0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PT7C433833UEX

PT7C433833UEX

  • 厂商:

    BCDSEMI(美台)

  • 封装:

    MSOP8_3X3MM

  • 描述:

    实时时钟模块(I2C总线)

  • 数据手册
  • 价格&库存
PT7C433833UEX 数据手册
PT7C433833 Real-time Clock Module (I2C Bus) ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Product Features Product Description  Using external 32.768kHz quartz crystal The PT7C4338 serial real-time clock is a low-power  Supports I2C-Bus's high speed mode (400 kHz) clock/calendar with a programmable square-wave output  Includes time (Hour/Minute/Second) and calendar and 56 bytes of nonvolatile RAM. (Year/Month/Date/Day) counter functions (BCD code) Address and data are transferred serially via a 2-wire,  Programmable square wave output signal bidirectional bus. The clock/calendar provides seconds,  56-byte, battery-backed, nonvolatile (NV) RAM for minutes, hours, day, date, month, and year information. data storage The date at the end of the month is automatically Automatic power-fail detect and switch circuitry of adjusted for months with fewer than 31 days, including battery backup corrections for leap year. The clock operates in either the   24-hour or 12-hour format with AM/PM indicator. UL Recognized: E348121 The PT7C4338 series have a built-in power sense circuit that detects power failures and automatically switches to the battery supply. Table 1 shows the basic functions of PT7C4338. More details are shown in section: overview of functions. Table 1. Basic functions of PT7C4338 Item 1 Function Oscillator PT7C4338 Source: Crystal: 32.768kHz  Oscillator enable/disable  Oscillator fail detect  12-hour  24-hour  Time display 2 Time Century bit 3 Alarm interrupt 4 Programmable square wave output (Hz) 5 RAM 6 Battery backup 1, 4.096k, 8.192k, 32.768k 568  12-07-0001 PT0321-6 1 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Pin Assignment PT7C4338 1 X1 VCC 8 2 X2 SQW/OUT 7 3 VBAT SCL 6 4 GND SDA 5 SOIC-8 MSOP-8 Pin Description Pin no. Pin Type 1 X1 I 2 X2 O 6 SCL I 5 SDA I/O 7 SQW/OUT O 8 VCC P 3 VBAT P 4 GND P Description 32.768kHz Crystal Connections. The internal oscillator circuitry is designed for operation with a crystal having a specified load capacitance (CL) of 12.5pF. Pin X1 is the input to the oscillator and can optionally be connected to an external 32.768kHz oscillator. The output of the internal oscillator, pin X2, is floated if an external oscillator is connected to pin X1. An external 32.768kHz oscillator can also drive the PT7C4338. In this configuration, the X1 pin is connected to the external oscillator signal and the X2 pin is floated. Serial Clock Input. SCL is used to synchronize data movement on the I2C serial interface. Serial Data Input/Output. SDA is the input/output pin for the 2-wire serial interface. The SDA pin is open-drain output and requires an external pull-up resistor. Square-Wave/Output Driver. When enabled and the SQWE bit set to 1, the SQW/OUT pin outputs one of four square-wave frequencies (1Hz, 4kHz, 8kHz, 32kHz). It is open drain and requires an external pull up resistor. Operates with either VCC or VBAT applied. Supply Voltage. When voltage is applied within normal limits, the device is fully accessible and data can be written and read. When a backup supply is connected to the device and VCC is below VPF, reads and writes are inhibited. However, the timekeeping function continues unaffected by the lower input voltage. +3V Battery Input. Backup supply input for any standard 3V lithium cell or other energy source. Battery voltage must be held between the minimum and maximum limits for proper operation. If a backup supply is not required, VBAT must be grounded. UL recognized to ensure against reverse charging when used with a lithium battery. Ground. DC power is provided to the device on these pins. VCC is the primary power input. When voltage is applied within normal limits, the device is fully accessible and data can be written and read. When a backup supply is connected to the device and VCC is below VPF, reads and writes are inhibited. However, the timekeeping function continues unaffected by the lower input voltage. 12-07-0001 PT0321-6 2 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Function Block Maximum Ratings Storage Temperature ...............................................................................................................-55oCto +125oC Ambient Temperature with Power Applied ......................................................................-40oCto +85oC Supply Voltage to Ground Potential (Vcc to GND) ..................................................... -0.3V to +6.5V DC Input (All Other Inputs except Vcc & GND)........................................................... -0.3V to +6.5V DC Output Voltage (SDA, /INTA, /INTB pins) ..............................................................-0.3V to +6.5V DC Output Current (FOUT)..................................................................................................-0.3V to (Vcc+0.3V) Power Dissipation ....................................................................................................................320mW (depend on package) Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Recommended Operating Conditions (VCC = VCC(MIN) to VCC(MAX), TA = -40℃ to +85℃.) (Note 1) Parameter Symbol Conditions Min. Supply Voltage VCC PT7C433833 2.7 Logic 1 VIH Note 2 0.7 * VCC Logic 0 VIL Note 2 -0.3 Power-Fail Voltage VPF PT7C433833 VBAT Battery Voltage VBAT Note 2 1.5 Note 1: Limits at -40°C are guaranteed by design and not production tested. Note 2: All voltages are referenced to ground. 12-07-0001 Typ. 3.3 2.59 3.0 Max. 5.5 VCC + 0.3 +0.3 * VCC 3.7 PT0321-6 3 07/04/12 Unit V PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| DC Electrical Characteristics (VCC = VCC(MIN) to VCC(MAX), TA = -40℃ to +85℃.) (Note 1) Parameter VBAT Battery Voltage Input Leakage I/O Leakage Symbol VBAT ILI ILO SDA Logic 0 Output IOLSDA SQW/OUT Logic 0 Output IOLSQW Active Supply Current (Note 5) Standby Current (Note 6) VBAT Leakage Current (VCC Active) Min. 1.5 3.0 3.0 3.0 3.0 250 - Typ. 120 85 Max. 3.7 1 1 200 125 Unit V μA μA ICCA ICCS Conditions Note 2 Note 3 Note 4 VCC > 2V; VOL = 0.4V VCC < 2V; VOL = 0.2 VCC VCC > 2V; VOL = 0.4V 1.71V < VCC < 2V; VOL = 0.2 VCC 1.5V < VCC < 1.71V; VOL = 0.2 VCC PT7C433833 PT7C433833 IBATLKG - - 25 100 nA Typ. 400 570 - Max. 1200 1400 300 Unit nA nA nA mA mA μA μA μA (VCC = 0V, TA = -40℃ to +85℃.) (Note 1) Parameter VBAT Current (OSC ON); VBAT =3.7V, SQW/OUT OFF (Note 7) VBAT Current (OSC ON); VBAT =3.7V, SQW/OUT ON (32kHz) (Note 7) VBAT Data-Retention Current (OSC OFF); VBAT =3.7V (Note 7) Symbol IBATOSC1 IBATOSC2 IBATDAT Min. - Note 1: Limits at -40°C are guaranteed by design and not production tested. Note 2: All voltages are referenced to ground. Note 3: SCL only. Note 4: SDA and SQW/OUT. Note 5: ICCA------SCL clocking at max frequency = 400kHz. Note 6: Specified with the I2C bus inactive. Note 7: Measured with a 32.768kHz crystal attached to X1 and X2. AC Electrical Characteristics Sym VHM VHL Description Rising and falling threshold voltage high Rising and falling threshold voltage low Value 0.7 VCC 0.3 VCC Unit V V Measurement level Signal VHM VLM tr tf 12-07-0001 PT0321-6 4 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| (TA = -40℃ to +85℃) (Note 1) Parameter Symbol Conditions Min. Typ. Max. Unit Fast mode 100 400 SCL Clock Frequency fSCL kHz Standard mode 100 Fast mode 1.3 Bus Free Time Between STOP and tBUF μs START condition Standard mode 4.7 Fast mode 0.6 Hold Time (Repeated) START Condition tHD:STA μs (Note 2) Standard mode 4.0 Fast mode 1.3 LOW Period of SCL Clock tLOW μs Standard mode 4.7 Fast mode 0.6 HIGH Period of SCL Clock tHIGH μs Standard mode 4.0 Fast mode 0.6 Setup Time of Repeated START tSU:STA μs Condition Standard mode 4.7 Fast mode 0 0.9 Data Hold Time (Note 3, 4) tHD:STA μs Standard mode 0 Fast mode 100 Data Setup Time (Note 5) ns tSU:STA Standard mode 250 Fast mode 20+0.1CB 300 Rise Time of Both SDA and SCL Signals tr ns (Note 6) Standard mode 20+0.1CB 1000 Fast mode 20+0.1CB 300 Fall Time of Both SDA and SCL Signals tf ns (Note 6) Standard mode 20+0.1CB 300 Fast mode 0.6 Setup Time for STOP Condition μs tSU:STO Standard mode 4.0 Capacitance Load for Each Bus Line Note 6 400 pF CB I/O Capacitance (SDA, SCL) Note 1 10 pF CI/O Oscillator Stop Flag (OSF) Delay Note 7 100 ms tOSF Note 1: Limits of full temperature are guaranteed by design not production test. Note 2: After this period, the first clock pulse is generated. Note 3: A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V IHMIN of the SCL signal) to bridge the undefined region of the falling edge of SCL. Note 4: The maximum tHD:DAT need only be met if the device does not stretch the LOW period (t LOW) of the SCL signal. Note 5: A fast-mode device can be used in a standard-mode system, but the requirement t SU:DAT ≥ to 250ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t r MAX + tSU:DAT = 1000 + 250 = 1250ns before the SCL line is released. Note 6: CB------total capacitance of one bus line in pF. Note 7: The parameter tOSF is the time period the oscillator must be stopped for the OSF flag to be set over the voltage range of 0.0V ≤ VCC ≤ VCC MAX and 1.3V ≤ VBAT ≤ 3.7V. 12-07-0001 PT0321-6 5 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Timing Diagram Power-Up/Power-Down Characteristics (TA = -40℃ to +85℃) (Note 1, Fig 3) Parameter Symbol Min. Typ. Max. Unit Recovery at Power-Up (Note 2) tREC 2 ms VCC Fall Time: VPF(MAX) to VPF(MIN) tVCCF 300 μs VCC Rise Time: VPF(MIN) to VPF(MAX) tVCCR 0 μs Note 1: Limits at -40°C are guaranteed by design and not production tested. Note 2: This delay applies only if the oscillator is enabled and running. If the oscillator is disabled or stopped, no power-up delay occurs. Fig 3. Power-Up/Power-Down Timing 12-07-0001 PT0321-6 6 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Recommended Layout for Crystal Note: The crystal, traces and crystal input pins should be isolated from RF generating signals. Built-in Capacitors Specifications and Recommended External Capacitors Parameter Symbol Typ Unit X1 to GND CG 20 pF Build-in capacitors X2 to GND CD 20 pF X1 to GND C1 4 pF Recommended External capacitors X2 to GND C2 4 pF Note: The frequency of crystal can be optimized by external capacitor C1 and C2, for frequency=32.768KHz, C1 and C2 should meet the equation as below: Cpar + [(C1+CG)*(C2+CD)]/ [(C1+CG)+(C2+CD)] =CL Cpar is all parasitical capacitor between X1 and X2. CL is crystal’s load capacitance. Crystal Specifications Parameter Nominal Frequency Series Resistance Load Capacitance Symbol fO ESR CL Min - Typ 32.768 12.5 12-07-0001 Max 70 - PT0321-6 7 Unit kHz k pF 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Function Description Overview of Functions Clock function CPU can read or write data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit) year that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2100. Programmable square wave output A square wave output enable bit controls square wave output at pin 7. 4 frequencies are selectable: 1, 4.096k, 8.192k, 32.768k Hz. Interface with CPU Data is read and written via the I2C bus interface using two signal lines: SCL (clock) and SDA (data). Since the output of the I/O pin SDA is open drain, a pull-up resistor should be used on the circuit board if the CPU output I/O is also open drain. The SCL's maximum clock frequency is 400 kHz, which supports the I 2C bus's high-speed mode. Oscillator enable/disable Oscillator can be enabled or disabled by /EOSC bit. Registers Allocation of registers Addr. Function (hex)*1 00 01 Seconds (00-59) Minutes (00-59) 02 Hours (00-23 / 01-12) 03 04 05 06 07 08~3F Days of the week (01-07) Dates (01-31) Months (01-12) Years (00-99) Control*3 RAM*7 Bit 7 *2 /EOSC 0 Bit 6 Bit 5 S40 M40 S20 M20 H20 or P, /A 0 D20 0 Y20 OSF - 0 12, /24 0 0 0 Y80 OUT*4 - 0 0 0 Y40 0 - Register definition Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 S10 M10 S8 M8 S4 M4 S2 M2 S1 M1 H10 H8 H4 H2 H1 0 D10 MO10 Y10 SQWE*5 - 0 D8 MO8 Y8 0 - W4 D4 MO4 Y4 0 - W2 D2 MO2 Y2 RS1*6 - W1 D1 MO1 Y1 RS0*6 - Caution points: *1. PT7C4338 uses 6 bits for address. That is if write data to 41H, the data will be written to 01H address register. *2. Oscillator Enable bit. When this bit is set to 1, oscillator is stopped but time count chain is still active. *3. Control register was used to select SQW/OUT pin output square wave with one of 4 kinds of frequency or DC level. *4. Control SQW/OUT pin output DC level when square wave is disabled. *5. Square wave outputs enable at SQW/OUT pin. *6. Square wave output frequency select. *7. PT7C4338 has 568 static RAM for customer use. It is volatile RAM. *8. All bits marked with "0" are read-only bits. Their value when read is always "0". All bits marked with "-" are customer using space. 12-07-0001 PT0321-6 8 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Control and status register Addr. (hex) Description D7 D6 D5 D4 D3 D2 D1 D0 07 Control (default) OUT 1 0 0 OSF 1 SQWE 1 0 0 0 0 RS1 1 RS0 1  OUT It controls the output level of the SQW/OUT pin when the square wave output is disabled. OUT Data Description 0 When SQWE = 0, SQW/OUT pin output low. 1 When SQWE = 0, SQW/OUT pin output high. Read / Write Default  SQWE (Square Wave Enable) This bit, when set to logic 1, will enable the oscillator output. The frequency of the square wave output depends upon the value of the RS0 and RS1 bits. With the square wave output set to 1Hz, the clock registers update on the falling edge of the square wave.  RS (Rate Select) These bits control the frequency of the square wave output when the square wave output has been enabled. RS1, RS0 Data SQW output freq. (Hz) 00 1 01 4.096k 10 8.192k 11 32.768k Read / Write Default  OSF(Oscillator Stop Flag) Logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period of time and may be used to judge the validity of the clock and calendar data. This bit is set to logic 1 anytime that the oscillator stops. The following are examples of conditions that can cause the OSF bit to be set: 1) The first time power is applied. 2) The voltage present on VCC and VBAT is insufficient to support oscillation. 3) The /EOSC bit is set to 1, disabling the oscillator. 4) External influences on the crystal (e.g., noise, leakage, etc.). This bit remains at logic 1 until written to logic 0. This bit can only be written to logic 0. Attempting to write OSF bit to logic 1 leaves the value unchanged. 12-07-0001 PT0321-6 9 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Time Counter Time digit display (in BCD code):  Second digits: Range from 00 to 59 and carried to minute digits when incremented from 59 to 00.  Minute digits: Range from 00 to 59 and carried to hour digits when incremented from 59 to 00.  Hour digits: See description on the /12, 24 bit. Carried to day and day-of-the-week digits when incremented from 11 p.m. to 12 a.m. or 23 to 00. Addr. (hex) Description D7 00 Seconds (default) /EOSC 0 S40 S20 S10 S8 S4 Undefined Undefined Undefined Undefined Undefined S2 S1 Undefined Undefined 01 Minutes (default) 0 0 M40 M20 M10 M8 M4 Undefined Undefined Undefined Undefined Undefined M2 M1 Undefined Undefined 02 Hours (default) 0 0 12, /24 H20 or P,/A H10 H8 H4 Undefined Undefined Undefined Undefined Undefined H2 H1 Undefined Undefined D6 D5 D4 D3 D2 D1 D0  12, /24 bit This bit is used to select between 12-hour clock system and 24-hour clock system. 12, /24 Data Description 0 24-hour system 1 12-hour system Read / Write This bit is used to select between 12-hour clock operation and 24-hour clock operation. 12, /24 Description Hours register 0 24-hour time display 1 12-hour time display 24-hour clock 00 01 02 03 04 05 06 07 08 09 10 11 12-hour clock 52 ( AM 12 ) 41 ( AM 01 ) 42 ( AM 02 ) 43 ( AM 03 ) 44 ( AM 04 ) 45 ( AM 05 ) 46 ( AM 06 ) 47 ( AM 07 ) 48 ( AM 08 ) 49 ( AM 09 ) 50 ( AM 10 ) 51 ( AM 11 ) 24-hour clock 12 13 14 15 16 17 18 19 20 21 22 23 12-hour clock 72 ( PM 12) 61 ( PM 01 ) 62 ( PM 02 ) 63 ( PM 03 ) 64 ( PM 04 ) 65 ( PM 05 ) 66 ( PM 06 ) 67 ( PM 07 ) 68 ( PM 08 ) 69 ( PM 09 ) 70 ( PM 10 ) 71 ( PM 11 ) * Be sure to select between 12-hour and 24-hour clock operation before writing the time data. 12-07-0001 PT0321-6 10 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Days of the week Counter The day counter is a divide-by-7 counter that counts from 01 to 07 and up 07 before starting again from 01. Values that correspond to the day of week are user defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation. Addr. Description D7 D6 D5 D4 D3 D2 D1 D0 (hex) 03 Days of the week (default) 0 0 0 0 0 0 0 0 0 0 W4 W2 W1 Undefined Undefined Undefined Calendar Counter The data format is BCD format.  Day digits: Range from 1 to 31 (for January, March, May, July, August, October and December). Range from 1 to 30 (for April, June, September and November). Range from 1 to 29 (for February in leap years). Range from 1 to 28 (for February in ordinary years). Carried to month digits when cycled to 1.  Month digits: Range from 1 to 12 and carried to year digits when cycled to 1.  Year digits: Range from 00 to 99 and 00, 04, 08, … , 92 and 96 are counted as leap years. Addr. (hex) Description D7 D6 D5 04 Dates (default) 0 0 0 0 D20 Undefined D10 D8 D4 D2 Undefined Undefined Undefined Undefined D1 Undefined 05 Months (default) 0 0 0 0 0 0 M10 M8 M4 M2 Undefined Undefined Undefined Undefined M1 Undefined 06 Years (default) Y80 Undefined Y10 Y8 Y4 Y2 Undefined Undefined Undefined Undefined Y1 Undefined D4 Y40 Y20 Undefined Undefined D3 D2 D1 D0 Note: Any registered imaginary time should be replaced by correct time, otherwise it will cause the clock counter malfunction. 12-07-0001 PT0321-6 11 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| I2C Bus Interface Overview of I2C-BUS The I2C bus supports bi-directional communications via two signal lines: the SDA (data) line and SCL (clock) line. A combination of these two signals is used to transmit and receive communication start/stop signals, data signals, acknowledge signals, and so on. Both the SCL and SDA signals are held at high level whenever communications are not being performed. The starting and stopping of communications is controlled at the rising edge or falling edge of SDA while SCL is at high level. During data transfers, data changes that occur on the SDA line are performed while the SCL line is at low level, and on the receiving side the data is captured while the SCL line is at high level. In either case, the data is transferred via the SCL line at a rate of one bit per clock pulse. The I2C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device and the receiving device responds to communications only when its slave address matches the slave address in the received data. System Configuration All ports connected to the I2C bus must be either open drain or open collector ports in order to enable AND connections to multiple devices. SCL and SDA are both connected to the VDD line via a pull-up resistance. Consequently, SCL and SDA are both held at high level when the bus is released (when communication is not being performed). Fig 1. System configuration Vcc RP RP SDA SCL Master MCU Slave RTC Other Peripheral Device Note: When there is only one master, the MCU is ready for driving SCL to "H" and R P of SCL may not required. 12-07-0001 PT0321-6 12 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Starting and Stopping I2C Bus Communications Fig 2. Starting and stopping on I2C bus 1) START condition, repeated START condition, and STOP condition a) START condition SDA level changes from high to low while SCL is at high level b) STOP condition SDA level changes from low to high while SCL is at high level c) Repeated START condition (RESTART condition) In some cases, the START condition occurs between a previous START condition and the next STOP condition, in which case the second START condition is distinguished as a RESTART condition. Since the required status is the same as for the START condition, the SDA level changes from high to low while SCL is at high level. 2) Data Transfers and Acknowledge Responses during I2C-BUS Communication a) Data transfers Data transfers are performed in 8-bit (1 byte) units once the START condition has occurred. There is no limit on the amount (bytes) of data that are transferred between the START condition and STOP condition. The address auto increment function operates during both write and read operations. Updating of data on the transmitter (transmitting side)'s SDA line is performed while the SCL line is at low level. The receiver (receiving side) captures data while the SCL line is at high level. *Note with caution that if the SDA data is changed while the SCL line is at high level, it will be treated as a START, RESTART, or STOP condition. 12-07-0001 PT0321-6 13 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| b) Data acknowledge response (ACK signal) When transferring data, the receiver generates a confirmation response (ACK signal, low active) each time an 8-bit data segment is received. If there is no ACK signal from the receiver, it indicates that normal communication has not been established. (This does not include instances where the master device intentionally does not generate an ACK signal.) Immediately after the falling edge of the clock pulse corresponding to the 8th bit of data on the SCL line, the transmitter releases the SDA line and the receiver sets the SDA line to low (= acknowledge) level. SCL from Master 1 8 2 SDA from transmitter (sending side) 9 Release SDA Low active SDA from receiver (receiving side) ACK signal After transmitting the ACK signal, if the Master remains the receiver for transfer of the next byte, the SDA is released at the falling edge of the clock corresponding to the 9th bit of data on the SCL line. Data transfer resumes when the Master becomes the transmitter. When the Master is the receiver, if the Master does not send an ACK signal in response to the last byte sent from the slave, that indicates to the transmitter that data transfer has ended. At that point, the transmitter continues to release the SDA and awaits a STOP condition from the Master. Slave Address The I2C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device. All communications begin with transmitting the [START condition] + [slave address (+ R/W specification)]. The receiving device responds to this communication only when the specified slave address it has received matches its own slave address. Slave addresses have a fixed length of 7 bits. See table for the details. An R/W bit is added to each 7-bit slave address during 8-bit transfers. Table Slave address R / W bit Operation Transfer data bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Read D1 h 1 (= Read) 1 1 0 1 0 0 0 Write D0 h 0 (= Write) I2C Bus’s Basic Transfer Format S Start indication Sr Restart indication P Stop indication 12-07-0001 A RTC Acknowledge A Master Acknowledge PT0321-6 14 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 1) Write via I2C bus Slave address (7 bits) S 1 Start 1 0 1 0 write 0 0 Addr. setting A A 0 A C K Slave address + write specification A C K Address Specifies the write start address. bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Write data A P A C K Stop 2) Read via I2C bus a) Standard read Slave address (7 bits) S 1 Start 1 0 1 0 0 write 0 Slave address (7 bits) 1 1 0 1 0 0 A C K Read 0 A 1 A C K Restart Slave address + read specification b) A 0 Slave address + write specification Sr Addr. setting A A C K Address Specifies the read start address. bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (1) Data is read from the specified start address and address auto increment. A A C K bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (2) Address auto increment to set the address for the next data to be read. /A P N O Stop A C K Simplified read Slave address (7 bits) S 1 Start 1 0 1 0 0 Read 0 Slave address + read specification A 1 A C K bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (1) Data is read from the address pointed by the internal address register and address auto increment. A A C K bit bit bit bit bit bit bit bit 7 6 5 4 3 2 1 0 Data read (2) Address register auto increment to set the address for the next data to be read. /A P N O Stop A C K Note: 1. The above steps are an example of transfers of one or two bytes only. There is no limit to the number of bytes transferred during actual communications. 2. 49H, 4AH are used as test mode address. Customer should not use the addresses. 12-07-0001 PT0321-6 15 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Mechanical Information WE (Lead free and Green SOIC-8) Symbol A A1 A2 b c D E E1 e L θ Note: 1) Controlling dimensions in millimeters. 2) Ref : JEDEC MS-012E/AA 12-07-0001 Dimensions In Millimeters Min Max 1.350 1.750 0.100 0.250 1.350 1.550 0.330 0.510 0.170 0.250 4.700 5.100 3.800 4.000 5.800 6.200 1.27 BSC 0.400 1.270 0° 8° PT0321-6 16 07/04/12 PT7C433833 Real-time Clock Module (I2C Bus) |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| UE(Lead free and Green MSOP-8) Symbol A A1 A2 b c D E E1 e L θ Note: 1) Controlling dimensions in millimeters. 2) Ref : JEDEC MO-187E/BA Dimensions In Millimeters Min Max 0.82 1.10 0.02 0.15 0.75 0.95 0.25 0.38 0.09 0.23 2.90 3.10 2.90 3.10 4.75 5.05 0.65 BSC 0.40 0.80 0° 6° Ordering Information Part Number PT7C433833WE Package Code W Package Lead free and Green 8-Pin SOIC PT7C433833UE U Lead free and Green 8-Pin MSOP Note:  E = Pb-free and Green  Adding X Suffix= Tape/Reel Pericom Semiconductor Corporation  1-800-435-2336  www.pericom.com Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom. 12-07-0001 PT0321-6 17 07/04/12
PT7C433833UEX 价格&库存

很抱歉,暂时无法提供与“PT7C433833UEX”相匹配的价格&库存,您可以联系我们找货

免费人工找货
PT7C433833UEX
    •  国内价格
    • 1+6.54480
    • 10+5.55120
    • 30+5.01120
    • 100+4.39560
    • 500+4.12560
    • 1000+4.00680

    库存:0

    PT7C433833UEX

    库存:0