P Series Data Sheet
90 – 192 Watt DC-DC Converters
Features
• RoHS lead-free-solder and lead-solder-exempted
products available
• Wide input voltage ranges up to 154 VDC
• 1, 2, 3 or 4 isolated outputs up to 96 V
• Class I equipment
• Compliant with EN 45545 and NF-F-16 (Version V114
or later)
• Very high efficiency up to 90%
• Extremely low inrush current, hot-swappable
• Excellent surge and transient protection
• Many output configurations available with flexible load
distribution
• Externally adjustable output voltage
• Inhibit primary referenced
• Redundant operation (n+1), sense lines, current
sharing option
• Extremly slim case (4 TE, 20 mm), fully enclosed
111
4.4"
3U
20
0.8"
4 TE
• Hipot test voltage up to 2.8 kVDC (Version V114 or later)
• All PCBs coated with protective lacquer
• Telecom-compatible input voltage range of DP models
according to ETS 300132-2
164
6.5"
• CompactPCI-compatible output voltage (xP4720)
Safety-approved to IEC/EN 60950-1 and UL/CSA
60950-1 2 nd Ed.
Description
These extremely compact DC-DC converters incorporate all
necessary input and output filters, signaling and protection
features, which are required in the majority of applications.
The converters provide important advantages, such as
flexible output power through primary-side current limitation,
extremely high efficiency, excellent reliability, very low ripple
and RFI noise levels, full input-to-output isolation, negligible
inrush current, soft start, overtemperature protection and
input over- and undervoltage lockout.
Table of Contents
The converters are particularly suitable for rugged environments, such as railway applications. They have been designed
in accordance with the European railway standards EN 50155
and EN 50121-3-2. All printed circuit boards are coated with a
protective lacquer. The converter inputs are protected against
surges and transients occurring on the source lines and cover
a total operating input voltage range from 16 to 137.5 VDC
with five different model types. The outputs are continuously
open- and short-circuit proof.
Page
Page
Model Selection .................................................................... 2
Functional Description .......................................................... 6
Electrical Input Data ............................................................. 7
Electrical Output Data .......................................................... 9
Auxiliary Functions ............................................................. 14
Electromagnetic Compatibility (EMC) ................................ 16
Immunity to Environmental Conditions .............................. 18
Mechanical Data ................................................................. 19
Safety and Installation Instructions .................................... 20
Description of Options ........................................................ 23
Accessories ........................................................................ 24
Copyright © 2015, Bel Power Solutions Inc. All rights reserved.
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 1 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Full system flexibility and n+1 redundant operating mode are
possible due to series or parallel connection capabilities of the
outputs under the specified conditions. When several
converters (with 3.3 and 5.1 V outputs) are connected in
parallel, the T option allows for a single-wire connection
between the converters to ensure good current sharing. LEDs
at the front panel and an isolated Out-OK signal (option)
indicate the status of the converter. Voltage suppressor
diodes and an independent second control loop protect the
outputs against an internally generated overvoltage.
The converters are designed using planar magnetics
transformers and control circuits in hybrid technology. There
are always two powertrains fitted to a converter, each
consisting either of a regulated single output with synchronous rectifier or of a regulated main output with a tracking
second output. The output power may be flexibly distributed
among the main and the tracking output of each powertrain.
Close magnetic coupling in the transformers and output
conductors together with circuit symmetry ensure tight
tracking of the auxiliary output. The switching frequency is
fixed.
As a modular power supply or as part of a distributed power
supply system, the low-profile design significantly reduces the
required volume without sacrificing high reliability. The
converters are particularly suitable for 19" rack systems
occupying 3U/4TE only, but they can also be chassismounted by means of four screws. Connector type is H15 (or
H15S2 for some single-output models). The fully enclosed
black-coated aluminum case acts as heat sink and RFI shield
and protects the converter together with the coating of all
components against environmental impacts.
Model Selection
Note: Only standard models are listed. Other voltage configurations are possible as well; please contact the Company !
Table 1a: Model types BP, CP
Output 1, 4
Output 2, 3
Input voltage range and efficiency
Options
Vo nom
[V]
Po nom
[W]
Po max
[W]
Vo nom
[V]
Po nom
[W]
Po max
[W]
η2
[%]
Vi min – Vi max4
16–36 V
η2
[%]
Vi min – Vi max4
33.6–75 V
3.3
5.1
12
15
24
92
122
120
120
120
132
183
192
192
192
-
-
-
84 8
87 8
87.5
87.5
88
BP1101-9RG
BP1001-9RG
BP1301-9RG
BP1501-9RG
BP1601-9RG
84 8
88 8
88.5
88.5
89
CP1101-9RG
CP1001-9RG
CP1301-9RG
CP1501-9RG
CP1601-9RG
-7
D, T 5, K 8
B0, B1, B3
non G
3.3
5.1
5.1
12
15
24
46
61
61
60
60
60
66
91
91
96
96
96
5.1
5.1
12
12
15
24
61
61
60
60
60
60
91
91
96
96
96
96
86
87
87
87.5
87.5
88
BP2101-9RG
BP2001-9RG
BP2020-9RG
BP2320-9RG
BP2540-9RG
BP2660-9RG
86
88
88
88.5
88.5
89
CP2101-9RG
CP2001-9RG
CP2020-9RG
CP2320-9RG
CP2540-9RG
CP2660-9RG
-7
D, T 6
B0, B1, B3
non G
5.1
5.1
5.1
12
24
61
61
61
60
60
91
91
91
91
96
12, 123
15, 153
24, 243
15, 153
5.1, 5.13
601
601
601
601
511
961
961
961
961
821
87
87.5
87.5
87.5
-
BP3020-9RG
BP3040-9RG
BP3060-9RG
BP3340-9RG
-
88
88.5
88.5
87
CP3020-9RG
CP3040-9RG
CP3060-9RG
CP3601-9RG
5.1, 3.3 7
5.1, 5.13
12, 12 3
15, 15 3
24, 24 3
30
511
601
601
601
50
821
961
961
961
12,
15,
12,
15,
24,
123
153
123
153
243
601
601
601
601
601
961
961
961
961
961
85
86
87.5
87.5
88
BP4720-9RG9
BP4040-9RG
BP4320-9RG
BP4540-9RG
BP4660-9RG
88.5
88.5
89
CP4720-9R G9
CP4320-9RG
CP4540-9RG
CP4660-9RG
1
2
3
4
5
6
7
8
9
-7
D
B0, B1, B3
non G
The power of both outputs shall in sum not exceed the total power for the specified ambient temperature.
Min efficiency at Vi nom, Po nom, TA = 25 °C. Typical values are approx. 2% better.
Isolated tracking output (±5% Vo nom, if each output is loaded with ≥ 5% of Po nom). Parallel or series configuration is possible.
Short deviations below Vi min and beyond Vi max according to EN 50155 possible; see table 2a.
Only available for models with 5.1 or 3.3 V output.
Option T is only available for outputs with 5.1 or 3.3 V. Opt. T excludes opt. R; refer to table 13, pin allocations
Outputs 5.1 and 3.3 V have a common return. Nominal values: 5.1 V / 4 A, 3.3 V / 3 A. Max. values: 5.1 V / 6.5 A, 3.3 V / 5 A.
Option K only for xP1101 and xP1001: H15 standard connector. Models without option K exhibit a better efficiency: xP1101 is approx
2% better, xP1001 approx 1% better than the models with option K.
Compatible with CompactPCI® specification
NFND: Not for new designs
Preferred for new designs
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 2 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Table 1b: Model types DP, EP
Output 1, 4
Input voltage range and efficiency 2
Output 2, 3
η2
Vo nom
[V]
Po nom
[W]
Po max
[W]
Vo nom
[V]
Po nom
[W]
Po max
[W]
[%]
Vi min – Vi max
40 – 90 V 9
3.3
5.1
12
15
24
92
122
120
120
120
132
183
192
192
192
-
-
-
84 8
88 8
88
88
88
3.3
5.1
5.1
12
15
24
46
61
61
60
60
60
66
91
91
96
96
96
5.1
5.1
12
12
15
24
61
61
60
60
60
60
91
91
96
96
96
96
5.1
5.1
5.1
61
61
61
91
91
91
12, 123
15, 153
24, 243
601
601
601
5.1, 3.37
12, 123
15, 153
24, 243
30
601
601
601
50
961
961
961
12,
12,
15,
24,
123
123
153
243
601
601
601
601
4
η2
Options
4
[%]
Vi min – Vi max
66 – 137.5 V
DP1101-9RG
DP1001-9RG
DP1301-9RG
DP1501-9RG
DP1601-9RG
83.5 8
87.5 8
87.5
87
87.5
EP1101-9RG
EP1001-9RG
EP1301-9RG
EP1501-9RG
EP1601-9RG
-7
D, T 5, K 8
B0, B1, B3
non G
86
88
88
88
88
88
DP2101-9RG
DP2001-9RG
DP2020-9RG
DP2320-9RG
DP2540-9RG
DP2660-9RG
86
87.5
87.5
87.5
87
87.5
EP2101-9RG
EP2001-9RG
EP2020-9RG
EP2320-9RG
EP2540-9RG
EP2660-9RG
-7
D, T 6
B0, B1, B3
non G
961
961
961
87.5
88
88
DP3020-9GR
DP3040-9GR
DP3060-9GR
87.5
88
88
EP3020-9RG
EP3040-9RG
EP3060-9RG
961
961
961
961
85
88
88
88
DP4720-9RG9
DP4320-9RG
DP4540-9RG
DP4660-9RG
87.5
87
87.5
EP4720-9RG9
-7
EP4320-9RG
D
EP4540-9RG B0, B1, B3
EP4660-9RG
non G
Table 1c: Model types GP
Output 1, 4
2
3
4
5
6
7
8
9
Options
Vo nom
[V]
Po nom
[W]
Po max
[W]
Vo nom
[V]
Po nom
[W]
Po max
[W]
η2
[%]
Vi min – Vi max4
21.6 – 50.4 V
3.3
5.1
12
15
24
92
122
120
120
120
132
183
192
192
192
-
-
-
84 8
88 8
88
88.5
88
GP1101-9RG
GP1001-9RG
GP1301-9RG
GP1501-9RG
GP1601-9RG
-7
D, T 5, K 8
B0, B1, B3
non G
3.3
5.1
5.1
12
15
24
46
61
61
60
60
60
66
91
91
96
96
96
5.1
5.1
12
12
15
24
61
61
60
60
60
60
91
91
96
96
96
96
86
88
87.5
88
88.5
88
GP2101-9RG
GP2001-9RG
GP2020-9RG
GP2320-9RG
GP2540-9RG
GP2660-9RG
-7
D, T 6
B0, B1, B3
non G
5.1
5.1
5.1
24
61
61
61
61
91
91
91
91
12, 123
15, 153
24, 243
5.1, 3.3 7
601
601
601
30
961
961
961
50
87.5
88.5
88.5
86
GP3020-9RG
GP3040-9RG
GP3060-9RG
GP3670-9RG
30
601
601
601
50
961
961
961
601
601
601
601
961
961
961
961
88
88.5
88
GP4720-9RG 9
GP4320-9RG
GP4540-9RG
GP4660-9RG
5.1,
12,
15,
24,
1
Input voltage range and efficiency 2
Output 2, 3
3.37
123
153
243
12,
12,
15,
24,
123
123
153
243
-7
D
B0, B1, B3
non G
The power of both outputs may in sum not exceed the total power for the specified ambient temperature.
Min efficiency at Vi nom, Po nom, TA = 25 °C. Typical values are approx. 2% better.
Isolated tracking output (±5% Vo nom, if each output is loaded with ≥ 5% of Po nom). Parallel or series configuration possible
Short deviations below Vi min and beyond Vi max according to EN 50155 possible; see table 2.
Only available for models with 5.1 or 3.3 V output
Option T is only available for outputs with 5.1 or 3.3 V. Opt. T excludes opt. R; refer to table 13, pin allocations
Outputs 5.1 and 3.3 V have a common return. Nominal values: 5.1 V / 4 A, 3.3 V / 3 A. Max. values: 5.1 V / 6.5 A, 3.3 V / 5 A.
H15 standard connector for xP1101 and xP1001 models; without option K, the η value for xP1101 is approx 2% better and for xP1001
approx 1% better than for models with option K.
Compatible with CompactPCI ® specification; for detailed specification
NFND: Not for new designs
Preferred for new designs
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 3 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Part Number Description
C P 3 0 20 -9 D T B1 G
Input voltage Vi nom:
24 VDC ............................................................... B
48 VDC ................................................................ C
72 VDC ................................................................ D
110 VDC .............................................................. E
36 VDC ............................................................... G
Series ..................................................................................... P
Number of outputs:
Single output (160 mm case) 4 .......................................... 1
Double output (160 mm case) 4 ........................................ 2
Triple output (160 mm case) 4 ........................................... 3
Quadruple output (160 mm case) 4 ................................ 4
Nominal voltage output 1 /output 4, Vo1/4 nom:
3.3 V ..................................................................... 1
5.1 V ..................................................................... 0
12 V ...................................................................... 3
15 V ...................................................................... 5
24 V ...................................................................... 6
other voltages1 ....................................................................... 7, 8
Other specifications and additional features1 .............. 01, ...99
Nominal voltage output 2 / output 3, Vo2/3 nom:
5.1 V ................................................................... 01
3.3 V ................................................................... 10
12 V .................................................................... 20
15 V .................................................................... 40
24 V .................................................................... 60
other voltages and features1 ............................ 80, ... 99
Operational ambient temperature range TA:
–40 to 71 °C ........................................................ -9
–25 to 71 °C (option) ........................................... -7
others 1 ........................................................... 0, -6
Output voltage adjust (auxiliary function) ............................... R
Options:
Out OK output ..................................................... D
Current sharing ................................................. T 2
H15 standard connector ..................................... K 3
Heatsink ............................................... B0, B1, B3
RoHS compliant for all 6 substances ..................................... G
1
2
3
4
Customer-specific models.
Only available for 3.3 V and 5 V outputs. Option T excludes option R, except for single-output models; refer to table 1.
For single-output models with 3.3 V or 5 V output
Models with 220 mm case length. Just add 5000 to the standard model number.
Note: The sequence of options must follow the order above. This
description is not intended for creating new part numbers.
Example: CP3020-9DTB1G: DC-DC converter, input voltage
33.6 to 75 V, 1 regulated output providing 5.1 V, 2nd powertrain
with 2 × 12 V, equipped with option D, option T for output 1,
heatsink, ambient temperature –40 to 71 °C, RoHS.
Note: All models exhibit the following auxiliary functions, which
are not shown in the type designation: input and output filters,
primary referenced inhibit, sense lines (single-, double- and tripleoutput models only) and LED indicators.
Product Marking
Basic type designation, safety approval and recognition
marks, CE mark, warnings, pin allocation, patents, company
logo, specific type designation, input voltage range, nominal
output voltages and output currents, degree of protection,
batch no., serial no. and data code including production site,
modification status and date of production. Identification of
LEDs.
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 4 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Output Configuration
The P Series allows high flexibility in output configuration to
cover almost every individual requirement, by simply wiring
outputs in parallel, in series, or in independent configuration,
as shown in the following diagrams.
connect converters in parallel without measures to provide
reasonable current sharing. Choose suitable single-output
models, if available.
Note: Unused tracking outputs should be connected parallel to the
respective regulated output.
Parallel or serial operation of several converters with equal
output voltage is possible, however it is not advantageous to
01010-P
Triple-output
model
Vo1+
4
01006-P
Single-output
model
R
16
Vo+
4
Vo+
6
S+
12
28
i
OK+
22
30
Vi+
OK–
24
32
Vi–
S–
14
Vo–
8
Vo–
10
28 i
8
32
Vi–
Vo2+
6
Vo2–
10
Vo3+
18
Vo3–
20
Load 2
Load 3
Fig. 4
Independent triple-output configuration. Output 3 is
tracking
JM200
Quadrupleoutput
Vo1+
model
Vo1–
4
8
Load 1
Load 4
6
28 i
Vo4+
12
S2+
18
30
Vi+
Vo4–
14
S2–
20
32
Vi–
Vo2+
6
Vo2–
10
Vo2–
10
Vo1+
4
Vo3+
18
Vo3–
20
Load
30
Vi+
S1+
12
32
Vi–
S1–
14
Vo1–
8
Fig. 2
Series output configuration of a double-output model.
The second output is fully regulated.
Double-output
model
Vo1+
4
S1+
12
S1–
14
30
Vi+
Vo1–
8
32
Vi–
Vo2+
6
S2+
18
S2–
20
Vo2–
10
Load 3
01012Pa
Quadruple- Vo3+
output
Vo3–
model
28 i
Load 1
Load 2
18
20
Vo2+
6
Vo2–
10
Load
30
Vi+
Vo4+
12
32
Vi–
Vo4–
14
Vo1+
4
R
Fig. 3
Independent double-output configuration. Both outputs
are fully regulated
Load 2
Fig. 5
Common ground configuration of output 1 with 4 and
independent configuration of output 2 and 3
01013b-P
28 i
Load 1
Vo1–
01007-P
i
14
Vi+
Fig. 1
Standard configuration (single-output model)
28
12
S1–
30
Load
Double-output
model
Vo2+
S1+
Vo1–
R2
16
R1
8
Fig. 6
Series configuration of all outputs (Vo = 96 V for xP4660).
The R-input influences only outputs 1 and 4. For the
values of R1 and R2, see Output Voltage Adjust.
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 5 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Functional Description
in overload conditions. This allows flexible power operation of
the outputs from each powertrain. All outputs can either be
connected in series or in parallel; see Electrical Output Data.
The power supplies are equipped with two independent flightforward converters, switching 180° phase-shifted to minimize
the ripple current at the input. They use primary and
secondary control circuits in hybrid technology. The two
converters, called "powertrains" (PT), each generates either a
single output with synchronous rectifier or two isolated
outputs, one fully regulated and the other one tracking (semiregulated), thus providing up to four output voltages. In some
models, both outputs of a powertrain are internally connected
in parallel .
An auxiliary converter provides the bias voltages for the
primary and secondary referenced control logic and the option
circuits. An oscillator generates a clock pulse of 307 ±1% kHz,
which is fed to the control logic of each powertrain. The pulse
width modulation and the magnetic feedback are provided by
special ASICs. The converter is only enabled, if the input
voltage is within the operating voltage range.
The highly efficient input filter together with very low input
capacitance results in very low and short inrush current. After
the isolating transformer and rectification, the output filter
reduces ripple and noise to a minimum without affecting the
dynamic response. Outputs 3 and 4, if available, are tracking
(semi-regulated) and rely upon the close magnetic coupling of
the transformer and the output inductor together with the
circuit symmetry for their voltage regulation. A current
limitation circuit is located on the primary side of each
powertrain, limiting the total output current of that powertrain
Outputs of single-output powertrains are also protected by a
suppressor diode.
Double-output powertrains are equipped with an independent
monitor sensing the output voltage of the tracking output. It
influences the control logic in order to reduce via the pulse
width the voltages of both outputs. In addition, the tracking
outputs are protected by a suppressor diode.
The temperature of the heat sink is monitored and causes the
converter to disable the outputs. After the temperature
dropped, the converter automatically resumes.
03107d
Output
filter PT1
Vi+
Vo1
Vo4
CY
Input filter
Vi –
Output
filter PT2
Fuse
CY
2 x in
double-output
power trains
Vo2
Vo3
CY
PT1
Auxiliary
converter
PT2
PT2
Clock
generator
PT1
PWM controller,
duty cycle limiter,
non linear FF,
ON/OFF control of
sync. rectifier
Error amplifier,
Vo monitor
R
Primary options
Secondary options
D, i, T
Fig. 7
Block diagram. Powertrains PT1 and PT2 have isolated outputs.
Pin allocation see table 13
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 6 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Electrical Input Data
General Conditions:
– TA = 25°C, unless TC is specified
– Sense lines connected directly at the connector, inhibit (28) connected to Vi– (32)
– R input open
Table 2a: Input data
Input
BP
Characteristics
Conditions
Vi
Operating input voltage
Io = 0 – Io max
TC min – TC max
V i nom
Nominal input voltage
V i 100ms for ≤100 ms
min
typ
16
GP
max
min
36
21.6
typ
24
CP
max
min
50.4
33.6
36
typ
Unit
max
75
48
without lockout
14.4
40
20
52
28.8
81
V i abs
for ≤ 3 s
without damage
0
50
0
63
0
100
Ii
Typical input current 1
Vi nom, I o nom
Pi 0
No-load input power 1
Vi min – Vi max
4
6.5
4
6.5
5
10
P i inh
Idle input power 1
Io = 0
1
1.5
1
1.5
1
1.5
4
Ci
Input capacitance
I inr p
Peak inrush current
t inr rise
Rise time inrush
tr
Rise time inhibit
tf
Fall time inhibit
td on
Start-up time
2
3
5.6
Vi max, Io max
Io max – Vi nom
3
0 → Vi min, Io max
3
V
3.7
2.8
A
W
220
220
107
µF
61
64
66
A
50
32
30
µs
5
5
5
ms
5
5
5
110
150
300
Table 2b: Input data
DP 2
Input
Conditions
min
Vi
Operating input voltage
for ≤ 2 s
Io = 0 – Io max
TC min – TC max
40 2
V i nom
Nominal input voltage
V i 100ms
for ≤ 100 ms
without lockout
36
108
55
165
V i abs
for ≤ 3 s
without damage
0
125
0
200
5
11
5
12
1
1.7
1.1
1.7
Ii
Typical input
Pi 0
No-load input power 1
P i inh
Idle input power 1 4
Ci
Input Capacitance
Iinr p
Peak inrush current
t inr rise
Rise time inrush
tr
Rise time inhibit
tf
Fall time inhibit
td on
Start-up time
1
2
3
4
2
3
min
90
100.8
66
72
Vi nom, Io nom
Vi min – Vi max
Io = 0
Vi max, Io max
Io max, Vi nom
3
3
max
0 → Vi min, Io max
typ
Unit
Characteristics
current 1
typ
EP
max
137.5
154
V
110
1.9
1.2
A
W
15
15
µF
57
65
A
20
20
µs
5
5
ms
5
6
200
200
Typical values depending on model
According to ETS 300132-2
See fig. 18
Converter inhibited
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 7 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Input Fuse and Reverse Polarity
A fuse mounted inside the converter protects against further
damage in case of a failure. The fuse is not user-accessible.
Reverse polarity at the input will cause the fuse to blow.
Table 3: Fuse specification
Model
Fuse type
Rating
Reference
BP
very fast blow
2 × 10 A, 125 V
Littelfuse Pico 251
GP
very fast blow
2 × 10 A, 125 V
Littelfuse Pico 251
CP
very fast blow
10 A, 125 V
Littelfuse Pico 251
DP
very fast blow
7 A, 125 V
Littelfuse Pico 251
EP
very fast blow
5 A, 250 V
Littelfuse Pico 263
system is not linear at all and eludes a simple calculation. One
basic condition is given by the formula:
L • Po max
Ci + Cext > —ext
———
—
—
—
—
—
—
Rext • Vi min²
dV i
—— )
( ri = —
dI i
Rext is the series resistor of the voltage source including the
supply lines. If this condition is not fulfilled, the converter may
not reach stable operating conditions. Worst case conditions
are a lowest Vi and a highest output power Po.
Low inductance L ext of the supply lines and an additional
capacitor Cext are helpful. Recommended values for Cext are
given in table 4, which should allow for stable operation up to
an input inductance of 2 mH. C i is specified in table 2.
Input Transient Protection
JM001b
Lext
If the input voltage is below approx. 0.9 Vi min or exceeds
approx. 1.1 Vi max, an internally generated inhibit signal disables the outputs. However, short extentions specified in EN
50155 will be withstood without shutdown.
Inrush Current
Ci
Cext
Vo+
ri
Vo–
Vi–
Fig. 8
Input configuration
Table 4: Recommended values for Cext
Model
Input Under- / Overvoltage Lockout
Vi+
+
Nominal battery voltages in use are: 24, 36, 48, 60, 72, 96,
and 110 V. In most cases each nominal value is specified in a
tolerance of –30% to +25%, with short excursions to ±40% or
even more.
In some applications, surges according to RIA 12 are
specified in addition to those defined in IEC 60571-1 or EN
50155. The power supply must not switch off during these
surges, and since their energy can practically not be
absorbed, an extremely wide input range is required. The P
Series input range has been designed and tested to meet
these requirements; see Electromagnetic Immunity.
Rext
Converter
Load
A VDR (Voltage Dependent Resistor), the input fuse, and a
symmetrical input filter form an effective protection against
input transients, which typically occur in most installations, but
especially in battery-driven mobile applications.
Capacitance
Voltage
BP
1500 µF
40 V
GP
1000 µF
63 V
CP
470 µF
100 V
DP
220 µF
125 V
EP
100 µF
200 V
The inherent inrush current value is lower than specified in the
standard ETS 300132-2. The converters operate with
relatively small input capacitance C i resulting in low inrush
current of short duration. As a result, in a power-bus system
the units can be hot plugged-in or disconnected causing
negligible disturbance at the input side.
Input Stability with Long Supply Lines
If a converter is connected to the power source by long supply
lines exhibiting a considerable inductance Lext, an additional
external capacitor Cext connected across the input pins
improves the stability and prevents oscillations.
Actually, a P Series converter with its load acts as negative
resistor r i, because the input current I i rises, when the input
voltage Vi decreases. It tends to oscillate with a resonant frequency determined by the line inductance L ex t and the input
capacitance Ci + Cext, damped by the resistor R ext. The whole
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 8 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Electrical Output Data
General Conditions:
– TA = 25°C, unless TC is specified.
– Sense lines connected directly at the connector, inhibit (28) connected to Vi– (32).
– R input not connected
Table 5a: Output data for single-output powertrains
Output
Single-output powertrain
Characteristics
3.3 V
max
min
typ
max
min
typ
max
3.3
3.32
5.07
5.1
5.13
11.94
12
12.06
3.35
5.02
5.18
11.82
7.14
14.3
Vi nom, Io nom
3.28
Vow
Worst case output
voltage
Vi min – Vi max
TC min – TC max
(0.02 – 1) Io max
3.24
Vo P
Overvoltage protection 2
Io nom
Nominal output current
Max. output current
Output current limit 3
vo
Output
noise 4
vo d
td 5
Unit
typ
Output voltage 1
Io max
12 V
min
Vo
IoL
5.1 V
Conditions
4.1
4.8
6.45
14
Vi min – Vi max
TC min – TC max
Switch. frequ.
Vi nom, Io max
Total incl. spikes BW = 20 MHz
Dynamic Voltage
Vi nom
load
deviation
Io max ↔ 1/2 Io max
regulation
Recovery time
Vo tr
Output voltage trim
range (via R input)
1.1 Vi min – Vi max
(0.1 – 1) Io max
αVo
Temp. coefficient of Vo
Io nom, TC min – TC max
12
20
20.5
22
6.8
18.9
19.8
15
15.8
5
18
25
V
12.18
A
8
22.5
8.4
8.8
10.0
5
5
15
20
20
30
0.7
0.8
1.2
V
0.4
0.3
0.15
ms
1.79
3.63
2.75
±0.02
5.61
6.5
mVpp
13.2
±0.02
±0.02
V
%/K
Table 5b: Output data for single-output powertrains. General conditions as in table 5a
Output
Single-output powertrain
Characteristics
15 V
24 V
Conditions
min
typ
max
Vo
Output voltage 1
Vi nom, Io nom
14.93
15
15.08 23.88
Vow
Worst case output
voltage
Vi min – Vi max
TC min – TC max
(0.02 – 1) Io max
14.78
Vo P
Overvoltage protection 2
Io nom
Nominal output current
Io max
Max. output current
IoL
Output current limit 3
vo
Output
noise 4
vo d
17.1
Vi min – Vi max
TC min – TC max
Switch. frequ.
Vi nom, Io max
Total incl. spikes BW = 20 MHz
Vi nom
Io max ↔ 1/2 Io max
Vo tr
Output voltage trim
range (via R input)
1.1 Vi min – Vi max
(0.1 – 1) Io max
αVo
Temp. coefficient of Vo
Io nom, TC min – TC max
1
2
3
4
5
18
18.9
28.5
max
24
24.12
7.2
30
31.5
A
4
8.2
4.2
4.4
15
15
40
50
1.2
1.5
0.2
8.1
V
24.36
2.5
6.4
6.8
typ
15.23 23.64
4
Dynamic Voltage
load
deviation
regulation
Recovery time
td 5
min
Unit
5.0
mVpp
V
0.15
16.5
13
±0.02
ms
26.4
±0.02
V
%/K
If the output voltages are increased above Vo nom through R-input control or remote sensing, the output power should be reduced
accordingly, so that Po max and TC max are not exceeded.
Breakdown voltage of the incorporated suppressor diode at 10 mA (3.3 V, 5.1 V) or 1 mA (≥12 V). Value for 3.3 V for version
≥112. Exceeding this value might damage the suppressor diode.
See Output Power at Reduced Temperature
Measured according to IEC/EN 61204 with a probe described in annex A
Recovery time until Vo returns to ±1% of Vo; see Dynamic Load Regulation
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 9 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Table 5c: Output data for double-output powertrains. General conditions as in table 5a
Output
Double-output powertrain
Main output
Characteristics
1
Conditions
min
typ
Vi nom, Io nom
5.05
5.1
Vo
Output voltage
Vow
Worst case output
voltage
Vo P
Overvoltage protection 2
none
Vo L
Overvoltage limitation 6
none
Vi min – Vi max
4.95
TC min – TC max
(0.02 – 1) Io max
I o nom Nominal output current
I o max Max. output current 3
Vi min – Vi max
TC min – TC max
I oL
Output current limit
vo
Output
noise 4
vo d
Dynamic Voltage
Vi nom
load
deviation
Io max ↔ 1/2 Io max
regulation
Recovery time
td 5
5.1 V
Tracking output
max
min
typ
max
5.15
5.0
5.1
5.2
5.25
See Output
Voltage Regulation
6.45
Vi nom, Io max
Total incl. spikes BW = 20 MHz
Output voltage trim
range (via R input)
1.1 Vi min – Vi max 2.75
(0.1 – 1) Io max
αVo
Temp. coefficient of Vo
Io nom
TC min – TC max
typ
max
min
typ
max
11.88 12
12.12
11.76
12
12.24
11.82
12.18
See Output
Voltage Regulation
none
6.5
none
14.3
14.4
15
5.0
5.0
2.5
2.5
8.0
8.0
4
4
5
5
15
15
20
8.4
Unit
V
15.8
A
10.0
mVpp
20
20
30
30
0.8
0.8
1.2
1.2
V
0.15
ms
See Output
Voltage Regulation
V
0.3
Vo tr
min
12 V
Tracking output
6.8
17
Switch. frequ.
Main output
0.3
5.61
0.15
See Output
Voltage Regulation
6.5
13.2
±0.02
±0.02
%/K
Table 5d: Output data for double-output powertrains. General conditions as in table 5a
Output
Double-output powertrain
Main output
Characteristics
15 V
Tracking output
Main output
24 V
Tracking output
Conditions
min
typ
max
min
typ
max
min
typ
max
min
typ
max
Vo
Output voltage 1
Vi nom, Io nom
14.85
15
15.15 14.7
15
15.3
23.88 24
24.12
23.76
24
24.24
Vow
Worst case output
voltage
Vi min – Vi max
14.78
TC min – TC max
(0.02 – 1) Io max
23.64
24.36
See Output
Voltage Regulation
Vo P
Overvoltage protection 2
Vo L
Overvoltage
none
limitation 6
Io nom Nominal output current
current 3
Io max
Max. output
IoL
Output current limit
vo
Output
noise 4
vo d
td 5
Vo tr
αVo
1
2
3
4
5
6
Vi min – Vi max
TC min – TC max
Vi nom, Io max
Total incl. spikes BW = 20 MHz
Dynamic Voltage
Vi nom
load
deviation
Io max ↔ 1/2 Io max
regulation
Recovery time
Temp. coefficient of Vo
1.1 Vi min – Vi max
(0.1 – 1) Io max
Io nom
TC min – TC max
See Output
Voltage Regulation
17.1
18
18.9
none
28.5
30
none
17.6
none
28.8
2
2
1.25
1.25
3.2
3.2
2
2
6.8
Switch. frequ.
Output voltage trim
range (via R input)
15.23
8.2
4.2
Unit
V
31.5
A
5.0
15
15
15
15
40
40
50
50
1.2
1.2
1.5
1.5
V
0.2
0.2
0.15
0.15
ms
See Output
Voltage Regulation
V
8.1
16.5
See Output
Voltage Regulation
±0.02
13
26.4
mVpp
±0.02
%/K
If the output voltages are increased above Vo nom through R-input control or remote sensing, the output power should be reduced
accordingly, so that Po max and TC max are not exceeded.
Breakdown voltage of the incorporated suppressor diode at 1 mA. Exceeding this voltage might damage the suppressor diode.
See Output Power at Reduced Temperature
Measured according to IEC/EN 61204 with a probe described in annex A
Recovery time until Vo returns to ±1% of Vo; see Dynamic Load Regulation
Output voltage limitation by an additional control loop
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 10 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Parallel and Series Connection
The first outputs of power trains with equal nominal output
voltage can be connected in parallel. Where available, we
recommend ordering option T.
Any output can be connected in series with any other output. If
the main and the tracking output of the same power train are
connected in series, consider that the effect of the R-input is
doubled.
• Rated output voltages above 48 V (SELV = Safety Extra Low
Voltage) require additional safety measures in order to comply
with international safety standards.
Parallel operation of two double-output converters with seriesconnected outputs is shown in fig. 10. The link between the T
pins ensures proper current sharing, even though only the first
outputs are influenced by T. Sense lines are connected
directly at the connector, and load lines have equal length and
section.
Notes:
• If a tracking output is not used, connect it in parallel to the
respective regulated main output.
06158c
+
• Connection of several outputs in parallel should include
measures to approximate all output currents. 3.3 and 5 V
outputs with option T have current-share pins (T), which must
be interconnected. For other outputs, the load lines should
exhibit similar resistance. Parallel connection of regulated
outputs without such precautions is not recommended.
Rp
• The maximum output current of series-connected outputs is
limited by the output with the lowest current limit.
16
6
S2+
18
S2–
20
22
Out OK+
24
Out OK –
Vo2– 10
28
i
Vo1+
30
Vi+
S1+ 12
32
Vi–
S1– 14
4
JM033a
Double-output
Vo2+
model
+
26
Vo1–
18
Out OK+
S2–
20
24
Out OK –
Vo2–
10
28
i
Vo1+
4
30
Vi+
S1+
12
32
Vi–
S1–
14
R Vo1–
8
22
Double-output
T
model
Vo2+
26
Double-output
model
Vo2+
6
S2+
18
–
+
22
Out OK+
S2–
20
24
Out OK –
Vo2–
10
28
i
Vo1+
4
30
Vi+
S1+
12
32
Vi–
S1–
14
R Vo1–
8
i
Load
16
26
8
6
S2+
Rp
Load
Double-output
T
model
Vo2+
26
16
Fig. 9
Series connection of double-output models. Sense lines
connected at the connector.
–
+
16
6
S2+
18
22
Out OK+
S2–
20
24
Out OK –
Vo2–
10
28
i
Vo1+
4
30
Vi+
S1+
12
32
Vi–
S1– 14
i
Vo1–
8
Fig. 10
Parallel operation of 2 double-output converters with seriesconnected outputs.
Redundant Systems
An example of a redundant system using converters with 2
regulated ouputs (xP2020) is shown in fig. 11. Load 1 is
powered with 5.1 V and load 2 with 12 V.
The converters are separated with ORing diodes. If one
converter fails, the remaining one still delivers the power to
the loads. If more power is needed, the system may be
extended to more parallel converters (n+1 redundancy).
Current sharing of the 5.1 V outputs is ensured by the
interconnected T pins, whereas the sense lines are connected
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 11 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Vo
06157c
Double-output
T
model
26
Vo2+
+
Rp
Vod
DS
S2+
Out OK–
Vo2–
i
Vo1+
RS
t
1
S1+
0.5
Vi–
S1–
0
≥ 10 µs
–
+
Vo2–
i
Vo1+
Vi+
S1+
Vi–
S1–
i
DS
C i ext [mF] =
Po [W] =
η [%]
=
t h [ms] =
V i min [V] =
V ti [V] =
RS
Load 1
Out OK–
t
Fig. 12
Typical dynamic load
regulation of output voltage
Double-output
T
model
Vo2+
26
S2–
≥ 10 µs
05102c
Vo1–
Out OK+
td
Io /Io nom
Vi+
S2+
Vo ±1 %
Vod
td
Load 2
Out OK+
S2–
Vo ±1 %
Vo1–
Wires of equal length and sectinon
external input capacitance
output power
efficiency
hold-up time [ms]
minimum input voltage
threshold level
Output Voltage Regulation
Line and load regulation of the regulated outputs is so good that input
voltage and output current have
virtually no influence to the output
voltage.
Fig. 11
Redundant configuration
However, if the tracking output is not
loaded, the second control loop may slightly reduce the
voltage of the main output. Thus, unused tracking outputs
should be connected in parallel to the respective main output.
after the ORing diodes to maintain the correct output voltage.
The dynamic load regulation is shown in fig. 12.
For the 12 V outputs, no current-share feature (option T) is
available. As a result, 2 little diodes Ds (loaded by little
resistors Rs) simulate the voltage drop of the ORing diodes.
Reasonable current sharing is provided by load lines of equal
length and section.
Hot Swap
Important: For applications using the hot swap capabilities,
dynamic output voltage changes during plug-in and plug-out
operations may occur.
Hold-up time
The converters provide virtually no hold-up time. If a hold-up
time is required, use external output capacitors or input
capacitors of adequate size and decoupling diodes.
Formula for additional external input capacitor:
2 • Po • t h • 100
C i ext = ––––––––––––––––––
(V t i2 – Vi min2) • η
whereas:
Tracking Outputs
The main outputs 1 and 2 are regulated to Vo nom independent
of the output current. If the loads on outputs 3 and 4 are too
low ( Vo nom.
t
Vi
td on
Vi min
0
Vinh [V]
2.4
0.8
t
Note: R inputs of n converters with paralleled outputs may be
connected together, but if only one external resistor is used, its
value should be R1/n or R2/n.
t
JM035b
DoubleR 16
output
powertrain Vo1+
Fig. 18
Output response as a function of Vi (on/off switching) or
inhibit control
Note: With open R-input, Vo = Vo nom.
With double-output powertrains, both outputs are influenced
by the R-input setting simultaneously.
Vi+
Vo1–
Vi–
Vo4+
Vo4–
Load 4
2nd powertrain
The converters allow for adjustment of the voltage of powertrain 1. Powertrain 2 can not be adjusted (except for singleoutput models). The programming is performed either by an
external control voltage Vext or an external resistor R1 or R2,
connected to the R-input. Trimming is limited to the values
given in the table Electrical Output Data.
R1
Load 1
i
Output Voltage Adjust of Vo1 and Vo 4
R2
Fig. 20
Output adjust of Vo1 and Vo4 using R1 or R2. The other
outputs are not influenced.
MELCHER
BCD20010-G Rev AK, 18-Mar-2016
The Power Partners.
Page 14 of 24
P Series Data Sheet
90 – 192 Watt DC-DC Converters
Table 7a: R1 for Vo < Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R2 not fitted
Vo nom = 3.3 V
Vo (V)
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
R1 [kΩ
Ω]
5.62
6.49
7.50
8.66
10.2
12.1
14.3
17.4
22.1
28.7
39.2
61.9
12.7
Vo nom = 5.1 V
Vo (V)
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
R1 [kΩ
Ω]
14.0
15.8
18.2
21.0
24.3
29.4
36.5
47.5
63.4
97.6
200.0
Vo nom = 12 V
Vo [V]
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
1
Vo nom = 15 V
R1 [kΩ
Ω]
13
14
15
16
17
18
19
20
11
22
23
4.22
5.11
6.19
7.5
9.1
11.5
14.7
19.6
27.4
43.2
88.7
Vo [V]
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
Vo nom = 24 V
R1 [kΩ
Ω]
1
16
17
18
19
20
21
22
23
24
25
26
27
28
29
4.12
4.75
5.49
6.34
7.5
8.87
10.5
12.7
15.4
29.6
25.5
34.8
54.9
110.0
R1 [kΩ
Ω]
Vo [V] 1
14.0
15.0
16.0
17.0
18.0
19.0
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
28
30
32
34
36
38
40
41
42
43
44
45
46
47
5.23
6.19
7.5
9.31
11.5
14.7
19.6
22.6
27.4
34.0
43.2
59.0
88.7
182.0
Table 7b: R2 for Vo > Vo nom ; approximate values (Vi nom, Io nom, series E 96 resistors); R1 not fitted
Vo nom = 3.3 V
Vo nom = 5.1 V
Vo (V)
Ω]
R1 [kΩ
Vo (V)
Ω]
R1 [kΩ
3.4
3.5
3.6
47.5
24.3
16.3
5.2
5.3
5.4
5.5
5.6
226.0
115.0
78.7
59.0
48.7
1
Vo nom = 12 V
Vo [V] 1
12.2
12.4
12.6
12.8
13.0
13.2
Vo nom = 15 V
Ω]
R1 [kΩ
24.4
24.8
25.2
25.6
26.0
26.4
1100
499
332
255
205
174
Vo [V] 1
15.3
15.5
15.7
16.0
16.2
16.5
30.6
31.0
31.4
32.0
32.4
33.0
Vo nom = 24 V
Ω]
R1 [kΩ
1130
665
475
332
280
232
Vo [V] 1
24.5
25.0
25.5
26.0
26.4
49.0
50.0
51.0
52.0
52.8
Ω]
R1 [kΩ
1820
909
604
464
392
First column: single-output powertrains or double-output powertrains with separated/paralleled outputs, second column: outputs in
series connection.
Sense Lines
L E D Indicators
Important: Sense lines should always be connected. Incorrectly
connected sense lines may damage the converter. If sense pins
are left open-circuit, the output voltages are not accurate.
This feature enables compensation of voltage drop across the
connector contacts and the load lines including ORing diodes
in true redundant systems.
Applying generously dimensioned cross-section load leads
avoids troublesome voltage drop. To minimize noise pick-up,
wire sense lines parallel or twisted to the respective output
line. To be sure, connect the sense lines directly at the female
connector.
The voltage difference between any sense line and its
respective power output pin (as measured on the connector)
should not exceed the following values at nominal output
voltage.
Table 8: Voltage compensation allowed using sense lines
Output type
Total drop
Negative line drop
3.3, 5.1 V output