VCC=3.0V[3] 2.5 - - V [3] 4.1 - - V 4.0 - - V VCC=5.5V; VI=VCC - - 1 μA VCC=5.5V; VI=GND - - -1 μA IOL VOH Low level output current High level output voltage IOH=-8mA;VCC=4.75V IOH=-10mA;VCC=4.75V[3] ILIL High level input leakage current Low level input leakage current Ci Input capacitance - 3.7 10 pF Co Output capacitance - 3.7 10 pF 3 - - mA ILIH Interrupt INT IOL Low level output current VOL=0.4V Select inputs A0,A1 and RESET VIL Low level input voltage -0.5 - +0.81 V VIH High level input voltage +1.8 - 5.5 V 1 μA IL Input leakage current -1 Note: [1]: VCC must be lowered to 0.2 V for at least 20 us in order to reset part. [2]: Each I/O must be externally limited to a maximum of 25 mA and each octal (IO0_0 to IO0_7 and IO1_0 to IO1_7) must be limited to a maximum current of 100 mA for a device total of 200 mA. [3]: The total current sourced by all I/Os must be limited to 160 mA. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 4 9/26/2016 PT0549-4 PI4IOE5V9539 Dynamic Characteristics Table 3: Dynamic characteristics Symbol Parameter Standard mode I2C Test Conditions Fast mode I2C Unit Min Max Min Max 0 100 0 400 kHz fSCL SCL clock frequency tBUF bus free time between a STOP and START condition 4.7 - 1.3 - μs tHD;STA hold time (repeated) START condition 4.0 - 0.6 - μs tSU;STA set-up time for a repeated START condition 4.7 - 0.6 - μs tSU;STO set-up time for STOP condition 4.0 - 0.6 - μs tVD;ACK[1] data valid acknowledge time - 3.45 - 0.9 μs tHD;DAT[2] data hold time 0 - 0 - ns tVD;DAT data valid time - 3.45 - 0.9 ns tSU;DAT data set-up time 250 - 100 - ns tLOW LOW period of the SCL clock 4.7 - 1.3 - μs tHIGH HIGH period of the SCL clock 4.0 - 0.6 - μs tf fall time of both SDA and SCL signals - 300 - 300 ns tr rise time of both SDA and SCL signals - 1000 - 300 ns tSP pulse width of spikes that must be suppressed by the input filter - 50 - 50 ns Port timing tv(Q) Data output valid time[3] tsu(D) Data input set-up time th(D) Data input hold time - 200 - 200 ns 150 - 150 - ns 1 - 1 - μs Interrupt timing tv(INT) Valid time on pin INT - 4 - 4 μs trst(INT) Reset time on pin INT - 4 - 4 μs All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 5 9/26/2016 PT0549-4 PI4IOE5V9539 Symbol Parameter Standard mode I2C Test Conditions Fast mode I2C Min Max Min Max Unit RESET timing tw(rst) Reset pulse width 25 - 25 - ns tvrec(rst) Reset recovery time[4] 0 - 0 - ns trst Reset time 1 - 1 - us Note: [1]: tVD;ACK = time for acknowledgement signal from SCL LOW to SDA (out) LOW. [2]: tVD;DAT = minimum time for SDA data out to be valid following SCL LOW. [3]: tv(Q)measured from 0.7VCC on SCL to 50% I/O output. [4]: Resetting the device while actively communicating on the bus may cause glitches or errant STOP conditions. Upon reset, the full delay will be the sum of trst and RC time constant of SDA bus. Figure 3: timing parameters for INT signal All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 6 9/26/2016 PT0549-4 PI4IOE5V9539 PI4IOE5V9539 Block Diagram Figure 4: Block diagram of PI4IOE5V9539 Note: All I/Os are set to inputs at reset. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 7 9/26/2016 PT0549-4 PI4IOE5V9539 Details Description a. Device address Table 4: Device address Address Byte b7(MSB) b6 b5 b4 b3 b2 b1 b0 1 1 1 0 1 A1 A0 R/W Note: Read “1”, Write “0” b. Registers i. Command byte The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read. Table 5: Command byte Command Register 0 Input port 0 1 Input port 1 2 Output port 0 3 Output port 1 4 Polarity inversion port 0 5 Polarity inversion port 1 6 Configuration port 0 7 Configuration port 1 ii. Register 0 and 1: input port registers This register is a read-only port. It reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3. Writes to this register have no effect. The default value ‘X’ is determined by the externally applied logic level. Table 6: Input port 0 register Bit 7 6 5 4 3 2 1 0 Symbol I0.7 I0.6 I0.5 I0.4 I0.3 I0.2 I0.1 I0.0 Default X X X X X X X X Table 7: Input port 1 register Bit Symbol Default 7 6 5 4 3 2 1 0 I1.7 I1.6 I1.5 I1.4 I1.3 I1.2 I1.1 I1.0 X X X X X All trademarks are property of their respective owners. 2016-06-0005 X X X www.diodes.com 8 9/26/2016 PT0549-4 PI4IOE5V9539 iii. Register 2 and 3:Output port registers This register is an output-only port. It reflects the outgoing logic levels of the pins defined as outputs by Registers 6 and 7. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flipflop controlling the output selection, not the actual pin value. Table 8: Output port 0 register Bit 7 6 5 4 3 2 1 0 Symbol O0.7 O0.6 O0.5 O0.4 O0.3 O0.2 O0.1 O0.0 Default 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0 Symbol O1.7 O1.6 O1.5 O1.4 O1.3 O1.2 O1.1 O1.0 Default 1 1 1 1 1 1 1 1 Table 9: Output port 1 register Bit iv. Register 4 and 5: Polarity inversion registers This register allows the user to invert the polarity of the Input port register data. If a bit in this register is set (written with ‘1’), the Input port data polarity is inverted. If a bit in this register is cleared (written with a ‘0’), the Input port data polarity is retained. Table 10: Polarity Inversion port 0 register Bit 7 6 5 4 3 2 1 0 Symbol N0.7 N0.6 N0.5 N0.4 N0.3 N0.2 N0.1 N0.0 Default 0 0 0 0 0 0 0 0 Table 11: Polarity Inversion port 1 register Bit 7 6 5 4 3 2 1 0 Symbol N1.7 N1.6 N1.5 N1.4 N1.3 N1.2 N1.1 N1.0 Default 0 0 0 0 0 0 0 0 v. Register 6 and 7: Configuration registers This register configures the directions of the I/O pins. If a bit in this register is set (written with ‘1’), the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared (written with ‘0’), the corresponding port pin is enabled as an output. At reset, the IOs are configured as inputs. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 9 9/26/2016 PT0549-4 PI4IOE5V9539 Table 12: Configuration port 0 register Bit 7 6 5 4 3 2 1 0 Symbol C0.7 C0.6 C0.5 C0.4 C.3 C0.2 C0.1 C0.0 Default 1 1 1 1 1 1 1 1 Table 13: Configuration port 1 register Bit 7 6 5 4 3 2 1 0 Symbol C1.7 C1.6 C1.5 C1.4 C1.3 C1.2 C1.1 C1.0 Default 1 1 1 1 1 1 1 1 c. Power-on reset When power is applied to VCC, an internal power-on reset holds the PI4IOE5V9539in a reset condition until VCC has reached VPOR. At that point, the reset condition is released and the PI4IOE5V9539 registers and SMBus state machine will initialize to their default states. Thereafter, VCC must be lowered below 0.2 V to reset the device. For a power reset cycle, VCC must be lowered below 0.2 V and then restored to the operating voltage. d. RESET pin A reset can be accomplished by holding the RESET pin LOW for a minimum of tw(rst). In the PI4IOE5V9539 the registers and SMBus/I2C-bus state machine will be held in their default state until the RESET input is once again HIGH. This input typically requires a pull-up to VCC. e. I/O port When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input. The input voltage may be raised above VCC to a maximum of 5.5 V. If the I/O is configured as an output, then either Q1 or Q2 is on, depending on the state of the Output Port register. Care should be exercised if an external voltage is applied to an I/O configured as an output because of the low-impedance path that exists between the pin and either VCC or GND. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 10 9/26/2016 PT0549-4 PI4IOE5V9539 Figure 5: Simplified schematic of I/Os After power-on reset, all registers return to default values. f. Bus Transaction i. Writing to the port registers Data is transmitted to the PI4IOE5V9539 by sending the device address and setting the least significant bit to a logic 0. The command byte is sent after the address and determines which register will receive the data following the command byte. The eight registers within the PI4IOE5V9539 are configured to operate as four register pairs. The four pairs are Input ports, Output ports, Polarity inversion ports, and Configuration ports. After sending data to one register, the next data byte will be sent to the other register in the pair. For example, if the first byte is sent to Output port 1 (register 3), then the next byte will be stored in Output port 0(register 2). There is no limitation on the number of data bytes sent in one write transmission. In this way, each 8-bit register may be updated independently of the other registers. Figure 6: Write to output registers All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 11 9/26/2016 PT0549-4 PI4IOE5V9539 Figure 7: Write to configuration registers ii. Reading the port registers In order to read data from the PI4IOE5V9539, the bus master must first send thePI4IOE5V9539 address with the least significant bit set to a logic 0. The command byte is sent after the address and determines which register will be accessed. After a restart, the device address is sent again, but this time the least significant bit is set to a logic 1. Data from the register defined by the command byte will then be sent by the PI4IOE5V9539. Data is clocked into the register on the falling edge of the acknowledge clock pulse. After the first byte is read, additional bytes may be read but the data will now reflect the information in the other register in the pair. For example, if you read Input port 1, then the next byte read would be Input port 0. There is no limitation on the number of data bytes received in one read transmission. Figure 8: Read from registers Note: Transfer can be stopped at any time by a STOP condition. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 12 9/26/2016 PT0549-4 PI4IOE5V9539 Figure 9: Read Input port register iii. Interrupt output The open-drain interrupt output activated whencondition. one of the port changes stateat and the acknowledge pin is configured an(output input. Note: Transfer of data can be stopped at any is moment by a STOP When thispins occurs, data present the latest phase is as valid mode). It is assumed that the command byte has previously been set to ‘00’ (read Input Port register). The interrupt is deactivated when the input returns to its previous state or the Input Port register is read. A pin configured as an output cannot cause an interrupt. Since each 8-bit port is read independently, the interrupt caused by Port 0 will not be cleared by a read of Port 1 or the other way around. Note: Changing an I/O from an output to an input may cause a false interrupt to occur if the state of the pin does not match the contents of the Input Port register. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 13 9/26/2016 PT0549-4 PI4IOE5V9539 Application design-in information Figure 10: Typical application Device address configured as 1110 100xb for this example. IO0_0, IO0_4, IO0_5 configured as outputs. IO0_1, IO0_2, IO0_3 configured as inputs. IO0_6, IO0_7, and IO1_0 to IO1_7 configured as inputs. All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 14 9/26/2016 PT0549-4 PI4IOE5V9539 Minimizing ICC when the I/Os are used to control LEDS When the I/Os are used to control LEDs, they are normally connected to VCC through a resistor as shown in Figure 11. Since the LED acts as a diode, when the LED is off the I/O VI is about 1.2 V less than VCC. The supply current, ICC, increases as VI becomes lower than VCC. Designs need minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to VCC when the LED is off. Figure 11 shows a high value resistor in parallel with the LED. Figure 12shows VCC less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V I at or above VCC and prevent additional supply current consumption when the LED is off. Figure 11: High value resistor in parallel with the LED Figure 12: Device supplied by a lower voltage All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 15 9/26/2016 PT0549-4 PI4IOE5V9539 Mechanical Information TSSOP-24(L) All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 16 9/26/2016 PT0549-4 PI4IOE5V9539 TQFN 4x4-24(ZD) Note: For latest package info, please check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermalcharacteristics/ Ordering Information Part Number PI4IOE5V9539LE PI4IOE5V9539LEX PI4IOE5V9539ZDE PI4IOE5V9539ZDEX Package Code L L ZD ZD Package 24-pin, 173mil wide( TSSOP24) 24-pin, 173mil wide( TSSOP24), Tape & Reel 24-Contact, Very Thin Quad Flat No-Lead (TQFN) 24-Contact, Very Thin Quad Flat No-Lead (TQFN), Tape & Reel Note:  Thermal characteristics can be found on the company web site at www.pericom.com/packaging/  E = Pb-free and Green  Adding X Suffix= Tape/Reel All trademarks are property of their respective owners. 2016-06-0005 www.diodes.com 17 9/26/2016 PT0549-4
PI4IOE5V9539LEX 价格&库存

很抱歉,暂时无法提供与“PI4IOE5V9539LEX”相匹配的价格&库存,您可以联系我们找货

免费人工找货
PI4IOE5V9539LEX
    •  国内价格
    • 1+16.58880
    • 10+16.20000
    • 30+15.94080

    库存:3