0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CQ1001-9RG

CQ1001-9RG

  • 厂商:

    POWER-ONE

  • 封装:

    -

  • 描述:

    DC/DCCONVERT5.1V20A

  • 数据手册
  • 价格&库存
CQ1001-9RG 数据手册
Q Series 66 - 132 Watt DC-DC Converters Features • RoHS lead-free-solder and lead-solder-exempted products are available • 5 year warranty for RoHS compliant products with an extended temperature range • Class I equipment • Compliant with EN 45545 (version V106 or later) • Wide input voltage ranges up to 154 VDC • 1 or 2 isolated outputs from 3.3 to 24 V • Flexible output power • Extremely high efficiency of up to 90% • Excellent surge and transient protection • Outputs open and short-circuit proof • Redundant operation, current sharing • Extremely low inrush current, hot-swappable • Externally adjustable output voltage and inhibit • Electric strength test 2.1 kVDC • Extremely slim case (4 TE, 20 mm), fully enclosed 111 4.4" 3U 20 0.8" 4 TE Safety-approved to the latest edition of IEC/EN 62368-1 and UL/CSA 60950-1 164 6.5" 1 1 Table of Contents Description........................................................................................2 Model Selection.................................................................................2 Functional Description.......................................................................6 Electrical Input Data..........................................................................7 Electrical Output Data.......................................................................9 Auxiliary Functions..........................................................................18 on request Electromagnetic Compatibility (EMC)..............................................22 Immunity to Environmental Conditions............................................24 Mechanical Data..............................................................................26 Safety and Installation Instructions..................................................27 Description of Options.....................................................................29 Accessories.....................................................................................31 belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 Q Series 66 - 132 W DC-DC Converters Description These extremely compact DC-DC converters incorporate all necessary input and output filters, signaling and protection features, which are required in the majority of applications. The converters provide important advantages such as flexible output power through primary current limitation, high efficiency, excellent reliability, very low ripple and RFI noise levels, full input to output isolation, negligible inrush current, over­temperature protection, and input over-/undervoltage lockout. The converter inputs are protected against surges and transients occurring on the source lines. The converters are particularly suitable for rugged en­viron­ment, such as railway applications. They have been designed in accordance with the European railway standards EN 50155 and EN 50121-3-2. All printed circuit boards are coated with a protective lacquer. The outputs are continuously open- and short-circuit proof. An isolated output Power Good signal and LEDs at the front panel indicate the status of the converter. Test sockets at the front panel allow for a check of the main output voltage. Full system flexibility and n+1 redundant operating mode are possible due to virtually unrestricted series or parallel con­nection capabilities of all outputs. In parallel connection of several converters, automatic current sharing is provided by a single-wire interconnection. As a modular power supply or as part of a distributed power supply system, the extremely low-profile design reduces the necessary power supply volume without sacrificing high reliability. A temperature sensor disables the outputs when the case temperature exceeds the limit. The outputs are automatically re-enabled, when the temperature drops. The fully enclosed, black-coated aluminum case acts as a heat sink and an RFI shield. The converters are designed for 19" DINrack systems occupying 3 U/4 TE only, but can also be chassis-mounted by four screws. Fitting an additional heat sink or ordering options with fitted heat sink is possible as well. Model Selection Table 1a: Model Selection BQ, GQ Output 1 Output 2 Output power 1 Operating input voltage range, efficiency TA= 71°C TA= 50°C Options Vo nom Io nom Io max Vo nom Io nom Io max Po nom Po max Vi min - Vi max η min2 η typ Vi min - Vi max η min2 η typ [VDC] [A] [A] [VDC] [A] [A] [W] [W] 14.4 - 36 VDC [%] [%] 21.6 - 54 VDC [%] [%] 3.3 20 25 - - - 66 82 BQ1101-9G 81 5.1 16 20 - - - 82 102 BQ1001-9RG 85 86 GQ1001-9RG 85.5 86 12 3 8 10 - - - 96 120 BQ2320-9RG 87 88.5 GQ2320-9RG 87 89 15 3 6.6 8 - - - 99 120 BQ2540-9RG 87 89 GQ2540-9RG 86.5 88.5 24 3 4.4 5.5 - - - 106 132 BQ2660-9RG 88 90.5 GQ2660-9RG 88 90 5.1 GQ1101-9G -7, B, B1, non-G 7.5 8.5 5.1 7.5 8.5 77 97 BQ2001-9RG 85 86 GQ2001-9RG 85.5 86 12 4 4 5 12 4 4 5 96 120 BQ2320-9RG 87 88.5 GQ2320-9RG 87 89 15 4 3.3 4 15 4 3.3 4 99 120 BQ2540-9RG 87 89 GQ2540-9RG 86.5 88.5 24 2.2 2.75 24 2.2 2.75 106 132 BQ2660-9RG 89 90.5 GQ2660-9RG 88 90 4 4 4 4 -7, P, F, B, B1, non-G -7, F, B, B1, non-G -7, P, F, B, B1, non-G The cumulated power of both outputs cannot exceed the total power for the specified ambient temperature. See also Output Power at Reduced Temperature. 2 Minimum efficiency at Vi nom, Io nom and TA = 25 °C 3 Double-output models with both outputs connected in parallel 4 Double-output models. The isolated output 2 is a tracking output 1. 1 NFND: Not for new designs. Preferred for new designs tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 2 of 31 Q Series 66 - 132 W DC-DC Converters Table 1b: Model Selection CQ, 48Q Output 1 Output 2 Output power 1 Operating input voltage range, efficiency TA= 71°C TA= 50°C Vi min - Vi max η min2 η typ Vi min - Vi max η min2 [W] 33.6 - 75 VDC [%] [%] 38.4 - 75 VDC [%] 82 CQ1101-9G 82 82 102 CQ1001-9RG 85 - 82 - 96 120 - - 96 - - 99 120 - - - - 99 - - - 106 132 - - - 106 Vo nom Io nom Io max Vo nom Io nom Io max Po nom Po max [VDC] [A] [A] [VDC] [A] [A] [W] 3.3 20 25 - - - 66 5.1 16 20 - - - 5.1 16 - - - - 12 3 8 10 - - 12 3 8 - - - 15 3 6.6 8 - 15 3 6.6 - 24 3 4.4 5.5 24 3 4.4 - - 5.1 CQ2320-9RG 88 -7, P, F, B, B1, non-G 87 CQ2540-9RG 88.5 90 CQ2660-9RG 88.5 90.5 83 48Q2320-2R 85 8.5 5.1 7.5 8.5 77 97 CQ2001-9RG 85 87 4 5 12 4 4 5 96 120 CQ2320-9RG 87 88 12 4 4 - 12 4 4 - - 96 15 4 3.3 4 15 4 3.3 4 99 120 15 4 3.3 - 15 4 3.3 - - 99 24 4 2.2 2.7 24 4 2.2 2.7 106 132 24 4 2.2 - 24 4 2.2 - - 106 CQ2660-9RG 88.5 88.5 -7, P, F, B, B1, non-G 85 -7, P, F, B, B1, non-G 48Q2660-2R CQ2540-9RG -7, P, F, B, B1, non-G 48Q2540-2R 7.5 4 -7, P, F, B, B1, non-G 48Q1001-2R 89.5 12 4 4 Options 87 -7, P, F, B, B1, non-G -7, P, F, B, B1, non-G 48Q2320-2R 85 48Q2540-2R 85 48Q2660-2R 87 - 90 -7, P, F, B, B1, non-G - 90 -7, P, F, B, B1, non-G - Table 1c: Model Selection DQ, EQ Output 1 Output 2 Output power 1 Operating input voltage range, efficiency Options TA= 71°C TA= 50°C Vo nom Io nom Io max Vo nom Io nom Io max Po nom Po max Vi min - Vi max η min2 η typ Vi min - Vi max η min2 η typ [VDC] [A] [A] [VDC] [A] [A] [W] [W] 43 - 108 VDC [%] [%] 66 - 150 VDC [%] [%] 3.3 20 25 - - - 66 82 DQ1101-9G 82* 5.1 16 20 - - - 82 102 DQ1001-9RG 85.5 85 86 12 3 8 10 - - - 96 120 DQ2320-9RG 15 3 6.6 8 - - - 99 120 DQ2540-9RG 24 3 4.4 5.5 - - - 106 132 5.1 EQ1101-9G -7, B, B1, non-G 86.5 EQ1001-9RG 88 90 EQ2320-9RG 87 89 89 90.5 EQ2540-9RG 87.5 89 DQ2660-9RG 89 90 EQ2660-9RG 87.5 89 7.5 8.5 5.1 7.5 8.5 77 97 DQ2001-9RG 85 86.5 EQ2001-9RG 84 86 12 4 4 5 12 4 4 5 96 120 DQ2320-9RG 88 90 EQ2320-9RG 87 89 15 4 3.3 4 15 4 3.3 4 99 120 DQ2540-9RG 89 90.5 EQ2540-9RG 87.5 89 24 2.2 2.75 24 2.2 2.75 106 132 DQ2660-9RG 89 90 EQ2660-9RG 87.5 89 4 4 4 4 -7, P, F, B, B1, non-G -7, B, B1, non-G -7, P, F, B, B1, non-G The cumulated power of both outputs cannot exceed the total power for the specified ambient temperature. See also Output Power at Reduced Temperature. 2 Minimum efficiency at Vi nom, Io nom and TA = 25 °C 3 Double-output models with both outputs connected in parallel 4 Double-output models. The isolated output 2 is a tracking output 1. 1 NFND: Not for new designs. Preferred for new designs tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 3 of 31 Q Series 66 - 132 W DC-DC Converters Part Number Description C Q 2 5 40 -9 R B1 G Input voltage Vi nom: Series 24 V...................................................................... B 36 V.......................................................................G 48 V.......................................................................C 48 V (Telecom, NFND)......................................... 48 72 V.......................................................................D 110 V......................................................................E ...............................................................................Q Number of outputs: Single output models............................................. 1 Double output models ........................................... 2 Single output models (long case) 2........................ 6 Double output models (long case) 2....................... 7 Nominal voltage of main output: 3.3 V...................................................................... 1 5.1 V...................................................................... 0 12 V....................................................................... 3 15 V....................................................................... 5 24 V................................................................... 6, 7 Other voltages ............................................... 7, 8, 9 Other specifications and additional features for single output models 3 ............................. 01 - 99 Nominal voltage of output 2, Vo2 nom: 5.1 V............................................................. 01 - 09 12 V.............................................................. 20 - 39 15 V.............................................................. 40 - 59 24 V.............................................................. 60 - 79 Other voltages and additional features 5....... 01 - 99 Operational ambient temperature range TA: – 10 to 50 °C (NFND)............................................ -2 – 25 to 71 °C (option, NFND)................................ -7 – 40 to 71 °C......................................................... -9 other 3 ........................................................ -0, -5, -6 Output voltage adjust (auxiliary function).................................R Options: Potentiometer (option, NFND) 1............................. P No fuse (option)..................................................... F Additional heatsink ......................................... B, B1 RoHS-compliant for all 6 substances.......................................G 1 Option P excludes feature R and vice versa. 2 Models with 220 mm case length. Just add 5000 to the standard model number, e.g., CQ2540-9RG → CQ7540-9RG. 3 Customer-specific models. Note: The sequence of options must follow the order above. This part number description is not intended for creating part numbers. NFND: Not for new designs. Preferred for new designs Example: CQ2540-9RB1G: DC-DC converter, input voltage range 33.6 to 75 V, double-output model, each output providing 15 V/ 3.3 A, equipped with a heat sink, operating ambient temperature TA = – 40 to 71 °C, RoHS-compliant for all six substances. Note: All models have the following auxiliary functions, which are not shown in the type designation: input and output filter, inhibit, sense lines, current sharing, Out OK signal, LED indicators, and test sockets (not 48Q models). Note: 48Q models are designed according to Telecom standards ETS 300132-2 and EN 41003. Vi min is 38.4 V, such limiting the input current I i to 150% of Ii nom. tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 4 of 31 Q Series 66 - 132 W DC-DC Converters Product Marking Type designation, applicable safety approval and recognition marks, CE mark, warnings, pin allocation, patents, and com­pany logo. Identification of LEDs, test sockets and potentiometer. Input voltage range and input current, nominal output voltages and currents, degree of protection, batch no., serial no., and data code including production site, version (modification status) and date of production. Output Configuration The Q Series design allows different output configurations to cover almost every individual requirement, by simply wiring the outputs in parallel, series, or symmetrical configuration as per the following figures. For further information and for parallel and series operation of several converters see Electrical Output Data. 01002a 01001a Single-output model Vo+ 4 Double-output model Vo2+ Vo+ 6 Vo1+ 4 28 i S+ 12 30 Vi+ S– 14 32 Vi– Vo– 8 Vo– 10 Load Fig. 1 Single-output configuration 6 28 i S+ 12 30 Vi+ S– 14 32 Vi– Vo1– 8 Vo2– 10 Load Fig. 2 Parallel-output  configuration 01003a Double-output model Vo2+ 01004a 6 Double-output model Vo1+ 4 Vo2– 10 S+ 12 Vo1+ 4 S– 14 28 i 30 Vi+ S+ 12 32 Vi– S– 14 Vo1– Load Load 1 28 i 30 Vi+ Vo1– 8 GND 32 Vi– Vo2+ 6 Load 2 Vo2– 10 8 Fig. 3 Series-output configuration Vo+ Vo– Fig. 4 Symmetrical-output configuration (with common ground) 01005a Double-output model Vo1+ 4 S+ 12 S– 14 28 i 30 Vi+ Vo1– 8 32 Vi– Vo2+ 6 Vo2– 10 Load 1 Load 2 Fig. 5 Independent-output configuration tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 5 of 31 Q Series 66 - 132 W DC-DC Converters Functional Description The converters are designed as forward converters using primary and secondary control circuits in SMD technology. The switching frequency is approximately 200 kHz under nominal operating conditions. The built-in high-efficient input filter together with a small input capacitance generate very low inrush currents of short duration. After transformer isolation and rectification, the output filter reduces ripple and noise to a minimum without compromising the dynamic ability. The output voltage is fed to the secondary control circuit via separate sense lines. The resultant error signal is sent to the primary control circuit via a signal transformer. Double-output models have the voltage regulation of output 2 relying on the close magnetic coupling of the transformer and the output inductor together with the circuits' symmetry. The current limitation is located at the primary side, thus limiting the total output current in overload conditions. This allows flexible loading of each output for unsymmetrical loads in the range 10 to 90% of the total output power. In applications with large dynamic load changes, we recommend connecting such a load to output 1. If output 2 is not used, it should be connected parallel to output 1. Both outputs can either be series- or parallel-connected (see Electrical Output Data). In normal operation, the internal control circuits are powered by a third winding of the main choke (except 48 Q models). Start-up is ensured from the input voltage by a linear regulator. Note: When the output voltage is much lower then the nominal value, this linear regulator is activated, generating considerable power losses. 03111a 2 22 Out OK+ Primary control circuit i 28 Output monitor 24 Out OK– Output control 18 T 16 R3 12 S+1 Vi+ 30 Vi– 32 1 1 Input filter Output filter Fuse Cy 26 Leading pins 2 Cy Isolation Potentiometer for option P 3 4 Vo+ 6 Vo+ 8 Vo– 10 Vo– 14 S–1 20 4 Do not connect for models xQ1101 or with option P 4 Do not connect Fig. 6 Block diagram of a single-output converter 03112a 2 22 Out OK+ Primary control circuit i 28 Output monitor Vo2 24 Out OK– Output control 18 T 16 6 1 10 Vo2– Input filter Fuse 12 S+1 26 Leading pins 2 4 Vo1+ 8 Vo1– Output filter Cy Isolation 1 Vo2+ Output filter Vi+ 30 Vi– 32 R3 Potentiometer for option P 3 14 Cy 20 Do not connect for models with option P 4 S–1 4 Do not connect Fig. 7 Block diagram of a double-output converter tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 6 of 31 Q Series 66 - 132 W DC-DC Converters Electrical Input Data General conditions: - TA = 25 °C, unless TC is specified. - Sense lines connected directly at the connector, inhibit (28) connected to Vi – (32). - R-input not connected; with option P, Vo set to Vo nom at Vi nom. Table 2a: Input data Model BQ Characteristics Vi Operating input voltage cont. Conditions min Io = 0 – Io max,TC min – TC max 14.4 Vi nom Nominal input voltage Vi abs Input voltage limits 3 s, without damage Ii Typical input current 1 Vi nom, I o nom Pi 0 No-load input power P i inh Idle input power 4 Iinr p Peak inrush current 2 tinr r Rise time inrush tinr h Time to half value ton Start-up time 3 typ GQ max min 36 21.6 24 0 0 → Vi min, I o nom min 54 33.6 typ Unit max 75 V 48 0 4.5 Vi nom, I o nom max 36 50 Vi min – Vi max, Io = 0 typ CQ 63 0 3.0 100 A 2.2 2.5 3.0 2.5 1.0 1.5 1.5 W A 55 40 35 50 40 35 130 110 80 5 5 8 ms 48Q 2 DQ EQ Unit μs Table 2b: Input data Model Characteristics Conditions min 38.4 Vi Operating input voltage cont. Io = 0 – Io max Vi 2s for ≤ 2 s, without lockout TC min – TC max Vi nom Nominal input voltage Vi abs Input voltage limits Ii Typical input current Pi 0 No-load input power P i inh Idle input power 4 Iinr p Peak inrush current 2 tinr r Rise time inrush tinr h Time to half value ton Start-up time 3 Vi nom, I o nom 0 → Vi min, I o nom min 75 43 typ max min 108 66 72 2 0 100 2.2 Vi min – Vi max, Io = 0 Vi nom, I o nom max typ max 150 154 48 3 s, without damage 1 typ 110 0 125 1.5 0 V 200 A 1.0 2.5 5.5 5.0 1.5 3.5 3.5 35 20 45 35 50 15 80 90 25 8 20 20 W A μs ms Typical input current depends on model type According to ETS 300132-2 3 See fig. 19  4 Converter inhibited 1 2 tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 7 of 31 Q Series 66 - 132 W DC-DC Converters Input Fuse An incorporated fuse in series to the negative input line protects against severe defects. The fuse is not externally accessible. Reverse polarity at the input will cause the fuse to blow. Note: For models with no internal fuse, see opt. F. The customer must provide an appropriate external fuse or circuit breaker. Model Fuse type BQ very fast acting Reference and rating 2x Littelfuse 251, 10 A, 125 V GQ very fast acting 2x Littelfuse 251, 7 A, 125 V CQ very fast acting Littelfuse 251, 10 A, 125 V 48Q very fast acting Littelfuse 251, 10 A, 125 V DQ very fast acting Littelfuse 251, 7 A, 125 V EQ very fast acting Littelfuse 263, 5 A, 250 V Input Transient Protection A metal oxide VDR (Voltage Dependent Resistor) together with the input fuse and a symmetrical input filter form an effective protection against high input transient voltages, which typically occur in most installations, especially in battery-driven mobile applications. Nominal battery voltages in use are: 24, 36, 48, 72, 96, and 110 V. In most cases each nominal value is specified in a tolerance band of –30% to +25%, with short excursions to ±40% or even more. In some applications, surges according to RIA 12 are specified in addition to those defined in IEC 60571-1 or EN 50155. The power supply must not switch off during these surges, and since their energy can practically not be absorbed, an extremely wide input voltage range is required. The Q Series input ranges have been designed and tested to meet most of these requirements. See also Electromagnetic Immunity. Input Under-/Overvoltage Lockout If the input voltage falls outside the limits of Vi, an internally generated inhibit signal disables the output(s). Inrush Current The inherent inrush current value is lower than specified in the standard ETS 300132-2. The converters operate with re­latively small input capacitance C i (see table 4), resulting in low inrush current of short duration. As a result, in a power-bus system the converters can be hot-swapped, causing negligible dis­tur­bances. Input Stability with Long Supply Lines If a converter is connected to the power source by long supply lines exhibiting a considerable inductance Lext, an additional external capacitor Cext connected across the input pins improves the stability and prevents oscillations. Actually, a Q Series converter with its load acts as negative resistor r i, because the input current I i rises, when the input voltage Vi decreases. It tends to oscillate with a resonant fre­quency determined by the line inductance L ex t and the input capacitance Ci + Cext, damped by the resistor R ext. The whole system is not linear at all and eludes a simple calculation. One basic condition is given by the formula:  Lext • Po max          dVi ___    Ci + Cext > _________ ( ri = ) Rext • Vi min² dIi Rext is the series resistor of the voltage source including the supply lines. If this condition is not fulfilled, the converter may not reach stable operating conditions. Worst case conditions are at lowest Vi and at highest output power Po. Low inductance L ext of the supply lines and an additional capacitor Cext are helpful. Recommended values for Cext are given in table 4, which should allow for stable operation up to an input inductance of 2 mH. Ci is specified in table 4. Table 4: C i and recommended values for Cext JM001c Rext Vi+ + Ri Ci Vi– Fig. 8 Input configuration Vo+ Load Lext Converter Vo– Model Ci Recomm. Cext Voltage BQ 220 μF ≥ 680 μF 40 V GQ 110 μF ≥ 470 μF 63 V CQ 50 μF ≥ 470 μF 100 V 48Q 50 μF ≥ 470 μF 100 V DQ 22 μF ≥ 150 μF 125 V EQ 11 μF ≥ 68 μF 200 V tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 8 of 31 Q Series 66 - 132 W DC-DC Converters Electrical Output Data General conditions: - TA = 25 °C, unless TC is specified. - Sense lines connected directly at the connector, inhibit (28) connected to Vi – (32). - R input not connected; with option P, Vo set to Vo nom at Vi nom. Table 5a: Output data for single-output models and double-output models with both outputs in parallel configuration Model BQ – GQ1101 48Q / BQ – GQ1001 48Q / BQ – GQ2320 Output 3.3 V 5.1 V 12 V Characteristics Conditions min typ max min typ max min typ max V o1 Setting voltage of 1 output Vi nom, Io nom  3.28 3.32 5.07 5.13 11.94 12.06 V ow Worst case output voltage 3.24 3.35 5.02 5.18 11.82 12.18 Vo P Overvoltage limitation of second control loop Vi min – Vi max TC min – TC max, Io = 0 – Io max 4.5 4.9 5.9 6.4 13.5 14.3 Io Output current 2 0.05 25 0 16/20 3 0 8.0/10 3 Io nom Nominal output current Io L Output current limit 2 32.5 16.8/21 3 vo 4 Output noise Po max Output power 1 vo d 4 Dynamic load regulation td 4, 5 st Switch. frequency Total incl. spikes Voltage deviation Recovery time vo os Dynamic line regulation (output overshoot) vo tr Output voltage trim range α vo via R-input 1 using opt. P 1 Temperature coefficient of Vo Vi min – Vi max TC min – TC max 20 26 16 Unit V A 8.0 20.8/26 3 8.4/10.5 3 10.4/12.5 3 Vi nom, Io nom 15 25 10 20 10 20 BW = 20 MHz 25 50 20 50 20 40 Vi min – Vi max TC min – TC max 82 82/102 3 96/120 3 W ±300 ±250 ±200 mV 800 800 1500 μs Vi nom Io nom ↔ ½ Io nom 0 ↔ Vi max 0 – Io max 1.1•Vi min – Vi max 0.5 0.5 0.8 N/A 4.0 5.6 7.2 13.2 TC min – TC max N/A 4.6 5.6 10.8 13.2 Io nom, TC min – TC max ±0.02 0.1• Io nom – Io nom ±0.02 mVpp ±0.02 V %/K If the output voltage is increased above Vo nom through R-input control, option P setting, or remote sensing, the output power should be reduced accordingly, so that Po max and TC max are not exceeded. 2 See Output Power at Reduced Temperature. 3 First value for 48Q, 2nd value for BQ – GQ 4 Measured with a probe according to IEC/EN 61204, annex A 5 Recovery time see Dynamic load regulation. 1 tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 9 of 31 Q Series 66 - 132 W DC-DC Converters Table 5b: Output data for double-output models with both outputs in parallel configuration. General conditions as per table 5a Model 48Q / BQ – GQ2540 48Q / BQ – GQ2660 Output 15 V 24 V Characteristics Conditions V o1 Setting voltage of 1 output V ow Worst case output voltage Vo P Overvoltage limitation of second control loop Io Output current 2 Io nom Nominal output current Io L Output current limit st 2 Switch. frequency max 23.88 24.12 Vi min – Vi max TC min – TC max, Io = 0 – Io max 15.23 23.64 24.36 17 18 27.5 29 0 6.6/8.0 3 0 4.4/5.5 3 Vi min – Vi max TC min – TC max 6.6 6.9/8.4 3 4.6/5.8 A 6.2/8.0 3 Vi nom, Io nom 10 20 10 25 BW = 20 MHz 20 40 20 40 vo d 4 t d 4, 5 Dynamic load regulation vo os Dynamic line regulation (output overshoot) 0 ↔ Vi max 0 – Io max Output voltage trim range via R-input 1.1•Vi min – Vi max vo tr using opt. P 1 TC min – TC max Vi nom Io nom ↔ ½ Io nom 0.1• Io nom – Io nom Io nom, TC min – TC max V 4.4 8.6/10.4 3 Vi min – Vi max TC min – TC max Temperature coefficient of Vo typ 15.08 Output power 1 α vo min 14.78 Po max Recovery time max 14.93 Output noise Voltage deviation typ Vi nom, Io nom  vo 4 Total incl. spikes min Unit 3 mVpp 99/120 3 106/132 3 W ±200 ±600 mV 1500 800 μs 0.8 1.2 9.0 16.5 14.4 6 26.4 13.5 16.5 21.6 26.4 ±0.02 ±0.02 V %/K If the output voltages are increased above Vo nom through R-input control, option P setting or remote sensing, the output power should be reduced accordingly so that Po max and TC max are not exceeded. 2 See Output Power at Reduced Temperature. 3 First value for 48Q, 2nd value for BQ – GQ 4 Measured with a probe according to IEC/EN 61204, annex A 5 Recovery time until Vo remains within ±1% of Vo, see Dynamic load regulation. 6 For DQ2660 and EQ2660: 16.8 V 1 tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 10 of 31 Q Series 66 - 132 W DC-DC Converters Table 6a: Output data for double-output models with output 1 and output 2 in symmetrical or independent configuration. General conditions as per table 5a. Model 48Q /BQ – GQ2320 Output 12 V / 12 V Characteristics Conditions Output 1 max min Output setting voltage 1 Vi nom, Io nom  11.94 min 12.06 11.88 V ow Worst case output voltage 11.82 12.18 Vo P Overvoltage limitation of second control loop Vi min – Vi max TC min – TC max, Io = 0 – Io max Io Output current 2 Io nom Nominal output current Io L Output current limit Switch. frequency vo 4 Output noise Po max Output power total 1 vo d 4 Dynamic load regulation vo tr α vo Output voltage trim range 2 Total incl. spikes Voltage deviation Vi min – Vi max TC min – TC max N/A 0.8 max min max min 14.93 15.08 14.85 14.78 15.23 15 0.8 4.0 typ N/A 7.2/9.2 3 0.6 10.4/13 6.9/8.4 max 15.15 see Output Voltage Regulation 6.0/7.4 3 A 3.3 8.6/10.4 3 Vi nom, Io nom 16 8 16 8 16 8 16 BW = 20 MHz 16 40 16 40 16 40 16 40 Vi min – Vi max TC min – TC max Recovery time via R-input 1.1•Vi min – Vi max using opt. P TC min – TC max 0.1• Io nom – Io nom Io nom, TC min – TC max 96 / 120 3 ±200 ±200 1500 13.2 10.8 13.2 ±0.02 see Output Voltage Regulation μs 9.0 16.5 13.5 16.5 ±0.02 ±0.02 mVpp mV ±300 1500 7.2 3 W 99 / 120 3 ±300 V 19 0.6 3.3 3 typ 17 6.0/7.4 3 4.0 3 Output 2 12.12 see Output Voltage Regulation 13.5 7.2/9.2 3 8.4/10.5 typ Output 1 8 Vi nom Io nom ↔ ½ Io nom Io 2 = ½ Io nom Temperature coefficient of Vo typ Unit 15 V / 15 V Output 2 Vo t d 4, 5 48Q /BQ – GQ2540 see Output Voltage Regulation V ±0.02 %/K If the output voltages are increased above Vo nom through R-input control, option P setting, or remote sensing, the output power should be reduced accordingly so that Po max and TC max are not exceeded. 2 See Output Power at Reduced Temperature. 3 First value for 48Q, 2nd value for BQ – GQ 4 Measured with a probe according to IEC/EN 61204, annex A 5 Recovery time until Vo remains within ±1% of Vo, see Dynamic load regulation. 6 Io nom = Io1 + Io2 1 tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 11 of 31 Q Series 66 - 132 W DC-DC Converters Table 6b: Output data for double-output models with output 1 and output 2 in symmetrical or independent configuration. General conditions as per table 5a Model 48Q2660 Output 24 V / 24 V Characteristics Conditions Output 1 max min Output setting voltage 1 Vi nom, Io nom  23.88 min 24.12 23.76 V ow Worst case output voltage 23.64 24.36 Vo P Overvoltage limitation of second control loop Vi min – Vi max TC min – TC max, Io = 0 – Io max Io Output current 2 Io nom Nominal output current Io L Output current limit 2 vo 4 Output noise Po max Output power total 1 vo d 4 Dynamic load regulation td vo tr α vo Output voltage trim range Switch. frequency Total incl. spikes Voltage deviation Vi min – Vi max TC min – TC max 0.4 max min max min 24.24 23.88 24.12 23.76 23.64 24.36 see Output Voltage Regulation 27.5 30 0.4 4.0 0.4 6.2 5.8 4.0 2.2 N/A 2.2 4.6 typ Output 2 typ max 24.24 see Output Voltage Regulation 27.5 30 0.4 5.1 5.1 2.2 A 8.0 25 10 25 10 25 10 25 BW = 20 MHz 20 40 20 40 20 40 20 40 Vi min – Vi max TC min – TC max via R-input 1.1•Vi min – Vi max 0.1• Io nom – Io nom 106 ±400 ±500 TC min – TC max Io nom, TC min – TC max ±0.02 W ±400 ±500 mV μs 400 26.4 N/A mVpp 132 400 14.4 V 2.2 10 Recovery time Temperature coefficient of Vo N/A typ Output 1 Vi nom, Io nom Vi nom Io nom ↔ ½ Io nom Io 2 = ½ Io nom using opt. P typ Unit 24 V / 24 V Output 2 Vo 4, 5 BQ – GQ2660 see Output Voltage Regulation 14.4 3 26.4 21.6 26.4 ±0.02 ±0.02 see Output Voltage Regulation V ±0.02 %/K If the output voltages are increased above Vo nom through R-input control, option P setting or remote sensing, the output power should be reduced accordingly so that Po max and TC max are not exceeded. 2 See: Output Power at Reduced Temperature 3 For DQ2660 and EQ2660: 16.8 V 4 Measured with a probe according to IEC/EN 61204, annex A 5 Recovery time until Vo remains within ±1% of Vo, see Dynamic load regulation 1 tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 12 of 31 Q Series 66 - 132 W DC-DC Converters Parallel and Series Connection Single- or double-output models with equal output voltage can be connected in parallel without any precaution, by inter­connecting the T-pins for equal current sharing; see fig. 9a. Double-output models with their outputs connected in parallel behave exactly like single-output models and are fully regulated. There is no inconvenience or restriction using the R-input with sense lines. Single-output and/or double-output models can be connected in series. For double-output models with both outputs connected in series, consider that the effect via sense lines, R-input or option P is doubled. See fig. 9b. Parallel configuration of double-output models with both outputs connected in series is shown in fig. 9c. It is essential that the Vo1– pins of all paralleled converters are connected together, as the auxiliary signals are referenced to Vo1– or to S–. The effect via sense lines, R-input or option P is doubled. + 05091b T Rp S+ Out OK – Vo2– S– i Vo1+ i Vo–/Vo1– Vi+ S+ Vi+ Vo+/Vo2+ Vi– S– Vi– Vo–/Vo2– Vo1– DR S+ Out OK– S– Load Out OK+ Out OK+ Vo2+ Out OK – Vo2– i Vo1+ i Vo–/Vo1– Vi+ S+ Vi+ Vo+/Vo2+ Vi– S– Vi– Vo–/Vo2– + Fig. 9a Parallel connection of single- and double-output models. + Vo1– –i Fig. 9b Series connection of double-output models. 06114a Double output T Vo2+ Out OK+ Vo2– Out OK – Vo1+ i S+ Vi+ S– Vi– Vo1– R Double output –i T Vo2+ Out OK+ Vo2– Out OK – Vo1+ i S+ Vi+ S– Vi– Vo1– Load Rp + Vo2+ Out OK– Vo+/Vo1+ –i Out OK+ Out OK+ T + Rp DR Vo+/Vo1+ 05092a Load + Notes: •  If the second output of double-output models is not used, connect it in parallel to the main output to maintain good regulation. •  Parallel connection of several double-output models should always include main and second outputs to produce good regulation. •  Series connection of second outputs without involving their main outputs should be avoided as regulation may be poor. •  The maximum output current is limited by the output with the lowest current limit, if several outputs are connected in series. •  Rated output voltages above 48 V (ES1 = Energy Source class 1) need additional measures in order to comply with international safety requirements. R Fig. 9c Parallel connection of double-output models with series-connected outputs. tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 13 of 31 Q Series 66 - 132 W DC-DC Converters Redundant Configuration Fig. 10a shows a circuit with ORing diodes DR in the positive output lines, forming a redundant configuration. For accurate output voltage regulation, the sense lines are connected after the ORing diodes. The T pins should be connected together to produce reasonable current sharing between the parallel-connected converters. If one of the converters fails, the remaining converters can deliver the whole output power. Note: The current-share logic can only increase the output voltage marginally and remains functional even in the case of a failing converter. Fig. 10b shows a quite similar circuit with ORing diodes DR, but with different output loads. To compensate for the voltage drop of the ORing diodes (if necessary), an auxiliary circuit is added to each power supply consisting of a small diode DS and a small resistor RS. We recommend a current of approximately 10 mA through DS and RS. Only Load 0 benefits from a secured supply voltage. The current sharing may be improved by interconnecting the T pins of the converters. This circuit is a bit less accurate, but more flexible and less sensitive. Caution: Do not connect the sense lines after the ORing diodes, but directly with the respective outputs. If for some reason one of the converters switches off and the ORing diode is blocking, a reverse voltage can appear between the sense pin and the respective output pin and damage the converter. Out OK+ S+ Out OK– S– Out OK– S– i Vo–/Vo1– i Vo–/Vo1– Vi+ Vo+/Vo2+ Vi+ Vo+/Vo2+ Vi– Vo–/Vo2– Vi– Vo–/Vo2– S+ Out OK– S– DS RS T DR Vo+/Vo1+ Load Out OK+ DR Vo+/Vo1+ S+ T i T Rp Out OK+ Vo+/Vo1+ + DR Out OK+ S+ Out OK– S– i Vo–/Vo1– i Vo–/Vo1– Vi+ Vo+/Vo2+ Vi+ Vo+/Vo2+ Vi– Vo–/Vo2– Vi– Vo–/Vo2– – Fig. 10a Simple redundant configuration of double-output models with parallel-connected outputs. + i DR DS RS Load 0 Vo+/Vo1+ 06097b Load 1 T Rp – + 05091b Load 2 + Fig. 10b Redundant configuration of double-output models with parallel-connected outputs. tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 14 of 31 Q Series 66 - 132 W DC-DC Converters Output Voltage Regulation The dynamic load regulation is shown in figure 11. The static load regulation measured at the sense pins is negligible. Correct connection of the sense lines almost eliminates any load regulation; see Sense Lines. In a symmetrical configuration the output 1 with open R input is regulated to Vo1 nom, regardless of the output currents. If the load on output 2 is too small ( Io max) both output volt­ages are reduced simultane­ously. Current distribution in overload is dependent upon the type of overload. A short-circuit in one output will cause the full current flow into that output, whereas a resistive overload results in more even distribution and in a reduced output voltage. Vo/Vo nom Operation at reduced temperature only Io nom Io max Io L 0.5 Io nom Io L 05104b 1.0 0.8 Out of specs. 1.0 0.95 05114c Out of specs. Vo/Vo nom 0.6 0.4 0.2 Io 0 Fig. 15a BQ – GQ models: Current limitation of single- or double-output models with series-connected outputs (no opt. B or B1) 0 0.2 0 0.4 0.6 0.8 1.0 1.2 1.4 Io/Io nom Fig. 15b 48Q models: Current limitation of single- or double-output models with series-connected outputs (no opt. B or B1) Efficiency η [%] 90 η [%] 90 JM082 Vi nom Vi min 85 Vi min 85 Vi max Vi max 80 80 75 JM083 Vi nom 1 2 3 4 Fig. 16a Efficiency versus input voltage and current per output (BQ2320) 5 Io [A] 75 1 3 2 5 4 Io [A] Fig. 16b Efficiency versus input voltage and current per output (EQ2320) tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 16 of 31 Q Series 66 - 132 W DC-DC Converters Hold-up Time The Q Series converters provide virtually no hold-up time. If hold-up time or interruption time is required, use external output capacitors or decoupling diodes together with input capacitors of adequate size. Formula for additional external input capacitor: 2 • Po • t h • 100 C = ––––––––––––––– i ext η • (Vti 2 – V i min2) where as: C i ext = Po = η = t h = Vi min = Vt i = external input capacitance [mF] output power [W] efficiency [%] hold-up time [ms] minimum input voltage [V] threshold level [V] Thermal Considerations and Protection If a converter is located upright in quasi-stationary air (con­vection cooling) at the indicated maximum ambient temperature TA max (see table Temperature specifications), and is operated at its nominal input voltage and output power, the temperature TC measured at the Measuring point of case temperature (see Mechanical Data) will approach TC max after the warm-up phase. However, the relationship between TA and TC depends heavily on the operating conditions and the integration into a system. The thermal conditions are influenced by input voltage, output current, airflow, and temperature of surrounding components and surfaces. TA max is therefore, contrary to TC max, an indicative value only. Caution: The installer must ensure that under all operating conditions TC remains within the limits stated in the table Temperature specifications. Note: Sufficient forced cooling or an additional heat sink improves the reliability or allows TA to be higher than TA max, as long as TC max is not exceeded. In rack systems without proper thermal management, the converters must not be packed too densely! In such cases the use of a 5 or 6 TE front panel is recommended. A temperature sensor generates an internal inhibit signal, which disables the outputs, if the case temperature exceeds TC max. The outputs are automatically re-enabled when the temperature drops below this limit. This feature is not fitted to 48Q models. Operating BQ – GQ models with output current beyond Io nom requires a reduction of the ambient temperature TA to 50 °C or forced cooling. When TC max is exceeded, the converter runs into its thermal protection and switches off; see fig. 17a. Note: According to EN 50155, Class OT4, the con­verters BQ – GQ can be operated with Po nom continously at TA = 70 °C, and then for 10 min at TA = 85 °C without shutdown. Fig. 17b shows the operation of 48Q models beyond TA = 50 °C with forced cooling. Po Po max 05116b forced cooling Po 05110b Po nom Po nom 0.75 Po nom convection cooling TA min 50 forced cooling convection cooling 60 70 TC max 80 90 TA 100 °C Fig. 17a Output power derating versus TA for BQ – GQ models TC max 0.4 Po nom –10 30 40 50 60 70 80 °C TA Fig. 17b Output power derating versus TA for 48Q models tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 17 of 31 Q Series 66 - 132 W DC-DC Converters Auxiliary Functions Inhibit for Remote On/Off Note: If this function is not used, the inhibit pin 28 must be connected with pin 32 to enable the output(s). A non-connected pin 28 will be interpreted by the internal logic as an active inhibit signal and the output(s) will remain disabled (fail safe function). An inhibit input enables (logic low, pull down) or disables (logic high, pull up) the output, if a logic signal, e.g. TTL, CMOS is applied. In systems consisting of several converters, this feature may be used, for example, to control the activation sequence of the converters by means of logic signals, or to allow the power source for a proper start-up, before full load is applied. Table 7: Inhibit characteristics Characteristics V inh Inhibit voltage  Iinh Inhibit current V o = on V o = off Conditions min Vi min – Vi max TC min – TC max -50 typ 0.8 2.4 50 V inh = -50 V V inh = 0 V V inh = 50 V max -500 -40 +500 Unit V µA The output response, when enabling and disabling the output by the inhibit input, is shown in figure 19. Vo /Vo nom 06091a 28 S+ i Vinh Ii 30 Vi+ Vi 32 Vi– 26 12 Vo+ 4 Vo+ 6 Vo– 8 Vo– 10 S– 14 Io Vo Load Iinh 0.1 0 Vi min 0 06159b tf tr 1.01 0.99 t ton Vi t Vinh [V] 2.4 0.8 Fig. 18 Definition of input and output parameters t Fig. 19 Output response as a function of Vi (on/off switching) or inhibit control Table 8: Inhibit response times (typ. values, outputs with ohmic load, R-input left open-circuit) Characteristics tr tr Vi min Conditions BQ 48Q CQ GQ DQ* EQ* Unit Output voltage rise time (indicative values) Vi nom, RL = Vo nom / Io nom V inh = 2.4 → 0.8 V 1.5 1.3 1.3 1.5 1.5 1.6 V Output voltage fall time (indicative values) Vi nom, RL = Vo nom / Io nom V inh = 0.8 → 2.4 V 0.5 0.8 1.3 3 0.5 0.6 1.2 3 0.5 0.6 1.3 3 0.5 0.8 1.5 3 0.5 0.7 1.1 3 0.5 0.7 1.5 3 µA 3.3 V 5V 12 / 15 V 24 V * Models with version V104 or higher tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 18 of 31 Q Series 66 - 132 W DC-DC Converters Current Sharing The current sharing facility should be used when several converters are operated in parallel or redundant connection. This feature avoids that some converters are driven into current limitation and thus produce excessive losses. As a result, the stress of the converters is reduced, and the system reliability is further improved. Simple interconnection of the T pins causes the converters to share the output current. The current tolerance of each converter is approx. ±20% of the sum of its nominal output currents Io1 nom + Io2 nom. In n+1 redundant systems, a failure of a single converter will not lead to a system failure, if the outputs are decoupled by diodes; see fig. 10. Note: T-function only increases the output voltage, until the currents are evenly shared. If in a redundant system, one converter fails, the remaining converters keep sharing their currents evenly. Since the T pins are referenced to the pins S –, the S– pins of all converters must have the same electrical potential. Double-output converters with both outputs connected in series can also be paralleled with current sharing, if pins Vo1– of all converters are connected together, see fig. 9c. If the output voltages are programmed to a voltage other than Vo nom by means of the R pin or option P, the outputs should be adjusted individually within a tolerance of ±1%. Important: For applications using the hot-swap capabilities, dynamic output voltage changes during plug-in/plug-out must be considered. Programmable Output Voltage (R-Function) This feature is not available on models with 3.3 V output or with option P. Note: Models with 3.3 V output or with option P: The R-input must be left open-circuit. The converters offer a programmable output voltage. The adjust is performed either by an external control voltage Vext or an external resistor R1 or R2, connected to the R-input. Trimming is limited to the values given in the table below (see also Electrical Output Data). With open R-input, the output voltage is set to Vo nom. With double-output models, both outputs are affected by the R-input settings. If output voltages are set higher than Vo nom, the output currents should be reduced accordingly, so that the maximum specified output power is not exceeded. a) Adjustment by means of an external control voltage Vext between R (pin 16) and S– (pin 14); see fig. 20. Vo Vext Vext ≈ 2.5 V • ––––––– Vo ≈ Vo nom • ––––– Vo nom 2.5 V Caution: To prevent damage, Vext should not exceed 20 V, nor be negative. b) Adjustment by means of an external resistor: The resistor can either be connected: • between R (pin 16) and S – (pin 14) to set Vo < Vo nom, or • between R (pin 16) and S+ (pin 12) to set Vo > Vo nom. 06093b Doubleoutput model R 16 06094b Single-output model Vo1+ 4 S+ 12 i Vext + – S– 14 Load 1 R 16 Vo+ 4 Vo+ 6 i S+ 12 Vi+ Vo1– 8 Vi+ S– 14 Vi– Vo2+ 6 Vi– Vo– 8 Vo2– 10 Load 2 Fig. 20 Output adjust using an external control voltage Vext. R2 R1 Load Vo– 10 Fig. 21 Output adjust using a resistor R1 (to lower Vo) or R2 (to increase Vo). tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 19 of 31 Q Series 66 - 132 W DC-DC Converters Table 9a: R1 for Vo < Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R2 = not fitted Vo nom = 5.1 V Vo [V] R 1 [kΩ] 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 14.7 16.5 18.2 21.5 25.5 30.1 37.4 47.5 64.9 97.6 200 Vo nom = 12 V Vo [V] 1 Vo nom = 15 V R 1 [kΩ] Vo [V] 1 Vo nom = 24 V R 1 [kΩ] Vo [V] 1 15 16 2 17 2 18 2 19 20 20.5 21 21.5 22 22.5 23 23.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 14 15 16 17 18 19 20 21 22 23 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 5.62 6.65 8.06 9.76 12.1 15.4 20 28 44.2 93.1 18 19 20 21 22 23 24 25 26 27 28 29 6.04 6.98 8.06 9.31 11 13.3 16.2 20 26.1 36.5 56.2 115 R 1 [kΩ] 30.0 32.0 2 34.0 2 36.0 2 38.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 2 6.65 2 8.06 2 9.76 2 12.1 15.4 20.0 23.7 28.0 34.8 44.2 60.4 90.9 190 2 Table 9b: R2 for Vo > Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R1 = not fitted Vo nom = 5.1 V Vo [V] R 2 [kΩ] 5.2 5.3 5.4 5.5 5.6 215 110 75 57.6 46.4 1 2 Vo nom = 12 V Vo [V] 1 12.2 12.4 12.6 12.8 13.0 13.2 Vo nom = 15 V R 2 [kΩ] 24.4 24.8 25.2 25.6 26.0 26.4 Vo [V] 1 931 475 316 243 196 169 15.3 15.5 15.7 16.0 16.2 16.5 Vo nom = 24 V R 2 [kΩ] 30.6 31 31.4 32 32.4 33 Vo [V] 1 1020 619 453 316 267 221 24.5 25 25.5 26 26.4 R 2 [kΩ] 49 50 51 52 52.8 1690 866 590 442 374 First column: single or double output models with separated/paralleled outputs, second column: outputs in series connection. Not possible for DQ2660 and EQ2660. Output Good Signal (Out-OK) The isolated Out-OK output gives a status indication of the converter and the output voltage. It can be used for control functions such as data protection, central system monitoring or as a part of a self-testing system. It can be connected to get a centralized fault detection or may be used for other system-specific applications at the primary or the secondary side of the converter. Connecting the Out-OK as per fig. 22, VOK 300 2 >100 >300 2 >300 2 Insulation resistance Minimum creepage distances * 1 2 3 1.4 MΩ 1.4 3 mm Models with version V104 or higher. Older converters have only been tested with 0.3 kVDC. Subassemblies connecting input to output are pre-tested with 3 kVAC or 4.2 kVDC. Tested at 500 VDC. 2.8 mm between input and output. Safety of Operator-Accessible Output Circuits If the output circuit of a DC-DC converter is operator-accessible, it shall be an ES1 circuit according to IEC 62368-1. Table 20 shows some possible installation configurations, compliance with which causes the output circuit of the DC-DC converter to be ES1 up to a configured output voltage (sum of nominal voltages, if in series configuration) of 35 V. However, it is the sole responsibility of the installer to ensure the compliance with the relevant and applicable safety regulations. tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 28 of 31 Q Series 66 - 132 W DC-DC Converters Description of Options Option P: Output Voltage Adjustment Option P provides a built-in multi-turn potentiometer, which allows an output voltage adjustment of ±10% of Vo nom. The potentiometer is accessible through a hole in the front cover. With double-output models, both outputs are affected by the potentiometer. If converters are parallel-connected, their in­dividual output voltage should be set within a tolerance of ±1%. If Vo is set higher than Vo nom, the output currents should be reduced accordingly, so that the maximum specified output power is not exceeded. Option -7: Temperature Range Option -7 designates converters with an operational ambient temperature range of – 25 to 71 °C. Not for new designs. Option B, B1: Additional Heat Sink Thickness: 12.5 mm (opt. B) or 20 mm (opt. B1) Table 19: Thermal resistance case to ambient (approx. values) Case Thermal resistance Thickness of case Standard (160 mm long) 1.60 K/W < 20 mm Case 220 mm long 1.40 K/W < 20 mm Option B 1.45 K/W < 33 mm Option B1 1.40 K/W < 40 mm 1, 2 As well available with an additional heat sink 2 Customer-specific models. Add 5000 to the part number! 1 Option F: No internal fuse; the installer must use an appropriate ex­ter­nal fuse or circuit breaker. CSA, NEMKO symbol on request. Option non-G: Leaded solder used (not RoHS-compliant). tech.support@psbel.com belfuse.com/power-solutions BCD20011-G Rev AM, 28-Oct-2020 © 2020 Bel Power Solutions & Protection Page 29 of 31 Q Series 66 - 132 W DC-DC Converters Table 20: Safety concept leading to an ES1 output circuit Conditions Front end Nominal supply voltage Minimum required grade of insulation, to be provided by the AC-DC front end, including mains supplied battery charger Maximum DC output voltage from the front end 1 Mains ≤150 VAC Functional (i.e. there is no need for electrical insulation between the mains supply circuit and the DC-DC converter input voltage) Basic Mains ≤ 250 VAC DC-DC converter Result Minimum required safety status of the front end output circuit Types Measures required to achieve the specified safety status of the output circuit Safety status of the DC-DC converter output circuit ≤ 150 V 2 Primary circuit DQ EQ Double or reinforced insulation, based on 150 VAC and DC (provided by the converter) and earthed case 3 ES1 circuit ≤ 60 V ELV circuit BQ, GQ 48Q, CQ Supplementary insulation, based on 150 VAC (provided by the DC-DC converter) and earthed case 3 ≤ 75V Hazardous voltage secondary circuit 48Q CQ Supplementary insulation, based on 150 VAC and double or reinforced insulation 4 (both provided by the DC-DC converter) and earthed case 3 ≤ 60 V Earthed ES1 circuit 3 BQ GQ 48Q CQ Functional insulation (provided by the converter) ELV circuit Double or reinforced ≤ 75V Unearthed hazardous voltage secondary circuit 48Q CQ Input fuse 5, output suppressor diodes 6, earthed output circuit 3 and earthed 3 or non-user-accessible case ≤ 150 V Earthed hazardous voltage secondary circuit 3 or earthed ELV circuit BQ, GQ 48Q, CQ DQ, EQ Double or reinforced insulation 4, (provided by the converter) and earthed case 3 Unearthed hazardous voltage secondary circuit DQ EQ Supplementary insulation, based on 250 VAC and double or reinforced insulation 4 (both provided by the converter) and earthed case 3 ≤ 60 V ES1 circuit BQ, GQ 48Q, CQ Functional insulation (provided by the converter) ≤ 120 V TNV-3 circuit ≤ 150 V Double or reinforced insulated unearthed hazardous voltage secondary circuit 2 48Q, CQ DQ, EQ Basic insulation 4 (provided by the DC-DC converter) Earthed ES1 circuit ES1 circuit The front end output voltage should match the specified input voltage range of the DC-DC converter. Has to be insulated from earth according to IEC/EN 62368-1, by at least supplementary insulation, based on the maximum nominal output voltage from the front end. 3 The earth connection has to be provided by the installer according to IEC/EN 62368-1. 4 Based on the maximum rated output voltage provided by the front end. 5 The installer shall provide an approved fuse with the lowest rating suitable for the application in a non-earthed input conductor directly at the input of the DC-DC converter (see fig. Schematic safety concept). For UL’s purposes, the fuse needs to be UL-listed. 6 Each suppressor diode should be dimensioned such that in the case of an insulation fault the diode is able to limit the output voltage to ES1 (
CQ1001-9RG 价格&库存

很抱歉,暂时无法提供与“CQ1001-9RG”相匹配的价格&库存,您可以联系我们找货

免费人工找货