IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Features
• Wide input voltage ranges up to 150 VDC
• RoHS lead-free-solder and lead-solder-exempted
products are available.
• 5 year warranty for RoHS lead-free-solder products
with temperature index -8.
25.4
1.0"
10.5
0.42"
• 1 or 2 isolated outputs up to 48 V
50.8
2.0"
• 1500 to 2000 VAC voltage withstand test
• Immunity according to IEC/EN 61000-4-2, -3, -4, -5, -6
• High efficiency (typ. 84%)
• Input undervoltage lockout
• Inhibit input, adjustable output voltages
• Flex power: flexible load distribution on outputs
• Outputs no-load, overload, and short-circuit proof
• Operating ambient temperature – 40 to +85 °C
• Thermal protection
• Planar technology for best mechanical stability
Description
• 2” × 1” case with 10.5 mm profile
The IMX7/IMS7 Series of board-mountable 7 Watt DC-DC
converters have been designed according to the latest
industry requirements and standards. The converters are
particularly suitable for use in mobile or stationary
applications in transport, railways, industry, or telecom, where
variable input voltages or high transient voltages are
prevalent.
Covering a total input voltage range from 8.4 V to 150 V with
six different models, the converters are available with single
and electrically-isolated double outputs from 3.3 up to 48 V
with flexible load distribution on double outputs. An inhibit
input allows remote on/off.
Features include efficient input and output filtering with good
transient and surge protection, low output ripple and noise,
consistently high efficiency over the entire input voltage range,
and high reliability as well as excellent dynamic response to
load and line changes.
The converters provide basic insulation with SELV outputs as
for instances required in battery-supported systems, where
the bus voltage may exceed the SELV limit of 60 V. The models
70IMX7 and 110IMX7 are CE-marked.
Table of Contents
Safety-approved to the latest edition of IEC/EN 60950-1
and UL/CSA 60950-1
1
1 70/110IMX7
The circuitry is comprised of integral planar magnetics. All
components are automatically assembled and securely
soldered onto a single PCB without any wire connections.
Magnetic feedback ensures maximum reliability and
repeatability in the control loop over all operating conditions.
Careful considerations of possible thermal stresses ensure the
absence of hot spots, providing long life in environments, where
temperature cycles are a reality. The thermal design allows
operation at full load up to an ambient temperature of 85 °C in
free air without using any potting material. For extremely high
vibration environments the case has holes for screw mounting.
Several options, such as open-frame, provide a high level of
application-specific engineering and design-in flexibility.
Page
Page
Description ............................................................................. 1
Model Selection ..................................................................... 2
Functional Description ........................................................... 3
Electrical Input Data ............................................................... 4
Electrical Output Data ............................................................ 7
Auxiliary Functions ................................................................. 9
Electromagnetic Compatibility (EMC) ................................. 11
Immunity to Environmental Conditions ............................... 12
Mechanical Data .................................................................. 13
Safety and Installation Instructions ..................................... 13
Description of Options ........................................................ 14
Copyright © 2018, Bel Power Solutions Inc. All rights reserved.
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 1 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Model Selection
Table 1: Model Selection
Output 1
Vo1 nom
Io1 nom
[ V]
[A]
1
2
3
Output 21
Vo2 nom
Io2 nom
[ V]
[A] 1
Output power
Po nom
[W ]
Input voltage
range
[ V]
Efficiency
η min
η typ
[%]
[%]
Model
3.3
3.3
3.3
3.3
3.3
3.3
1.5
1.5
1.5
1.5
1.5
1.5
-
-
5
5
5
5
5
5
8.4 – 36
14 – 36
16.82 – 75
36 – 75
40 – 121
60 – 150 2
74
75.5
74.7
77
76
74.5
78
79
79
79
78
78
20IMX7-03-8G
24IMS7-03-9
40IMX7-03-8G
48IMS7-03-9
70IMX7-03-8G
110IMX7-03-8G
5.1
5.1
5.1
5.1
5.1
5.1
1.2
1.2
1.2
1.2
1.2
1.2
-
-
6.1
6.1
6.1
6.1
6.1
6.1
8.4 – 36
14 – 36
16.82 – 75
36 – 75
40 – 121
60 – 150 3
75.5
77
79
78
74
76
78
80
81
81
78
79
20IMX7-05-8G
24IMS7-05-9
40IMX7-05-8G
48IMS7-05-9
70IMX7-05-8G
110IMX7-05-8G
5
5
5
5
5
5
0.6
0.7
0.7
0.7
0.7
0.7
5
5
5
5
5
5
0.6
0.7
0.7
0.7
0.7
0.7
6
7
7
7
7
7
8.4 – 36
14 – 36
16.82 – 75
36 – 75
40 – 121
60 – 150 3
77
79
79.5
81.5
81
78
81
82
82
83
82
80
20IMX7-05-05-8G
24IMS7-05-05-9
40IMX7-05-05-8G
48IMS7-05-05-9
70IMX7-05-05-8G
110IMX7-05-05-8G
12
12
12
12
12
12
0.25
0.3
0.3
0.3
0.3
0.3
12
12
12
12
12
12
0.25
0.3
0.3
0.3
0.3
0.3
6
7.2
7.2
7.2
7.2
7.2
8.4 – 36
14 – 36
16.82 – 75
36 – 75
40 – 121
60 – 150 3
80.5
81.5
82.5
82
83
80
83
85
84
84
85
83
20IMX7-12-12-8G
24IMS7-12-12-9
40IMX7-12-12-8G
48IMS7-12-12-9
70IMX7-12-12-8G
110IMX7-12-12-8G
15
15
15
15
15
15
0.2
0.24
0.24
0.24
0.24
0.24
15
15
15
15
15
15
0.2
0.24
0.24
0.24
0.24
0.24
6
7.2
7.2
7.2
7.2
7.2
8.4 – 36
14 – 36
16.82 – 75
36 – 75
40 – 121
60 – 150 3
81
81.5
81
82
81.5
79
83
84
84
84
83
82
20IMX7-15-15-8G
24IMS7-15-15-9
40IMX7-15-15-8G
48IMS7-15-15-9
70IMX7-15-15-8G
110IMX7-15-15-8G
24
24
24
24
24
24
0.13
0.15
0.15
0.15
0.15
0.15
24
24
24
24
24
24
0.13
0.15
0.15
0.15
0.15
0.15
6.2
7.2
7.2
7.2
7.2
7.2
8.4 – 36
14 – 36
16.82 – 75
36 – 75
40 – 121
60 – 150 3
79
82
82
82
80
81
83
84
84
84
83
84
20IMX7-24-24-8G
24IMS7-24-24-9
40IMX7-24-24-8G
48IMS7-24-24-9
70IMX7-24-24-8G
110IMX7-24-24-8G
Options
Z, non-G
Z, non-G
Z, non-G
Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
M, Z, non-G
Flexible load distribution on double-outputs possible. If only one output is used, connect both outputs of double-output models in parallel.
Operation at low input voltage possible, if Po is reduced to approx. 80% of Po nom at Vi min = 14.1 V.
Up to 154 V for 2 s
NFND: Not for new designs.
Preferred for new designs
Note: Use 20IMX7 to replace 24IMS7 and 40IMX7 to replace 48IMS7.
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 2 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Part Number Description
Input voltage range Vi
40 IMX7 - 05 - 05 -8 Z G
8.4 – 36 V .............................................. 20
14 – 36 V ............................................... 24
16.8 – 75 V ............................................ 40
36 – 75 V ............................................... 48
40 – 121 V ............................................. 70
60 – 150 V ........................................... 110
Series .............................................................. IMX7, IMS7
Output voltage of output 1 ...................... 03, 05, 12, 15, 24
Output voltage of output 2 ............................ 05, 12, 15, 24
Operating ambient temperature TA
–40 to 85 °C ............................................... -8
–40 to 71 °C ............................................... -9
Options:
Surface mount version1 ........................................... M
Open frame1 ..................................................................... Z
RoHS-compliant for all six substances ........ G
Obsolete option: C-pinout ............................................... C
1
Option M and Z exclude each other.
Note: The sequence of options must follow the order above.
Example:
40IMX7-05-05-8ZG: DC-DC converter, input voltage range 16.8 – 75 V, 2 outputs providing each 5 V, 700 mA,
temperature range – 40 to 85 °C, open frame, RoHS compliant for all six substances.
Functional Description
03042b
The IMX7/IMS7 Series DC-DC converters are feedbackcontrolled flyback converters using current mode PWM (Pulse
Width Modulation).
Vi+ 1
In the case of single-output models, the output is directly
sensed and fed back to the primary control circuit via a pulse
transformer, resulting in tight regulation of the output voltage.
The R input is referenced to the secondary side and allows for
programming the output voltages in the range 75 to 105% of
Vo nom, using either an external resistor or an external voltage
source.
Trim 4
Vi+ 1
11 Vo+
PWM
i
3
10
Vo–
2 × 2200 pF
1500 V
12
Vi– 2
13 R
n.c. 4
Fig. 1
Block diagram of single-output models
14 n.c.
10 Vo1–
PWM
i 3
13 Vo2+
2
12 Vo2–
Vi –
For double-output models, the output voltage is sensed by a
separate transformer winding close to the secondary and fed
03025a
11 Vo1+
2 × 2200 pF
14 n.c.
Fig. 2
Block diagram of double-output models
back to the primary control circuit. Close magnetic coupling is
provided by the planar construction, ensuring very good
regulation, and allowing for flexible load distribution. The Trim
input of double-output models is referenced to the primary side,
and allows for programming the output voltages in the range of
100 to 105% of Vo nom by means of an external resistor, or within
75 to 100% of Vo nom, using an external voltage source.
Current limitation is provided by the primary circuit, thus limiting
the total output current (Io nom for the single- and the sum Io1 nom
+ Io2 nom for double-output models).
The inhibit input i allows remote control of the outputs; pin i
must be connected to Vi– to activate the converter.
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 3 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Electrical Input Data
General conditions:
– TA = 25 °C, unless TC is specified.
– Connector pin i connected with Vi–.
– Trim or R input not connected.
Table 2a: Input data of IMX7
Input
20IMX7
Characteristics
Vi
Input voltage range 1
Vi nom
Nominal input voltage
Vi sur
Repetitive surge voltage
t start up
2
Converter
start-up time
switch on
inh. release
Rise time 2
t rise
Conditions
min
TC min – TC max
I o = 0 – Io nom
8.4
typ
max min
36
Worst case condition at
Vi min and full load
0.25
70IMX7
typ max min
16.8 6
20
abs. max input (3 s)
Vi nom
Io nom
40IMX7
75
70
100
0.5
0.25 0.5
0.25 0.5
0.25 0.5
0.1
0.1
0.1
0.1
150
resistive load
5
5
5
5
12
12
12
12
No load input current
Ci
Input capacitance
(for surge calculation)
Vinh
Inhibit voltage
converter operating
–10
+0.8
–10
+0.8
–10
converter inhibited
2.4
Vi max
or open
2.4
Vi max
or open
2.4
Inhibit current
0.2
+0.8
1
Vi min – Vi max, Io = 0 – Io nom
I i rr
Reflected ripple current
Io = 0 – Io nom
Input RFI level conducted
EN 55011 3
V
Vi max 2.4
Vi max
or open
or open
– 0.5
3
mA
µF
+0.8 –10
1
Switching frequency
7
0.2
15
– 0.5
fs
6
8
1
Vi = Vi nom 4
5
0.5
15
–0.5
Inrush peak current
4
8
1
I inr p
3
4.7
15
–0.5
Vi min – Vi max
2
8
converter operating
Input current when the
converter is inhibited
1
30
s
ms
converter inhibited
I i inh
Vi RFI
15
V
110
50 5
Ii o
Iinh
150 7
121 60
capacitive load
Io = 0, Vi min – Vi max
Unit
typ max min typ max
40
40
110IMX7
mA
3
3
3
3.8
3.7
4.2
5.6
A
approx. 400
approx. 400
approx. 400
approx. 300
kHz
10
mApp
50
A
30
A
20
A
A
Vi min will not be as stated, if Vo is increased above Vo nom by use of the R or Trim input. If the output voltage is set to a higher value, Vi min
will be proportionally increased.
Measured with a resistive and the max. admissible capacitive load.
Measured with a lead length of 0.1 m, leads twisted. Double-output models with both outputs in parallel. 70/110 IMX7 models need an
external capacitor at the input, e.g., 1 µF film or ceramic.
Source impedance according to ETS 300132-2, version 4.3, at Vi nom.
The DC-DC converter shuts down automatically at approx. 38 V.
Operation at lower input voltage possible: Po approx. 80% of Po nom at Vi min = 14.4 V.
Up to 154 V for 2 s
Vo
trise
Vo nom
tstartup
04008b
t
Fig. 3
Converter start-up and rise time
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 4 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Table 2b: Input data of IMS7; general conditions as in table 2a
Input
24IMS7
Characteristics
Conditions
min
14
Nominal input voltage
TC min – TC max
I o = 0 – Io nom
Repetitive surge voltage
abs. max input (3 s)
Vi
Input voltage range 1
Vi nom
Vi sur
t start up
t rise
2
Converter
start-up time
switch on
inh. release
Rise time 2
0.4
(for surge calculation)
converter operating
–10
converter inhibited
2.4
24
6
0.8
–10
Vi max
2.4
–0.5
–0.5
1
1
Inrush peak current
Vi = Vi nom 4
fs
Switching frequency
Vi min – Vi max, Io = 0 – Io nom
I i rr
Reflected ripple current
Io = 0 – Io nom
Vi RFI
Input RFI level conducted
EN 55011 3
3
4.0
V
mA
3
A
approx. 330
40
A
µF
3.9
approx. 330
mA
Vi max
converter operating
I inr p
12
+0.8
converter inhibited
Vi min – Vi max
s
ms
0.5
+0.8
or open
Input current when the
converter is inhibited
0.6
0.1
or open
I i inh
4
0.3
5
Inhibit voltage
3
0.6
12
Input capacitance
V
100
5
12
max
48
12
Io = 0, Vi min – Vi max
Unit
75
resistive load
Vinh
2
typ
capacitive load
Ci
1
36
0.1
No load input current
Inhibit current
min
36
50
Ii o
Iinh
max
24
Worst case condition at
Vi min and full load
Vi nom
Io nom
typ
48IMS7
kHz
30
mApp
A
Vi min will not be as stated, if Vo is increased above Vo nom by use of the R or Trim input. If the output voltage is set to a higher value, Vi min
will be proportionally increased.
Measured with a resistive and the max. admissible capacitive load.
Measured with a lead length of 0.1 m, leads twisted. Double-output models with both outputs in parallel. 70 /110 IMX7 models need an
external capacitor at the input, e.g. 1 µF film or ceramic.
Source impedance according to ETS 300132-2, version 4.3, at Vi nom.
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 5 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Input Transient Voltage Protection
Input Fuse and Reverse Polarity Protection
In many applications transient voltages on the input of the
converter may occur and are possibly caused by short circuits
between Vi+ and Vi–, where the network inductance may
cause high energy pulses.
The suppressor diode on the input also provides for reverse
polarity protection by conducting current in the reverse
direction, thus protecting the converter. An external fuse is
required to limit this current. We recommend for:
In order to protect the converters, transient suppressors are
fitted to the input; see table below:
Table 3: Built-in transient voltage suppressor
Model
Breakdown
Voltage
VBR nom
20IMX7 1
Peak Power
at 1 ms
PP
Peak Pulse
Current
I PP
overvoltage lockout at approx. 38 V
24IMS7 2
53 V
600 W
40IMX7 2
100 V
1500 W
11 A
48IMS7 2
100 V
600 W
4.1 A
70IMX7 2
144 V
600 W
2.9 A
110IMX7 2
167 V
600 W
2.5 A
7.7 A
–
–
–
–
20IMX7 and 24IMS7 a fast 2 A (F2A) fuse
40IMX7 and 48IMS7 a fast 1 A (F1A) fuse
70IMX7 a fast 0.63 A (F.63A) fuse
110IMX7 a fast 0.63 A (F.63A) fuse.
Inrush Current
The inrush current has been kept as low as possible by
choosing a very small input capacitance. A series resistor may
be inserted in the input line to limit this current further.
A
4
04030a
3
1
2
The built-in overvoltage trigger disables the converter at
approx. 38 V protecting the input up to 50 V. For higher transient
voltages an external suppressor or voltage limiting circuit as,
e.g., for IEC/EN 61000-4-5, level 2 compliance should be
provided.
If transients generating currents above the peak pulse current
are possible, an external limiting network such as the circuit
recommended for IEC/EN 61000-4-5, level 2 compliance, is
necessary.
To achieve IEC/EN 61000-4-5, level 2 compliance, an
additional inductor and capacitor should be provided
externally as shown in the figure below. The components
should have similar characteristics as listed in table 4.
2
1
0
0
20
40
60
80 µs
Fig. 5
Typical inrush current at Vi nom , Po nom measured according to
ETS 300132-2 (40IMX7).
Note: Suppressor diode D is only necessary for 20IMX7 models.
07064
L
Vi+
C
+
i
D
Vi–
Fig. 4
Example for external circuitry to comply with IEC/EN
61000-4-5, level 2 (transzorb D only for 20IMX7).
Table 4: Components for external circuitry to comply with
IEC/EN 61000-4-5, see table 8
Model
L
C
D
20IMX7
330 µH, 1 A, 0.115 Ω
68 µF, 63 V
1.5KE39A
24IMS7
–
–
–
40IMX7
330 µH, 0.6 A, 0.42 Ω
47 µF, 100 V
1.5KE100A
48IMS7
–
–
–
70IMX7
1000 µ H, 0.6 A, 0.42 Ω
22 µF, 160 V
1.5KE120A
110IMX7
330 µH, 0.2 A
22 µF, 200 V
1.5KE170A
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 6 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Electrical Output Data
General conditions:
– TA = 25 °C, unless TC is specified.
– Pin i connected with Vi –; Trim or R input left open-circuit.
Table 5a: Output data for single-output models
Output
Vo nom
Characteristics
Conditions
min
Vo
Output voltage setting
Vi nom
3.28
Io nom
Output current (nom.)
Vi min – Vi max
limit 2
3.3 V
typ
max min
Current
∆Vo
Line and load regulation
Vi min – Vi max
Io = (0.05 – 1) Io nom
vo
Output voltage noise
Vi min – Vi max
I o = I o nom
Vi nom
5.13
V
1.2
2.7
5
20
110IMX7
max
3.32 5.07
1.78
6
Unit
typ
1.5
Io L
other models
5.1 V
1.56
2.0
±1
±1
%
70
70
mVpp
40
40
A
20
50
40
40
50
Vo cl p
Output overvoltage limit 7
Co ext
Admissible capacitive load
Vo d
Dynamic Voltage deviat.
load
Recovery time
regulation
Vi nom
Io nom ↔ 1/2 Io nom
±250
±250
mV
1
1
ms
Temperature coefficient
∆Vo /∆TC (TC min to TC max)
Vi min – Vi max
Io = (0.05 – 1) Io nom
±0.02
±0.02
%/K
to d
αVo
Minimum load 1%
115
130
115
130
%
0
2500
0
2000
µF
Table 5b: Output data for double-output models
Output
Vo nom
Characteristics
Conditions
min
IMX7 Vi nom
I o1 = I o2 = 0.5 I o nom
4.96
4.95
5.04 11.90
5.05 11.88
12.10 14.88
12.12 14.85
15.12 23.81
15.15 23.75
24.19
24.25
IMS7 Vi nom
I o1 = I o2 = 0.5 I o nom
4.92
4.92
5.08 11.82
5.08 11.82
12.18 14.78
12.18 14.78
15.22 23.64
15.22 23.64
24.36
24.36
Vo1
Vo2
Output voltage
setting
Vo1
Vo2
Io nom
Io L
∆Vo1
2×5V
Output current
20IMX7 Vi min – Vi max
(nom.)1
other models
Current
limit 2 3
20IMX7 Vi nom
other models
Line regulation
∆Vo l
Load regulation
vo1, 2
Output voltage noise
4
2 × 12 V
typ max
min
typ
2 ×15 V
max min
typ
2 × 24 V
max min
typ
Unit
max
2 × 0.6
2 × 0.25
2 × 0.2
2 × 0.13
2 × 0.7
2 × 0.3
2 × 0.24
2 × 0.15
A
1.8
2.1
0.7
0.9
0.5
0.7
0.35
0.45
1.8
2.0
0.8
1.0
0.55
0.9
0.38
0.5
Vi min – Vi max, I o nom
±1
Vi nom , (0.1 – 1) I o nom
±3
±3
±3
±3
80
120
150
240
Vi min – Vi ma
I o = I o nom
5
6
20
±1
40
25
±1
50
30
±1
60
50
V
%
mVpp
100
Vo clp
Output overvoltage limit 7
Co ext
Admissible capacitive load 3
Vo d
Dynamic Voltage deviat.
load
Recovery time
regulation
Vi nom
Io nom ↔ 1/2 Io nom
±150
±330
±350
±600
mV
1
1
1
1
ms
Temperature coefficient
of output voltage
Vi min – Vi max
(0.05 – 1) I o nom
±0.02
±0.02
±0.02
±0.02
%/K
td
αVo
1
2
3
4
5
6
7
Minimum load 1%
115
130
115
130
115
130
115
130
%
0
2000
0
300
0
200
0
100
µF
Each output is capable of delivering full output power Po nom according to table Model Selection.
The current limit is primary side controlled. Io L is defined when Vo dropped to 85 to 94%.
Measured with both outputs connected in parallel.
Conditions for specified output. Other output loaded with constant current Io = 0.5 Io nom.
BW = 20 MHz
Measured with a probe according to EN 61204.
The overvoltage protection is not tracking with the R control.
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 7 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Thermal Considerations
Output Overvoltage Protection
If the converter, mounted on a PCB, is located in free, quasistationary air (convection cooling) at the maximum ambient
temperature TA max (see table Temperature specifications) and
is operated at nominal input voltage and output power, the
case temperature TC measured at the measuring point of case
temperature (see Mechanical Data) will approach TC max after
the warm-up phase. However, the relationship between TA and
TC depends heavily on the conditions of operation and
integration into a system, such as input voltage, output current,
airflow, temperature of surrounding components and surfaces,
and the properties of the printed circuit board. TA max is
therefore only an indicative value, and under practical
operating conditions, TA may be higher or lower.
The outputs are protected against overvoltage by Zener
diodes. In the event of an overvoltage, the converter will shut
down and attempt to restart automatically. The main purpose
of this feature is to protect against possible overvoltage, which
could occur due to a failure in the feedback control circuit. The
converters are not designed to withstand external overvoltages
applied to the outputs.
Caution: The case temperature TC measured at the measuring
point of case temperature (see Mechanical Data) may under no
circumstances exceed the specified maximum. The installer must
ensure that under all operating conditions TC remains within the
limits stated in the table Temperature specifications.
Po /Po max
Series or Parallel Connection
The outputs of single- or double-output models can be
connected in series without any precautions, taking into
consideration that the output voltage should remain below 60 V
for SELV operation.
Both outputs of double-output models can be connected in
parallel without any precautions. Several converters (single- or
double-output models) with equal output voltage can be put in
parallel and will share their output current quite equally.
However, this may cause start-up problems and is only
recommended in applications, where one converter is able to
deliver the full load current, e.g., in true redundant systems.
JM017
Vo [V]
1.0
05087a
5.5
0.8
0.5 m/s = 100 LFM
5.0
natural cooling
4.5
0.6
0.4
4.0
0.2
0
20
40
60
80
100
°C
TA
3.5
Fig. 6
3.0
0
Maximum allowed output power versus ambient temperature
0.4
0.8
1.2
Io [A]
1.6
Fig. 8a
Short-Circuit Behavior
Vo versus Io (typ.) of single-output models with Vo = 5.1 V
The current limitation shuts down the converter, when a short
circuit is applied to the output. It acts self-protecting, and
automatically recovers after removal of the overload condition.
Vo [V]
05086b
13
12
Vo [%]
11
overload condition
100
10
switch-off
70
05041c
9
8
7
0
0.3 s
t
0
0.2
0.4
0.6
0.8
Io total [A]
Fig. 8b
Fig. 7
Overload switch-off (hiccup mode).
Vo versus Io (typ.) of double-output models (2 ×12 V) with both
outputs in parallel
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 8 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
η [%]
Typical Performance Curves
05088a
13.5
Vi nom
Vi max
Vi min
80
70
13
12.5
05052a
90
Vo1 [V]
Io2 = 0.03 A
12
60
50
Io2 = 0.3 A
40
11.5
11
0.05
0.15
0.10
0.20
0.25
0.3
25
50
75
Po
100 % Po nom
Io1 [A]
Fig. 9
Fig. 11
Cross load regulation (typ.) of double-output models (2 ×12
V). The cross-load effect is negligible.
Efficiency versus input voltage and load.
Typical values (40IMX7-12-12-8).
Vo1 , Vo2 [V]
05059a
12.8
12.4
Vo2
Vo1
12
11.6
11.2
0
30
60
90
120
150
Io1
[%]
Io1 nom
Fig. 10
Flexible load distribution on double-outputs models (2 ×12 V)
with load variation from 0 to 150% of Po1 nom on output 1.
Output 2 loaded with 25% of Po2 nom.
Auxiliary Functions
Adjustable Output Voltage
Inhibit Function
As a standard feature, all IMX7 and IMS7 converters offer
adjustable output voltage(s) by using a control pin. If this pin is
left open-circuit, the output voltage is set to Vo nom. The output
voltage is adjustable in the range of 75 to 105% of Vo nom.The
circuit works for single- and double-output models in a different
way. For output voltages Vo > Vo nom, the minimum input voltage
Vi min (see Electrical Input Data) increases proportionally to Vo /
Vo nom.
The output(s) of the converter may be enabled or disabled by
means of a logic signal (TTL, CMOS, etc.) applied to the inhibit
pin. No output voltage overshoot will occur, when the converter
is turned on. If the inhibit function is not required, the inhibit pin
should be connected to Vi– to enable the output (active low
logic, fail safe).
Converter operating:
–10 V to 0.8 V
Converter inhibited
or inhibit pin i left open:
2.4 V to Vi max
(20/40IMX7,
24/48IMS7)
2.4 V to 75 V
(70/110IMX7)
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 9 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Single-output models with R-input:
100 to 105% Vo nom. Rext should be connected between pin
4 and Vi –. The following table indicates suitable resistor
values for typical output voltages under nominal
conditions (Vi nom, Io = 0.5 Io nom), with paralleled outputs or
equal load conditions on each output.
The R-input (pin 13) is referenced to the secondary side of the
converter. Adjustment of the output voltage is possible by
means of either an external resistor or a voltage source.
Caution: Connection of Rext to Vi+ may damage the converter.
06029e
Vi+
Vo+
Vref = 2.5 V
06089a
Rext2
4 kΩ
R
+
Control
logic
Vi–
+
Vo–
Vo1+
Trim
Vo1–
+
Vext
Rext1
Vi+
Vext
–
Rext
–
Vi–
Control
circuit
Vref 2.5 V
Vo2+
Vo2–
Fig. 12
Fig. 13
Output voltage adjust for single-output models
Output voltage adjust for double-output models
a) Adjustment by means of an external resistor:
Depending upon the value of the required output voltage,
a resistor Rext1 or Rext2 shall be connected as shown in the
figure below:
Either: Rext1 between the R pin and Vo– to achieve an
output voltage adjustment range of Vo = 75 to 100% of
Vo nom (85 to 100% for 3.3 V outputs):
Vo
Rext1 ≈ 4 kΩ • –––––––––
Vo nom – Vo
or: Rext2 between the R pin and Vo+ to achieve an output
voltage range of approximately Vo = 100 to 105 % of Vo nom:
Table 6: Rext for Vo > Vo nom
approximate values (Vi nom, Io1 = Io2 = 0.5 Io1/2 nom)
Vo [% Vo nom ]
Ω]
Rext [ kΩ
105 to 108 (107 typically)
105
104
103
102
101
100
0
1.5
5.6
12
27
68
∞
Note: Applying a control voltage greater than 20 V will set the
converter into a hiccup mode.
(Vo – 2.5 V)
Rext2 ≈ 4 kΩ • ––––––––––––––––––
2.5 V • (Vo/Vo nom – 1)
b) Adjustment by means of an external voltage Vext between
Vo– and R pin.
The control voltage is 1.96 to 2.62 V and allows for
adjustment in the range of 75 to 105% of Vo nom.
Vo • 2.5 V
Vext ≈ ––––––––
Vo nom
Caution: Applying an external voltage >2.75 V may damage the
converter.
Note: Attempting to adjust the output below this range will cause
the converter to shut down (hiccup mode).
Double-output models with Trim input:
b) Adjustment by means of an external voltage source Vext.
For external output voltages in the range of 75 to 105% of
Vo nom a voltage source Vext (0 to 20 V) is required,
connected to the Trim-input (pin 4) and Vi–. The table
below indicates typical Vo versus Vext values under
nominal conditions (Vi nom, Io = 0.5 Io nom), with paralleled
outputs or equal load conditions on each output. Direct
paralleling of the Trim-inputs of converters connected in
parallel is feasible.
Table 7: Vext for Vo = 75 to 105% Vo nom;
typical values (Vi nom, Io1 = Io2 = 0.5 Io1/2 nom)
The Trim input (pin 4) of double-output models is referenced to
the primary side. Figure 13 shows the circuitry. Adjustment of
the output voltage is possible in the range of 100 to 105% of Vo
nom using an external resistor, or in the range of 75 to 105% of
Vo nom using an external voltage source.
Vo [% Vo nom]
Vext [V]
≥105
102
95
85
75
0
1.6
4.5
9
13
a) Adjustment by means of an external resistor Rext.
Programming of the output voltage by means of an
external resistor Rext1 is possible within a limited range of
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 10 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Electromagnetic Compatibility (EMC)
A suppressor diode together with an input filter form an
effective protection against high input transient voltages, which
typically occur in many installations, but especially in batterydriven mobile applications.
Electromagnetic Immunity
Table 8: Immunity type tests
Phenomenon
Standard
Class
level
Coupling
mode 1
Value
applied
Waveform
Source
imped.
Test
procedure
Electrostatic
discharge
to case 5
IEC/EN
61000-4-2
2
contact discharge
4000 Vp
1/50 ns
B
air discharge
8000 Vp
10 positive and
10 negative
discharges
yes
3
330 Ω
150 pF
Electromagnetic
field
IEC/EN
3
23
antenna
10 V/m
3 V/m
AM 80%
1 kHz
n.a.
80 – 1000 MHz
yes
A
ENV 50204
3
23
antenna
10 V/m
3 V/m
PM, 50% duty
cycle, 200 Hz
repetition frequ.
n.a.
900 MHz
yes
A
Electrical fast
transient s/burst
IEC/EN
61000-4-4
4
33
direct +i/–i
4000 Vp
2000 Vp
bursts of 5/50 ns
5 kHz repet. rate,
transients with
15 ms burst
duration, and
300 ms period
50 Ω
60 s positive,
60 s negative
transients per
coupling mode
yes
B
Surges
IEC/EN
61000-4-5
24
13 4
+i/–i
1000 Vp
500 Vp
1.2/50 µs
42 Ω
0.5 µF
5 pos. and 5 neg.
surges
yes
B
RF conducted
immunity
IEC/EN
61000-4-6
3
23
+i/–i
10 VAC
3 VAC
AM modul. 80%
1 kHz
50 Ω
0.15 to 80 MHz
150 Ω
yes
A
1
2
3
4
5
In
Perfoper. crit.2
i = input, o = output
Performance criterion: A = normal operation, no deviation from specifications, B = temporary deviation from specs possible
Valid for 24IMS7 and 48IMS7
External components required
R or Trim pin open, i pin connected with Vi–
Electromagnetic Emissions
PMM 8000 PLUS
Name: 20_7_15
dbµV
Date: 5.9.07
Time: 08:18
20IMX7-15-15-8
Peak
60
80
40
20
20
0.2
0.5
1
2
5
10
20 MHz
EN 55022 A
60
40
0
Time: 08:00
Peak
0
0.2
0.5
1
2
5
10
40IMX7D24-con-p
EN 55022 A
20IMX7D15-con-p
80
Date: 5.9.07
40IMX7-24-24-8
PMM 8000 PLUS
Name: 40_7_24
dbµV
20 MHz
Fig. 14a
Fig. 14b
20IMX7-15-15-8: Typical conducted emissions (peak) at the
input at Vi nom and Io nom according to EN 55011. Output leads
0.1 m, twisted. External input capacitor (1 µF ceramic + 100
µF electrolytic cap)
40IMX7-24-24-8: Typical conducted emissions (peak) at the
input at Vi nom and Io nom according to EN 55011. Output leads
0.1 m, twisted. External input capacitor (1 µF ceramic + 47 µF
electrolytic cap)
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 11 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
PMM 8000 PLUS
Name: 110_7_05
dbµV
Date: 5.9.07
110IMX7-05-8
Time: 08:00
Peak
EN 55022 A
60
40
20
20
0.2
0.5
1
2
5
10
EN 55022 A
60
40
0
Time: 09:10
Peak
80
110IMX7-05-con-p
80
Date: 5.9.07
48IMS7-15-15-8
PMM 8000 PLUS
Name: 48_7_15
dbµV
0
20 MHz
0.2
0.5
1
2
5
10
20 MHz
Fig. 14c
Fig. 15
110IMX7-05-8: Typical conducted emissions (peak) at the
input at Vi nom and Io nom according to EN 55011. Output leads
0.1 m, twisted. External input capacitor (0.15 µF ceramic +
4.7 µF electrolytic cap).
48IMS7-15-15-8: Typical conducted emissions (peak) at the
input at Vi nom and Io nom according to EN 55011. Output leads
0.1 m, twisted. External input capacitor (1 µF ceramic + 47 µF
electrolytic cap).
Immunity to Environmental Conditions
Table 9: Mechanical and climatic stress
Test Method
Standard
Test conditions
Cab
Damp heat
steady state
IEC/EN 60068-2-78
MIL-STD-810D section 507.2
Temperature:
Relative humidity:
Duration:
40 ±2 °C
93 +2/-3 %
56 days
Status
Converter
not
operating
Ea
Shock
(half-sinusoidal)
IEC/EN 60068-2-27
MIL-STD-810D section 516.3
Acceleration amplitude:
Bump duration:
Number of bumps:
100 gn = 981 m/s2
6 ms
18 (3 each direction)
Converter
operating
Fc
Vibration
(sinusoidal)
IEC/EN 60068-2-6
Acceleration amplitude:
Converter
operating
Frequency (1 Oct/min):
Test duration:
0.35 mm (10 to 60 Hz)
5 gn = 49 m/s2 (60 to 2000 Hz)
10 to 2000 Hz
7.5 h (2.5 h each axis)
Fh
Vibration,
broad-band
random
(digital control)
IEC/EN 60068-2-64
Acceleration spectral density:
Frequency band:
Acceleration magnitude:
Test duration:
0.05 gn2/Hz
10 to 500 Hz
4.9 gn rms
3 h (1 h each axis)
Converter
operating
Kb
Salt mist, cyclic
(sodium chloride
NaCl solution)
IEC/EN 60068-2-52
Concentration:
Duration:
Storage:
Storage duration:
Number of cycles:
5% (30 °C)
2 h per cycle
40 °C, 93% rel. humidity
22 h per cycle
3
Converter
not
operating
Temperatures
Table 10: Temperature specifications, valid for air pressure of 800 to 1200 hPa (800 to 1200 mbar)
Temperature
-9
Characteristics
Conditions
Operational 1
TA
Ambient temperature
TC
Case temperature
TS
Storage temperature
1
Non operational
min
-8
max
min
Unit
max
–40
71
–40
85
–40
95
–40
105
–55
100
–55
85
°C
See Thermal Considerations
MELCHER
BCD20007-G Rev AG, 10-Apr-2018
The Power Partners.
Page 12 of 14
IMX7, IMS7 Series Data Sheet
7-Watt DC-DC Converters
Failure Rates
Table 11: MTBF and device hours
Model
Standard
Ground benign
Ground fixed
Ground mobile
TC = 40 °C
TC = 40 °C
TC = 70 °C
TC = 50 °C
24IMS7-05-9
MIL-HDBK-217F
634 000
321 000
188 000
271 000
40IMX7-12-12-8
MIL-HDBK-217F
851 000
395 000
253 000
342 000
Bellcore
3 019 000
1 510 000
809 000
409 000
Bellcore
3 320 000
1 660 000
871 000
447 000
40IMX7-05-05-8
Unit
h
0.8 × 1.2 (0.03 × 0.05") pins
∅ 1.6 (0.06) PCB holes
Mechanical Data
50.8 (2")
European
Projection
4
10
3.81(0.15")
PT 2.2
self tapping screws
45.7 (1.8")
1.27 (0.05")
0.8 × 1.2 Pins
Bottom view
5.08
5.08
3.81
10
4
3.81
3.81
3.81
3.81
3.81
25.4
1
5.08
14
48 (1.9")
S90002b
Bottom view
10
4
3.5 ±0.1 (0.14")
43.2 (1.7")
TC Z
11.0
0.8
42.4
Measuring point
case temper. TC
14
1
3 x 5.08
(0.2")
09031a
Core
4.2
Fig. 17
Safety and Installation Instructions
Pin Allocation
10011
1
2
Bottom view
3
Fig. 18
Open-frame
model (option Z)
SMD pins (option M)
14
13
12
11
10
1.2 (0.5")
Table 12: Pin allocation
Pin
Single output
Double output
1
Vi+
Vi+
2
Vi–
Vi–
3
i
i
4
n.c.
Trim
10
Vo–
Vo1–
11
Vo+
Vo1+
12
Vo–
Vo2–
Fig. 19
13
R
Vo2+
Footprint
14
n.c.
n.c.
4
23 (0.9")
50.8
10.5
(0.41")
Measuring point
of case temperature TC
5 x 3.81
(0.15")
Case IMX7/IMS7 with
standard pinout
25.4 (1")
1
14
8.25
(0.32")
4.6 (0.18")
Fig. 16
3.81(0.15")
S09030b
20.3 (0.8")
3.81(0.15")
Weight: