K Series with PFC
150 - 280 Watt AC-DC Converters
The LK4000/5000 Series of AC-DC converters represents a
flexible range of power supplies for use in advanced electronic
systems; the LKP models are an extension with increased
output power, but optimized to 230 VAC. Features include full
power factor correction, good hold-up time, high efficiency and
reliability, low output noise, and excellent dynamic response to
load/line changes.
The converters are protected against surges and transients
occurring at the source lines. Input over- and undervoltage
lockout circuitry disables the outputs, when the input voltage is
outside of the specified range. Input inrush current limitation is
included for preventing circuit breakers and fuses from tripping
at switch-on.
Features
111
4.4"
3U
80
3.2"
16 TE
Table of Contents
168
6.6"
Page
Description............................................................................2
Model Selection.....................................................................2
Functional Description...........................................................4
Electrical Input Data..............................................................5
Electrical Output Data...........................................................9
Auxiliary Functions..............................................................14
• RoHS lead-free-solder and lead-solder-exempted
products available
• 5 year warranty for RoHS compliant products with an
extended temperature range
• Class I equipment
• Power factor >0.93, harmonics IEC/EN 61000-3-2
• Immunity according to IEC/EN 61000-4-2, -3, -4, -5, -6, -8, -9
• Compliant with EN 50155, EN 50121-4, EN 45545
(version V108 or later)
• High efficiency
• Input over- and undervoltage lockout
• Adjustable output voltage with remote on/off
• 1 or 2 outputs: ES1, no load, overload, and short-circuit proof
• Rectangular current limiting characteristic
• PCBs protected by lacquer
• Very high reliability
• Safety-approved to the latest edition of IEC/EN 62368-1
and UL/CSA 60950-1
Page
Electromagnetic Compatibility (EMC)..................................18
Immunity to Environmental Conditions................................20
Mechanical Data..................................................................21
Safety and Installation Instructions......................................23
Description of Options.........................................................26
Accessories.........................................................................31
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
K Series with PFC
150 - 280 W AC-DC Converters
Description
All outputs are overload, open- and short-circuit proof, and protected by a built-in suppressor diode. The outputs can be inhibited by a
logic signal applied to connector pin 18. If the inhibit function is not used, pin 18 must be connected with pin 14 to enable the outputs.
LED indicators display the status of the converter and allow visual monitoring of the system at any time.
Full input to output, input to case, output to case and output to output isolation is provided. The converters are designed and built
according to the international safety standards IEC/EN 62368-1. They have been approved by safety agencies.
The case design allows operation at nominal load up to 71 °C in a free air ambient temperature. If forced cooling is provided, the
ambient temperature may exceed 71 °C, but the case temperature must remain below 95 °C under all conditions. However, higher
output power up to 280 W is possible depending on environmental conditions and converter model.
An internal temperature sensor generates an inhibit signal, which disables the outputs, when the case temperature TC exceeds
the limit. The outputs automatically recover, when the temperature drops below the limit.
Various options are available to adapt the converters to individual applications. An external temperature sensor is available to allow
for temperature adapted battery charging.
The converters may either be plugged into 19” rack systems according to IEC 60297-3, or be mounted on a chassis or plate.
Important: These products are intended to replace the LK1000 and LK2000 models, in order to comply with IEC/EN 61000-3-2.
For appli-cations with DC input or main frequencies other than 50/60 Hz, the LK1000 and LK2000 model types are still available.
Model Selection
Non-standard input/output configurations or special customer adaptations are available on request.
Table 1: Standard models
Output 1
Output 2
Operating input voltage
Type designation
Efficiency 1
Options
Vo nom
[VDC]
Io nom
[A]
Vo nom
[VDC]
Io nom
[A]
Vi min – Vi max
[VAC]
η min
[%]
5.1
5.1
20
25
-
-
85 – 264
LK4002-9ERG
LK4003-6ERG
79
79
-7, -7E, P, D 2, T, K⁴, B, B1, non-G
P, D 2, T, K⁴, B, B1, non-G
12
15
24
12
10
6
-
-
85 – 264
LK4301-9ERG
LK4501-9ERG
LK4601-9ERG
84
85
86
-7, -7E, P, D 2, T, B, B1, non-G
-7, -7E, P, D 2, T, B, B1, non-G
-7, -7E, P, D 2, T, B, B1, non-G
12
15
24
6
5
3
12 3
15 3
24 3
6
5
3
85 – 264
LK5320-9ERG
LK5540-9ERG
LK5660-9ERG
83*
83
84*
-7, -7E, P, D 2, T, B, B1, non-G
-7, -7E, P, D 2, T, B, B1, non-G
-7, -7E, P, D 2, T, B, B1, non-G
12
24
24
10
5.2
5.8
12 3
24 3
24 3
10
5.2
5.8
187 – 255
LKP5320-6ERG
LKP5660-9ERG
LKP5661-5ERG
85
87*
87*
6, P, D 2, T, B, B1, non-G
-7, -7E, P, D 2, T, B, B1, non-G
P, D 2, T, B, B1, non-G
Efficiency 1
Options
* Valid for actual models with version V 107 or later.
1
Min. efficiency at Vi nom, I o nom and TA = 25 °C. Typical values are approximately 2% better.
2
Different options D (D0 – DD).
3
Second output semi-regulated
5
For new designs, use only option K.
Table 2: Battery charger models
Nom. output values
Output range 4
Operating input voltage
Type designation
Vo nom
[VDC]
Io nom
[A]
Vo min – Vo max
[VDC]
Vi min – Vi max
[VAC]
η min
[%]
12.84
25.68 2
51.36 3
10
5.4
2.7
12.62 – 14.12
25.25 – 28.25
25.50 – 56.50
85 – 264
LK4740-9ERG
LK5740-9ERG
LK5740-9ERG
84
84*
84*
-7, -7E, D 2, T, B, B1, non-G
-7, -7E, D 2, T, B, B1, non-G
-7, -7E, D 2, T, B, B1, non-G
25.68 2
25.68 2
9
10
25.25 – 28.25
25.25 – 28.25
187 – 255
LKP5740-9ERG
LKP5741-5ERG
87*
87*
-7, -7E, D 2, T, B, B1, non-G
D ², T, B, B1, non-G
51.36 3
51.36 3
4.5
5
50.50 – 56.50
50.50 – 56.50
187 – 255
LKP5740-9ERG
LKP5741-5ERG
87*
87*
-7, -7E, D 2, T, B, B1, non-G
D ², T, B, B1, non-G
*
Valid for actual models with version V 107 or later.
in. efficiency at Vi nom, Io nom and TA = 25 °C. Typical values are approximately 2% better.
M
2
Both outputs connected in parallel
3
Both outputs connected in series
4
Controlled by the battery temperature sensor; see Accessories
Not for new designs (NFND)
1
Preferred for new designs
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 2 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Part Number Description
LK 5 5 40 -9 E R D3 T B1 G
Operating input voltage Vi:
85 – 264 VAC . ........................................................... LK
187 – 255 VAC . ....................................................... LKP
Number of outputs (4 = single, 5 = double).......................4, 5
Nominal voltage output 1 Vo1 nom (main output)
5.1 V ..............................................................................0
12 V ..............................................................................3
15 V ..............................................................................5
24 V ..............................................................................6
Other voltages 1 ...................................................... 7, 8 1
Nominal voltage output 2 Vo2 nom
None (single-output models)........................................01
12 V, 12 V....................................................................20
15 V, 15 V.....................................................................40
24 V, 24 V.....................................................................60
Other specifications or additional features 1 ...... 21 – 99 6
Operational ambient temperature range TA:
–25 to 71 °C................................................................. -7
– 40 to 71 °C................................................................. -9
– 25 2 to 60 °C.................................................................-6
– 25 2 to 50 °C.................................................................-5
Other 1 . .........................................................................-0
Auxiliary functions and options:
Inrush current limitation ............................................. E ²
Output voltage control input ...................................... R 3
Potentiometer (output voltage adjustment) ............... P ³
Vi / Vo monitor (D0 – DD, to be specified).................... D 4
Current share control..................................................... T
H15S4 standard connector (rather than H15S2)....... K ⁵
Cooling plate standard case.................................B or B1
Cooling plate for long case 220 mm 1 ........................B2 1
RoHS-compliant for all 6 substances 6......................... G
3
4
5
6
1
2
Customer-specific models
Option E is mandatory for all -9 models. Models with -5E or -6E are functional down to –40 °C.
Feature R excludes option P and vice versa. Option P is not available for battery charger models.
Option D excludes option V and vice versa; option V is available for models with 5.1 V output only (LK4003, etc.).
Option K is available for models with 5.1 V output only (LK4002, LK4003, etc.) in order to provide compatibility with LK1001 models.
Except numbers specified above
NFND: Not for new designs.
Preferred for new designs
Note: The sequence of options must follow the order above. This part number description is descriptive only; it is not intended for creating
part numbers.
Example: LK5540-9ERD3TB1G: Power factor corrected AC-DC converter, operating input voltage range 85 – 264 VAC,
2 electrically isolated outputs, each providing 15 V, 5 A, equipped with inrush current limiter, R-input to adjust the
output voltages, undervoltage monitor D3, current share feature, cooling plate B1, RoHS compliant.
Product Marking
Basic type designation, applicable approval marks, CE mark, warnings, pin designation, company patents and company logo,
identification of LEDs, test sockets, and potentiometer.
Specific type designation, input voltage range, nominal output voltages and currents, degree of protection, batch no., serial no.,
data code including production site, modification status, and date of production.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 3 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Functional Description
The input voltage is fed via an input fuse, an input filter, a rectifier, and an inrush current limiter to the boost converter. This step-up
converter provides a sinusoidal input current (IEC/EN 61000-3-2, class D equipment) and charges the bulk capacitor C b to approx.
370 VDC. This capacitor sources a single-transistor forward converter and provides the power during the hold-up time.
The main transformer exhibits a separate secondary winding for each output. Each generated voltage is rectified and smoothed
by the power choke and the output filter. The control logic senses the main output voltage Vo or Vo1 and generates, with respect to
the maximum admissible output currents, the control signal for the switching transistor of the forward converter.
The second output of double output models is tracking the main output, but has its own current limiting circuit. If the main output
voltage drops due to current limitation, the second output voltage will fall as well and vice versa.
A separate auxiliary converter generates the supply voltages for all primary and secondary control circuits and options.
Fuse
L~ 30
32
2
CY
24
CY
16 R
18 i
20 D/V
22 T
12 S+
4
Vo+
6
Output
filter
Cb +
03001d
Control circuit
Input filter
Bridge retifier
1
Forward converter (approx. 80 kHz)
CY
26
N~ 28
Boost converter (approx. 100 kHz)
P
8
CY
10
Vo–
14 S–
–
+
Fig. 1
Block diagram of single-output converters
L~ 30
32
CY
CY
16
18
20
22
R
i
D
T
12 Vo1+
Output 1
filter
2
Cb +
03002d
14 Vo1–
4
Vo2+
6
Output 2
filter
Fuse
Input filter
Bridge retifier
1
Control circuit
CY
Forward converter (approx. 80 kHz)
N~ 26
28
Boost converter (approx. 100 kHz)
P
8
Vo2–
10
24
–
+
Fig. 2
Block diagram of double-output models
1
2
Transient suppressor (VDR)
Inrush current limiter (NTC, only models with TA min = –25 °C ) or option E
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 4 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Electrical Input Data
General Conditions:
– TA = 25 °C, unless TC is specified.
– Pin 18 connected to pin 14, R input not connected, Vo adjusted to Vo nom (option P)
– Sense line pins S+ and S– connected to Vo+ and Vo–, respectively (single-output models)
Table 3: Electrical input data
Model
LK
Characteristics
Conditions
min
max
min
Rated input voltage range
Io = 0 – Io nom
100
240
200
240
Vi op
Operating input voltage range
TC min to TC max
85
264
187
255
Vi nom
Nominal input voltage
50 – 60 Hz
230
Ii
Input current
Vi nom, I o nom
0.8
Pi 0
No-load input power
Vi min – Vi max, Io = 0
P i inh
Idle input power
Converter inhibited
Ri
Input resistance
RNTC
NTC resistance (see Fig.3)
Cb
Input capacitance
Vi RFI
Vi abs
Conducted input RFI
Radiated input RFI
Converter not operating
1.25
10
9
10
3.5
5
3.5
5
480
4000
100
150
180
3200
4000
110
136
B
B
A
B
283
Input voltage limits
without damage
–400
VAC 1
A
9
3200
EN 55011/55022
Vi nom, I o nom
max
230
480
3
typ
Unit
Vi
2
typ
LKP
400
–400
W
mΩ
165
µF
283
VAC
400
Vpeak 4
Rated input frequency: 50 – 60 Hz, operating frequency: 47 – 63 Hz. For operation at other frequencies, contact Bel Power Solution.
With double-output models, both outputs loaded with I o nom
3
Valid for models without option E. This is the value of the NTC resistance at 25 °C and applies to cold converters for the initial switch-on
cycle. Subsequent switch-on/off cycles increase the inrush current peak value.
4
Operation with DC input voltage is not specified and not recommended.
1
2
Input Fuse and Protection
A VDR together with the input fuse and a symmetrical input filter form an effective protection against high input transient voltages.
A fuse mounted inside the converter in series to the phase line protects against severe defects. A second fuse in the neutral line
may be necessary in certain applications; see Installation Instructions.
Table 4: Fuse specification
Model
Fuse type
Fuse rating
LK4/5000
slow-blow
SP T, 4 A, 250 V, 5 × 20 mm
LKP
slow-blow
SP T, 4 A, 250 V, 5 × 20 mm
Input Under- /Overvoltage Lockout
If the input voltage remains below approx. 65 VAC (LKP: 150 VAC) or exceeds Vi abs, an internally generated inhibit signal disables
the output(s). Do not check the overvoltage lockout function!
If Vi is below Vi min, but above the undervoltage lockout level, the output voltage may be below the value specified in the tables
Electrical Output Data.
Inrush Current Limitation
The models without option E incorporate an NTC resistor in the input circuitry, which at initial turn-on reduces the peak inrush
current value by a factor of 5 to 10 to protect connectors and switching devices against damage. Subsequent switch-on cycles
within short periods will cause an increase of the peak inrush current value due to the warming-up of the NTC resistor.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 5 of 32
K Series with PFC
150 - 280 W AC-DC Converters
The inrush current peak value (initial switch-on cycle) can be determined by following calculation:
––
Vi • √ 2
Iinr p = ––––––––––––––––
(Rs ext + R i + RNTC)
04001b
Rs ext
~
Iinr p
Ri
RNTC
Cb
Vi
+
Fig. 3
Equivalent circuit diagram for input impedance.
Iinr [A]
04054a
100
li [A]
LKP
2
LK
50
LKP
1
0
0
04002a
0.1
LK
50
100
150
200
250
VAC
1 ms
0.5
Fig. 4
Theoretical worst case input inrush current versus time at
Vi = 255 V, Rext = 0 for models without option E
Fig. 5
Input current versus input voltage at Io nom
Switching Frequency
kHz
80
05008b
70
60
50
40
30
20
10
0
0
0.2
0.4
0.6
0.8
1
1.2 Io/Io nom
Fig. 6
Typical switching frequency of the DC/DC converter versus load
(The boost converter at the input stage operates with a constant switching frequency of 100 kHz.)
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 6 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Power Factor and Harmonics
Power factor correction is achieved by controlling the input current waveform synchronously with the input voltage waveform.
The power factor control is active under all operating conditions.
LK4501-pf
1.0
LKP5660-pf
Vi = 85 VAC
0.95
Vi = 187 VAC
0.95
0.9
0.9
Vi = 230 VAC
0.85
0.8
1.0
0
0.2
0.4
0.6
Vi = 230 VAC
0.85
0.8
Io /Io nom
Fig. 7
Power factor versus output current (LK4501-7R)
0.8
0
0.2
0.4
0.6
0.8
Io /Io nom
Fig. 8
Power factor versus output current (LKP5660-7R)
The harmonic distortion is well below the limits specified in IEC/EN 61000-3-2, class D; see fig. below:
mA/W
4
LKP-harm
3.5
3
2.5
2
1.5
1
0.5
0
3
5
7
9
11
13 Harm.
Fig. 9
Harmonic input currents at Vi = 230 V, Io = Io nom for LK4501-7R (left bars) and LKP5660-7R.
Hold-up Time
ms
ms
160
LK4501-hu-a
160
120
Vi = 230 V
120
0
Vi = 230 V
80
80
40
LKP5660-hu-a
40
Vi = 85 V
0
0.2
0.4
0.6
0.8
Fig. 10a
Hold-up time versus output power (LK4501-7R),
valid for converters with version V102 or higher.
Io /Io nom
0
Vi = 187 V
0
0.2
0.4
0.6
0.8
1
Io/Io nom
Fig. 10b
Hold-up time versus output power (LKP5660-7R)
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 7 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Efficiency
0.9
LK4501-eta
0.8
LKP5660-eta
0.9
Vi = 230 V
Vi = 85 V
Vi = 230 V
Vi = 187 V
0.8
0.7
0.7
0.6
0.5
0
0.2
0.4
0.6
0.8
Fig. 11a
Efficiency versus output current (LK4501-7R)
Io /Io nom
0.6
0
0.2
0.4
0.6
0.8
Io /Io nom
Fig. 11b
Efficiency versus output current (LKP5660-7R)
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 8 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Electrical Output Data
General Conditions:
– TA = 25 °C, unless TC is specified.
– Pin 18 (i) connected to pin 14 (S– or Vo1–), R input not connected, Vo adjusted to Vo nom (option P),
– Sense line pins 12 (S+) and 14 (S–) connected to pins 4 (Vo1+) and 8 (Vo1–), respectively.
Table 5: Output data of single-output models
Model
LK4002 / LK4003
LK4301 / LK4740 5
LK4501
LK4601
5.1 V
12 V 5
15 V
24 V
Nom. output voltage
Characteristics
Conditions
min
Vi nom, Io nom
5.07
Vo
Output voltage
V o BR
Output protection
(suppressor diode) 6
Io nom
Output current nom. 1
Vi min – Vi max
TC min – TC max
Io L
Output current limit
Vi min – Vi max
Vo
Output
noise 3
Low frequency
Switching frequ.
Total incl. spikes
Vi nom, Io nom
BW = 20 MHz
Static line regulation
with respect to Vi nom
Vi min – Vi max
Io nom
∆Vo l
Static load regulation
Vi nom
(0.1 – 1) Io nom
Vo d
Dynamic
load
regulation 2
td
αvo
Recovery
time 2
Temperature coefficient of
output voltage 4
max
min
5.13
11.93
6.0
∆Vo u
Voltage
deviation 2
typ
Vi nom
Io nom ↔ 0.5 Io nom
Io nom
TC min – TC max
typ
max
12.07
5
15.2/17 5
20/25 7
min
5
typ
14.91
12.2/10.2 5
2
min
15.09
23.86
19.6
typ
max
24.14
V
28.5
12/10 5
21/26 7
max
Unit
10
6
10.2
6.2
2
2
2
15
5
5
5
25
40
40
40
A
mVpp
±5
±12
±15
±24
-15
-25
-30
-40
mV
±100
±100
±100
±100
0.3
0.4
0.4
0.3
ms
±0.02
±0.02
±0.02
±0.02
%/K
If the output voltages are increased above Vo nom through R-input control, option P setting, remote sensing or option T, the output currents
should be reduced accordingly so that Po nom is not exceeded.
2
See fig. 14 (Dynamic Load Regulation)
3
Measured according to IEC/EN 61204 with a probe according to annex A
4
For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor (see
Accessories), but we recommend choosing special battery charger models.
5
Especially designed for battery charging using the temperature sensor; see Accessories. Vo is set to 12.84 V ±1% (R-input open)
6
Breakdown voltage of the incorporated suppressor diode (1 mA; 10 mA for 5 V output). To exceed Vo BR is dangerous for the suppressor diode.
7
1st value for LK4002-7, 2nd value for LK4003-6
1
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 9 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Table 6a: Output data of double-output LK models. General conditions as per table 5.
Model (Nom. output voltage)
Characteristics
LK5320 (2 x 12 V)
Conditions
typ
min
12.7
11.82
Output 1
typ
max
min
typ
12.18
14.91
Output 2
max
min
15.09
14.78
typ
Output voltage
V o BR
Output protection
(suppressor diode) 8
Io nom
Output current nom. 2
Vi min – Vi max
TC min – TC max
Io L
Output current limit
Vi min – Vi max
Vo
Output
noise 3
∆Vo u
Static line regulation
with respect to Vi nom
Vi min – Vi max
Io nom
±12
5
±15
5
∆Vo l
Static load regulation 1
Vi nom
(0.1 – 1) Io nom
-40
5
-50
5
Vo d
Dynamic
load
regulation 3
td
αvo
Switching frequ.
Total incl. spikes
Voltage
deviation 4
Recovery
time 4
Temperature coefficient of
output voltage 6
11.93
Output 2
max
Unit
Vo
Low frequency
Vi nom, Io nom 1
Output 1
min
LK5540 (2 x 15 V)
15.2
15.2
19.6
6
6.2
5
6.2
Vi nom, Io nom
BW = 20 MHz
Io nom
TC min – TC max
5
5.2
A
5.2
3
3
3
3
12
12
10
10
70
60
80
60
±100
Vi nom
Io1 nom ↔ 0.5 Io1 nom
0.5 Io2 nom
V
19.6
6
max
15.22
±150
±100
mVpp
mV
±150
0.3
0.4
ms
±0.02
±0.02
%/K
Table 6b: Output data of double-output LK models. General conditions as per table 5.
Model (Nom. output voltage)
Characteristics
LK5660 / 5740 (2 × 24 V / 2 × 25.68 V) 7
Conditions
Vo
Output voltage
V o BR
Output protection
(suppressor diode) 8
Io nom
Output current nom. 2
Vi min – Vi max
TC min – TC max
Io L
Output current limit
Vi min – Vi max
Low frequency
Vi nom, Io nom 1
Output 1
min
typ
23.86 7
max
min
24.14 7
23.64 7
28.5/34 7
Vi nom, Io nom
typ
V
28.5/34 7
3/2.7 7
3/2.7 7
3.2
3
10
10
80
60
∆Vo u
Static line regulation
with respect to Vi nom 3
Vi min – Vi max
Io nom
±20
5
∆Vo l
Static load regulation 1
Vi nom
(0.1 – 1) Io nom
-40
5
Vo d
Dynamic
load
regulation 3
td
αvo
Total incl. spikes
Voltage
deviation 4
Recovery
time 4
Temperature coefficient of
output voltage 6
Vi nom
Io1 nom ↔ 0.5 Io1 nom
0.5 Io2 nom
Io nom
TC min – TC max
A
3.2
3
Output
noise 3
BW = 20 MHz
max
24.36 7
Vo
Switching frequ.
Unit
Output 2
±100
mVpp
mV
±150
0.3
ms
±0.02
%/K
Same conditions for both outputs
If the output voltages are increased above Vo nom via R-input control, option P setting, remote sensing or option T, the output currents should
be reduced accordingly so that Po nom is not exceeded.
3
Measured according to IEC/EN 61204 with a probe annex A
4
See Dynamic Load Regulation
5
See Output Voltage Regulation of Double-Output Models
6
For battery charger applications a defined negative temperature coefficient can be provided by using a temperature sensor; see Accessories.
7
Especially designed for battery charging using the battery temperature sensor; see Accessories.
Vo1 is set to 25.68 V ±1% (R-input open).
8
Breakdown voltage of the incorporated suppressor diodes (1 mA). Exceeding Vo BR is dangerous for the suppressor diodes.
1
2
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 10 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Table 7a: Output data of double-output LKP models. General conditions as in table 5.
Model (Nom. output voltage)
Characteristics
LKP5660-7 (2 x 24 V)
Output 1
Conditions
Vo
Output voltage
V o BR
Output protection
(suppressor diode) 8
Vi nom, I
Io nom
Output current nom. 2
Vi min – Vi max
TC min – TC max
Io L
Output current limit
Vi min – Vi max
Vo
Output
noise 3
1
o nom
min
23.86
typ
Output 2
max
24.14
7
min
7
28.5
Low frequency
Switching frequ.
Total incl. spikes
23.64
typ
min
7
28.5
typ
25.42
min
typ
25.94
15.17
26.19
V
4.5
4.6
10
10
10
10
20
20
20
20
120
40
120
100
Static line regulation
with respect to Vi nom
Vi min – Vi max
Io nom
±10
5
±10
5
∆Vo l
Static load regulation
Vi nom
(0.1 – 1) Io nom
-60
5
-80
5
Vo d
Dynamic
load
regulation 3
td
Recovery
time 4
Temperature coefficient of
output voltage 6
αvo
±150
Vi nom
Io nom ↔ 0.5 Io nom
Io nom
TC min – TC max
A
4.6
∆Vo u
Voltage
deviation 4
max
34
4.5
5.3
Unit
Output 2
max
34
5.2
5.3
BW = 20 MHz
Output 1
max
24.36
7
5.2
Vi nom, Io nom
LKP5740-7 (2 x 25.68 V) 7
±150
±150
mVpp
mV
±150
0.3
0.4
ms
±0.02
±0.02
%/K
Same conditions for both outputs
If the output voltages are increased above Vo nom via R-input control, option P setting, remote sensing or option T, the output currents should
be reduced accordingly so that Po nom is not exceeded.
3
Measured according to IEC/EN 61204 with a probe according to annex A
4
See Dynamic Load Regulation
5
See Output Voltage Regulation of Double-Output Models
6
For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor (see
Accessories), but we recommend choosing special battery charger models.
7
Especially designed for battery charging using the battery temperature sensor (see Accessories). Similar models see table 7b. Vo1 is set to
25.68 V ±1% (R-input open).
6
Breakdown voltage of the incorporated suppressor diodes (1 mA). To exceed Vo BR is dangerous for the suppressor diodes.
1
2
Table 7b: Other LKP models
All data not specified in this table are equal to LKP5740-7. General conditions as in table 5.
LKP5320-6
(2 x 12 V)
Model (Nom. output voltage)
Characteristics
Conditions
Vo
Output voltage
Vi min – Vi max
TC min – TC max
Io L
Output current limit 1
Vi min – Vi max
TA max
Max. operating temp.
1
2
3
Output 1
min
typ
Output 2
max
min
10
typ
max
min
10
10.2
LKP5741-5 3
(2 x 25.68 V)
Output 1, 2
Output 1, 2
typ
max
min
5.8
10.2
60
LKP5661-5 2
(2 x 24 V)
typ
Unit
max
5
6.0
A
5.2
60
50
50
°C
Both outputs series connected
All other data see LKP5660-7
All other data see LKP5740-7 (battery charger)
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 11 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Thermal Considerations
If a converter is located in free, quasi-stationary air (convection cooling) at the indicated maximum ambient temperature TA max
(see table: Temperature specifications) and is operated at its nominal input voltage and output power, the temperature measured
at the Measuring point of case temperature TC (see: Mechanical Data) will approach the indicated value TC max after the warm-up
phase. However, the relationship between TA and TC depends heavily on the conditions of operation and integration into a system.
The thermal conditions are influenced by input voltage, output current, airflow, and temperature of surrounding components and
surfaces. TA max is therefore, contrary to TC max, an indicative value only.
Caution: The installer must ensure that under all operating conditions TC remains within the limits stated in the table: Temperature
specifications.
Notes: Sufficient forced cooling or an additional heat sink (applied to -7 or -9) models allows TA to be higher than 71 °C (e.g., 85 °C), if TC max
is not exceeded. Details are specified in fig. 12, including -5 and -6 models.
Io/Io nom
convection cooling
forced cooling
05143b
1.0
0.8
-5 -6 -7
0.6
-5
0.4
-6
TC max
-7
0.2
0
50
60
70
80
90
TA
100 °C
Fig. 12
Output current derating versus temperature for -5, -6, and -9 (or -7) models.
Thermal Protection
A temperature sensor generates an internal inhibit signal, which disables the outputs, when the case temperature exceeds TC max.
The outputs automatically recover, when the temperature drops below this limit.
Continuous operation under simultaneous extreme worst-case conditions of the following three parameters should be avoided:
Minimum input voltage, maximum output power, and maximum temperature.
Output Protection
Each output is protected by a suppressor diode against overvoltage, which could occur due to a failure of the control circuit. In
such a case, the suppressor diode becomes a short circuit. The suppressor diodes may smooth short overvoltages resulting from
dynamic load changes, but they are not designed to withstand externally applied overvoltages.
A short circuit at any of the two outputs will cause a shutdown of the other output. A red LED indicates any overload condition.
Note: Vo BR is specified in Electrical Output Data. If this voltage is exceeded, the suppressor diode generates losses and may become a
short circuit.
Parallel or Series Connection of Converters
Single- or double-output models with equal output voltage can be connected in parallel without any precautions using option T
(current sharing). If the T pins are interconnected, all converters share the output current equally.
Single-output models and/or main and second outputs of double-output models can be connected in series with any other (similar) output.
Notes:
– Parallel connection of double-output models should always include both, main and second output to maintain good regulation.
– Not more than 5 converters should be connected in parallel.
– Series connection of second outputs without involving their main outputs should be avoided, as regulation may be poor.
– Series connection of outputs totalling more than 36 V nominal voltage need additional measures to limit the output to ES1 (Safe Extra Low Voltage).
– The maximum output current is limited by the output with the lowest current limitation, if several outputs are connected in series.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 12 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Output Voltage Regulation
The following figures apply to single-output or double-output models with parallel-connected outputs.
Vo
Vo nom
Vo
Vod
05001a
Vo ±1 %
Vo ±1 %
0.98
Vod
td
td
t
0.5
Io /Io nom
Io
1
IoL
0
Io nom
1.0
0.5
0.5
Io
Fig. 13
Typical output characteristic Vo versus Io.
≥ 10 µs
≥ 10 µs
0
05102c
t
Fig. 14
Typical dynamic load regulation of Vo.
Output Regulation of Double-Output Models
Output 1 is under normal conditions regulated to Vo nom, independent of the output currents.
Vo2 depends upon the load distribution. If both outputs are loaded with more than 10% of Io nom, the deviation of Vo2 remains within ±5%
of Vo1. The following 3 figures show the regulation with varying load distribution.
Two outputs of a double-output model connected in parallel behave like the output of a single-output model.
Note: If output 2 is not used, we recommend connecting it in parallel with output 1. This ensures good regulation and efficiency.
Vo2 [V]
13
Vo2 [V]
05083a
12.5
Io1 = 100%
Io1 = 50%
Io1 = 10%
16
15.5
12.0
15
11.5
14.5
11
14
10.5
05084a
16.5
Io1 =100 %
Io1 = 50 %
Io1 = 10 %
13.5
0
0.2
0.4
0.6
0.8
1
Io2/Io2 nom
Fig. 15
Models with 2 outputs 12 V: ∆Vo2 versus Io2 with various Io1 (typ).
Vo2 [V]
27
0
0.2
0.4
0.6
0.8
1
Io2/Io2 nom
Fig. 16
Models with 2 outputs 15 V: ∆Vo2 versus Io2 with various Io1 (typ).
05085a
Io1 = 100%
Io1 = 50%
Io1 = 10%
26
25
24
23
22
21
0
0.2
0.4
0.6
0.8
1
Io2/Io2 nom
Fig. 17
Models with 2 outputs 24 V: ∆Vo2 versus Io2 with various Io1 (typ).
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 13 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Auxiliary Functions
Inhibit for Remote On/Off
The outputs may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied between the inhibit input i (pin 18)
and pin 14 (S– or Vo1–). In systems with several converters, this feature can be used to control the activation sequence of the
converters. If the inhibit function is not required, connect the inhibit pin 18 to pin 14.
Note: If pin 18 is not connected, the output is disabled.
Table 8: Inhibit characteristics
Conditions
V inh
Inhibit voltage
Iinh
Inhibit current
tr
Rise time
tf
Fall time
V o = on
V o = off
min
Vi min – Vi max
typ
max
-50
0.8
2.4
50
V inh = 0
-400
30
Vo+
Unit
Input
Characteristics
06031b
V
µA
Iinh
i 18
Vinh
ms
S–/Vo1– 14
Depending on Io
Fig. 18
Definition of Vinh and Iinh.
Iinh [mA]
Vinh = 0.8 V
Vinh = 2.4 V
Vo /Vo nom
1
06032
2.0
1.6
1.2
0.1
0
0.8
Vo = on
0.4
Vo = off
–0.4
–30
–10
0 10
30
tf
tr
t
Inhibit
1
0
–0.8
–50
06001
50
Fig. 19
Typical inhibit current I inh versus inhibit voltage Vinh
t
0
Vinh [V]
Fig. 20
Output response as a function of inhibit control
Sense Lines (Single-Output Models)
Important: Sense lines must always be connected! Incorrectly connected sense lines may activate the overvoltage protection resulting in a
permanent short-circuit of the output.
This feature allows for compensation of voltage drops across the connector contacts and if necessary, across the load lines. We
recommend connecting the sense lines directly at the female connector.
To ensure correct operation, both sense lines (S+, S–) should be connected to their respective power outputs (Vo+ and Vo–), and
the voltage difference between any sense line and its respective power output (as measured on the connector) should not exceed
the following values:
Table 9: Maximum voltage compensation allowed using sense lines
Output voltage
Total voltage difference
between sense lines and
their respective outputs
Voltage difference
between Vo– and S–
5.1 V
< 0.5 V
< 0.25 V
12 V, 15 V, 24 V
< 1.0 V
< 0.25 V
Note: If the output voltages are increased above Vo nom via R-input control, option P setting, remote sensing, or option T, the output currents
must be reduced accordingly, so that Po nom is not exceeded.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 14 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Programmable Output Voltage (R-Function)
As a standard feature, the converters offer an adjustable output voltage, identified by letter R in the type designation. The control
input R (pin 16) accepts either a control voltage Vext or a resistor Rext to adjust the desired output voltage. When input R is not
connected, the output voltage is set to Vo nom.
a) Adjustment by means of an external control voltage Vext between pin 16 (R) and pin 14:
The control voltage range is 0 – 2.75 VDC and allows an output voltage adjustment in the range of approximately 0 – 110% Vo nom.
Vo
Vext ≈ –––––– • 2.5 V
Vo nom
b) Adjustment by means of an external resistor:
Depending upon the value of the required output voltage the resistor shall be connected
either: Between pin 16 and pin 14 (Vo < Vo nom) to achieve an output voltage adjustment range of approximately 0 – 100% Vo nom.
or: Between pin 16 and pin 12 (Vo > Vo nom) to achieve an output voltage adjustment range of 100 – 110% Vo nom.
Warning:
– Vext shall never exceed 2.75 V.
– The value of R’ext shall never be less than the lowest value as indicated in table R’ext (for Vo > Vo nom) to prevent the converter
from damage!
N~
06003a
16
14
R
+
S–
Vext
Vo2+
4
Vo2+
6
Vo2–
8
Vo2–
10
Vo1+
Vo1+
12
S+
Vo1–
14
R
16
Vo1–
L~
N~
12
16
14
L~
Vo1+
R
S–
Vo1–
Fig. 21
Output voltage control for single-output models
R'ext
+
06004a
24 V
Vo1 30 V
48 V
Co
–
R'ext
Rext
Rext
Fig. 22
Double-output models:
Wiring of the R-input for output voltages 24 V, 30 V, or 48 V
with both outputs in series. A ceramic capacitor (Co ) across
the load reduces ripple and spikes.
Notes:
– The R-Function excludes option P (output voltage adjustment by potentiometer).
If the output voltages are increased above Vo nom via R-input control, option P setting, remote sensing, or option T, the output currents should
be reduced, so that Po nom is not exceeded.
– With double-output models the second output follows the value of the controlled main output.
– In case of parallel connection the output voltages should be individually set within a tolerance of 1 – 2%.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 15 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Table 10a: Rext for Vo < Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R’ext = not fitted
Vo nom = 5.1 V
Vo nom = 12 V
Vo [V]
R ext [kΩ]
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0.432
0.976
1.65
2.61
3.83
5.76
8.66
14.7
30.1
200
Vo [V] 1
Vo nom = 15 V
R ext [kΩ]
2
3
4
5
6
7
8
9
10
11
4
6
8
10
12
14
16
18
20
22
0.806
1.33
2
2.87
4.02
5.62
8.06
12.1
20
42.2
Vo [V] 1
2
4
6
8
9
10
11
12
13
14
Vo nom = 24 V
R ext [kΩ]
4
8
12
16
18
20
22
24
26
28
0.619
1.47
2.67
4.53
6.04
8.06
11
16.2
26.1
56.2
Vo [V] 1
4
6
8
10
12
14
16
18
20
22
R ext [kΩ]
8
12
16
20
24
28
32
36
40
44
0.81
1.33
2.0
2.87
4.02
5.62
8.06
12.1
20
44.2
Table 10b: R’ext for Vo > Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); Rext = not fitted
Vo nom = 5.1 V
1
Vo nom = 12 V
Vo [V]
R ’ext [kΩ]
5.15
5.20
5.25
5.30
5.35
5.40
5.45
5.50
432
215
147
110
88.7
75
64.9
57.6
Vo [V] 1
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
13.0
13.2
Vo nom = 15 V
R ’ext [kΩ]
24.2
24.4
24.6
24.8
25.0
25.2
25.4
25.6
26.0
26.4
1820
931
619
475
383
316
274
243
196
169
Vo [V] 1
15.2
15.4
15.6
15.8
16.0
16.2
16.4
16.5
Vo nom = 24 V
R ’ext [kΩ]
30.4
30.8
31.2
31.6
32.0
32.4
32.8
33.0
1500
768
523
392
316
267
232
221
Vo [V] 1
24.25
24.50
24.75
25.00
25.25
25.50
25.75
26.00
26.25
26.40
R ’ext [kΩ]
48.5
49.0
49.5
50.0
50.5
51.0
51.5
52.0
52.5
52.8
3320
1690
1130
845
698
590
511
442
402
383
First column: Vo or Vo1; second column: double-output models with outputs in series connection
Test Sockets
Test sockets (pin diameter 2 mm) for measuring the main output voltage Vo or Vo1 are located at the front of the converter. The
positive test jack is protected by a series resistor (see: Functional Description, block diagrams).
The voltage measured at the test jacks is slightly lower than the value at the output terminals.
Display Status of LEDs
Vo1 > 0.95 to 0.98 Vo1 adj
06002a
OK
i
Io L
Vi uv
Vi min
Vi max Vi ov
Vo1 > 0.95 to 0.98 Vo1 adj
Vi
Vi abs
LEDs “OK ”, “i ” and “Io L” status versus input voltage
Conditions: Io ≤ Io nom, TC ≤ TC max, Vinh ≤ 0.8 V
Vi uv = undervoltage lock-out, Vi ov = overvoltage lock-out
Vo1 < 0.95 to 0.98 Vo1 adj
OK
Io L
Io nom
Io
IoL
i
TC max
LEDs “OK” and “Io L” status versus output current
Conditions: Vi min – Vi max, TC ≤ TC max, Vinh ≤ 0.8 V
TC
LED “i ” versus case temperature
Conditions: Vi min – Vi max , Io ≤ Io nom, Vinh ≤ 0.8 V
Vi inh
LED “i ” versus Vinh
Conditions: Vi min – Vi max, Io ≤ Io nom, TC ≤ TC max
TPTC threshold
Vinh threshold
i
-50 V
LED off
+0.8 V
+2.4 V
LED Status undefined
+50 V
LED on
Fig. 19
LED indicators
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 16 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Battery Charging / Temperature Sensor
All converters with an R-input are suitable for battery charger applications, but we recommend to choose the models especially
designed for this application, see Model Selection, table 2.
For optimal battery charging and life expectancy of the battery an external temperature sensor can be connected to the R-input.
The sensor is mounted as close as possible to the battery and adjusts the output voltage according to the battery temperature.
Depending upon cell voltage and the temperature coefficient of the battery, different sensor types are available, see Accessories.
Cell voltage [V]
2.45
Input
Power
supply
Vo+
Vo–
R
03099d
2.40
Load
2.35
06139b
2.30
2.25
2.20
ϑ
+
–
Temperature sensor
Fig. 24
Connection of a temperature sensor
+
Battery
2.15 Vo safe
2.10
–20
–10
0
10
VC = 2.27 V, –3 mV/K
VC = 2.23 V, –3 mV/K
20
30
40
50 °C
VC = 2.27 V, –3.5 mV/K
VC = 2.23 V, –3.5 mV/K
Fig. 25
Trickle charge voltage versus temperature for defined
temperature coefficient. Vo nom is the output voltage with
open R-input
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 17 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Electromagnetic Compatibility (EMC)
A metal oxide VDR together with an input fuse and an input filter form an effective protection against high input transient voltages,
which typically occur in most installations. The converters have been successfully tested to the following specifications:
Electromagnetic Immunity
Table 11: Electromagnetic immunity (type tests)
Phenomenon
Standard
Level
Electrostatic
discharge (to case)
IEC/EN
61000-4-2
4
Electromagnetic
field
IEC/EN
61000-4-3
3
Coupling mode 1
Value
applied
contact discharge
8000 Vp
air discharge
15000 Vp
antenna
10 V/m
Waveform
1/50 ns
AM 80% / 1 kHz
Source
imped.
Test procedure
330 Ω
150 pF
N/A
20 V/m
antenna
10 V/m
Electrical fast
transients / burst
IEC/EN
61000-4-4
3
Surges
IEC/EN
61000-4-5
3
antenna
capacitive, o/c
10 V/m
±2000 Vp
± i/c, +i / –i
direct
± i/c
±2000 Vp
+i / –i
±1000 Vp
Perf.
crit. 2
10 pos. & 10 neg.
discharges
yes
A
80 – 1000 MHz
yes
A
yes
A
yes
A
yes
A
yes
A
0.15 – 80 MHz
sine wave
yes
A
800 – 1000 MHz
AM 80% / 1 kHz
N/A
5 V/m
3
In
oper.
1400 – 2100 MHz
2100 – 2500 MHz
50% duty cycle,
200 Hz rep. rate
N/A
bursts of 5/50 ns;
2.5 / 5 kHz over 15 ms;
burst period: 300 ms
50 Ω
60 s pos. & 60 s neg.
transients per coupling
mode
12 Ω
5 pos. & 5 neg. surges
per coupling mode
1.2 / 50 µs
2Ω
900 ±5 MHz
Conducted
disturbances
IEC/EN
61000-4-6
3
i, o, signal wires
10 VAC
(140 dBµV)
Power frequency
magnetic field
IEC/EN
61000-4-8
3
---
100 A/m
N/A
60 s in all 3 axes
yes
A
Pulse magnetic
field
IEC/EN
61000-4-9
---
---
±300 A/m
N/A
5 pulses per axis
repetit. rate 10 s
yes
B
Voltage dips, short
interruptions and
variations
IEC/EN
61000-4-11
40%
+i /–i
230 → 92
→ 230
yes
B3
+i /–i
230 → 0
→2 30
0%
AM 80% / 1 kHz
2→1→2s
150 Ω
N/A
1 i = input, o = output, c = case
A = Normal operation, no deviation from specifications, B = Temporary loss of function or deviation from specs possible3
3
Only LKP models have been tested.
1
2
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 18 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Electromagnetic Emissions
dbµV
dbµV
LK4301-6, Peak L, conducted, 0.15 - 30 MHz, PMM 8000
50
70
50
30
30
10
10
0.2
0.5
1
2
5
10
20
MHz
Fig. 26a
Conducted emissions (peak) at the phase input according to
EN 55011/32, measured at Vi nom and Io nom (LK4301-7R).
The neutral line performs quite similar.
dBµV/m
EN 55032 B
0.2
0.5
1
2
5
10
20
LKP5660-con-p-a
EN 55032 B
LK4301-con-p
70
LKP5660-6, Peak L, conducted, 0.15 - 30 MHz, PMM 8000
MHz
Fig. 26b
Conducted emissions (peak) at the phase input according
to EN 55011/32, measured at Vi nom and Io nom (LKP5660-7R).
The neutral line performs quite similar.
TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2005-11-11
Testdistance 10 m, LK4301-7R, Ui = 230 VAC, Uo = 12 V, Io = 12 A
50
EN 50011 A
40
x
30
x
x
x
20
x
x
xxx x
300
>300
Creepage distances
≥ 3.2 3
---
Electric strength test
Factory test > 1 s
AC test voltage equivalent to factory test
>100
kVAC
MΩ
2
---
mm
Subassemblies connecting input to output are pre-tested with 5.6 kVDC or 4 kVAC.
Tested at 150 VDC
Input to outputs: 6.4 mm
1
2
3
Railway Applications and Fire Protection
The converters have been designed by observing the railway standards EN 50155 and EN 50121-4.
All boards are coated with a protective lacquer.
The converters with version V108 (or later) comply with NF-F16 (I2/F1). They also accord to EN 45545-1, EN 45545-2 (2013),
if installed in a technical compartment or cabinet.
Safety of Operator-Accessible Output Circuits
If the output circuit of a converter is operator-accessible, it shall be an ES1 circuit according to IEC/EN 62368-1.
The table below shows a possible installation configuration, compliance with which causes the output circuit of a K Series AC-DC
converter to be a ES1 circuit according to IEC/EN 62368-1 up to a configured output voltage of 36 V (sum of nominal voltages
connected in series) .
However, it is the sole responsibility of the installer to ensure compliance with the applicable safety regulations.
Mains
~
~
10021a
Fuse
Fuse
Earth
connection
AC-DC
converter
+
ES1
–
Fig. 32
Schematic safety concept.
Table 18: Safety concept leading to an ES1 output circuit
Conditions
AC-DC converter
Installation
Result
Nominal voltage
Grade of insulation between input and
output provided by the AC-DC converter
Measures to achieve the resulting
safety status of the output circuit
Safety status of the AC-DC
converter output circuit
Mains ≤ 250 VAC
Double or reinforced
Earthed case1 and installation
ES1 circuit
1
The earth connection has to be provided by the installer according to the relevant safety standards, e.g. IEC/EN 62368-1.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 25 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Description of Options
Table 19: Survey of options
Option
- 7, -7E
Function of option
Characteristics
Restricted operational ambient temperature range
TA = – 25 to 71 °C (not for new designs)
E
Electronic inrush current limitation circuitry
Active inrush current limiter, standard feature for TA = – 40 °C
P
Potentiometer for fine adjustment of output voltage
Adjustment range +10/– 60% of Vo nom, excludes R-input
D1
Input and/or output undervoltage monitoring circuitry
Safe data signal output (D0 – DD)
V
2
Input and/or output undervoltage monitoring circuitry
ACFAIL signal according to VME specifications (V0, V2, V3)
T
Current sharing
Interconnect T-pins for parallel connection (max 5 converters)
K
H15S4 connector for models with 5.1 V output
For new designs; it provides compatibility with LK1001 models
Cooling plate (160 or 220 mm long)
Replaces the standard heat sink, allowing direct chassis-mounting
RoHS-compliant for all six substances
G is always the last character in the type designation
1
B, B1, B2
G
Option D excludes option V and vice versa; option V only for 5.1 V outputs.
Option P is not available for battery charger models.
1
2
-7 Restricted Temperature Range
Option -7 and -7E stand for a restricted operational ambient temperature range of –25 to 71 °C rather than – 40 to 71 °C.
E Inrush Current Limitation
The converters exhibit an electronic circuit replacing the standard built-in NTC, in order to achieve an enhanced inrush current
limiting function (standard feature).
Note: Subsequent switch-on cycles at start-up are limited to max. 10 cycles during the first 20 seconds (cold converter) and then to max. 1
cycle every 8 s.
Table 20: Inrush current characteristics with option E
Characteristics
Vi = 230 VAC
All models
min
Unit
typ
max
Iinr p
Peak inrush current
---
25.3
A
tinr
Inrush current duration
35
50
ms
Ii [A]
11002b
Capacitor Ci
fully charged
20
10017b
15
10
Control
FET
Rs
RSt
Ci
Converter
Input Filter
LK models
Normal operation
(FET fully conducting)
5
0
–5
–10
tinr
0
Fig. 33
Block diagram for option E
10
20
30
t
40
50
60
70
80 ms
Fig. 34
Typ. inrush current with option E
Vi = 230 VAC, f i = 50 Hz, Po = Po nom
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 26 of 32
K Series with PFC
150 - 280 W AC-DC Converters
P Potentiometer
A potentiometer provides an output voltage adjustment range of +10/–60% of Vo nom. It is accessible through a hole in the front
cover. Option P is not available for battery charger models and is not recommended for converters connected in parallel.
Option P excludes the R-function. With double-output models, both outputs are influenced by the potentiometer setting.
If the output voltages are increased above Vo nom via R input control, option P setting, remote sensing, or option T, the output
current(s) should be reduced accordingly, so that Po nom is not exceeded.
T Current Sharing
This option ensures that the output currents are approximately shared between all parallel-connected converters, hence increasing
system reliability. To use this facility, simply interconnect the T pins of all converters and make sure that the reference for the T
signal (pin 14: S– or Vo1–), are also connected together. The load lines should have equal length and cross section to ensure
equal voltage drops.
Not more than 5 converters should be connected in parallel. The R pins should be left open-circuit. If not, the output voltages must
be individually adjusted prior to paralleling within 1 to 2% or the R pins should be connected together.
Parallel connecting converters with option P is not recommended.
Note: Converters with version V108 (or later) should not be operated in parallel with older converters. The current share function would not work properly.
Vo+
11003a
Load
Vo–
Vo+
Vo–
Vo+
Vo–
Fig.35
Example of poor wiring for parallel connection (unequal length of load lines)
11036b
Vo+
2
1
11037b
S+
Converter
T
Vo2–
1
T
Converter
S–
Vo1+
Vo–
Vo1–
Load
Vo+
Load
2
Vo2+
S+
Converter
T
Vo2–
1
S–
Vo–
Vo2+
Power bus
+
–
T
Converter
Vo1+
1
Vo1–
Max. 5 converters in parallel connection
1
2
Lead lines should have equal length and cross section, and should run
in the same cable loom.
Diodes recommended in redundant operation only
Fig. 36
Parallel connection of single-output models using option T
with the sense lines connected at the load
Max. 5 converters in parallel connection
Fig. 37
Parallel connection of double-output models with the outputs
connected in series, using option T.
The signal at the T pins is referenced to Vo1–.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 27 of 32
K Series with PFC
150 - 280 W AC-DC Converters
D Undervoltage Monitor
The input and/or output undervoltage monitoring circuit operates independently of the built-in input undervoltage lockout circuit. A
logic “low” (self conducting JFET) or “high” signal (NPN output) is generated at the D output (pin 20), when one of the monitored
voltages drops below the preselected threshold level V t. This signal is referenced to S– / Vo1–. The D output recovers, when the
monitored voltages exceed Vt + Vh. The threshold level Vbi is adjusted in the factory. The threshold level Vto is either adjusted by
a potentiometer accessible through a hole in the front cover, or adjusted in the factory to a fixed value specified by the customer.
Option D exists in various versions D0 – DD, as shown in the table below.
Table 21: Undervoltage monitoring functions
Output type
Monitoring
Minimum adjustment range of threshold
level Vt
Typ. hysteresis Vho [% of Vt ]
for Vt min – Vt max
JFET
NPN
Vi
Vo or Vo1
Vt b 4
Vt o
Vhi
Vho
D1
D5
no
yes
---
3.5 – VBR 1
---
2.5 – 0.6 V
D2
D6
yes
no
355 VDC
---
D3
D7
yes
yes
355 VDC
D4
D8
no
yes
---
D0
D9
no
yes
---
3.5 – VBR 3
yes
yes
355 VDC
yes
yes
355 VDC
---
DD
3.4 – 0.4 V
---
(0.95 – 0.985 Vo1) 2
3.4 – 0.4 V
“0”
(0.95 – 0.985 Vo1) 2
---
“0”
---
2.5 – 0.6 V
3.5 – VBR 3
3.4 – 0.4 V
2.5 – 0.6 V
3.5 – VBR 1
3.4 – 0.4 V
2.5 – 0.6 V
Threshold level adjustable by potentiometer. See Output Data for VBR.
Fixed value. Tracking if Vo1 is adjusted via R-input, option P, or sense lines.
3
The threshold level permanently adjusted according to customer specification ±2% at 25 °C. Any value within the specified range is
basically possible, but causes a special type designation in addition to the standard option designations (D0/D9).
4
Vb is the voltage generated by the boost regulator. When Vb drops below 355 V, the D signal triggers, and the output(s) will remain powered
during nearly the full hold-up time t h.
1
2
JFET output (D0 – D4):
Pin D is internally connected via the drain-source path of a JFET (self-conducting type) to the negative potential of output 1.
VD ≤ 0.4 V (logic low) corresponds to a monitored voltage level (Vi and/or Vo1) Vt + Vh. The current ID through the open collector should not exceed
20 mA. The NPN output is not protected against external overvoltages. VD should not exceed 40 V.
Table 22: JFET output (D0 -- D4)
Table 23: NPN output (D5 – DD)
Vb, Vo1 status
D output, VD
Vb, Vo1 status
D output, VD
Vb or Vo1 < Vt
low, L, VD ≤ 0.4 V at I D = 2.5 mA
Vb or Vo1 < Vt
high, H, I D ≤ 25 µA at VD = 40 V
Vb and Vo1 > Vt + Vh
high, H, ID ≤ 25 µA at VD = 5.25 V
Vb and Vo1 > Vt + Vh
low, L, VD ≤ 0.4 V at ID = 20 mA
11006a
11007a
Vo+/Vo1+
Vo+/Vo1+
Self-conducting
junction FET
20
D
VD
14
Rp
NPN open
collector
20
D
VD
14
S–/Vo1–
Fig. 38
Option D0 – D4: JFET output, I D ≤ 2.5 mA
Rp
ID
Input
Input
ID
S–/Vo1–
Fig. 39
Option D5 – DD: NPN output, Vo ≤ 40, ID ≤ 2.5 mA
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 28 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Table 24: D-output logic signals
Version of D
Vi < Vt or Vo < Vt
Vi > Vt + Vh or Vo > Vt
Configuration
D1, D2, D3, D4, D0
low
high
JFET
D5, D6, D7, D8, D9, DD
high
low
NPN
Input voltage monitoring
NPN VD
VD high
11044b
3
VD low
3
3
3
t
0
ID
ID high
ID low
0
t
JFET VD
VD high
VD low
0
th1
Vo1
Vo1 nom
1
0.95
tlow min4
t
tlow min4
tlow min4
thigh min
th1
0
t
Vb [VDC]
358
355
t
0
Input voltage failure
Input voltage sag
Switch-on cycle
Switch-on cycle and subsequent
input voltage failure
Output voltage monitoring
NPN VD
VD high
2
VD low
t
0
ID
ID high
1
ID low
0
t
2
3
JFET VD
VD high
4
VD low
0
Hold-up time see: Electrical Input Data.
With output voltage monitoring, hold-up time t h = 0.
The signal remains high, if the D output is connected
to an external source.
t low min = 100 – 170 ms, typically 130 ms
t
tlow min
Vo1
4
Vo1 nom
Vto +Vho
Vto
t
0
Output voltage failure
Fig. 40
Relationship between Vb, Vo1, VD, Vo1/Vo1 nom versus time
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 29 of 32
K Series with PFC
150 - 280 W AC-DC Converters
K Connector H15S4
Models with 5.1 V output are fitted with a connector H15S4 (rather than H15S2). This option should be used for new designs and
provides compatibility to LK1001 models.
B, B1, B2 Cooling Plate
Where a cooling surface is available, we recommend the use of a cooling plate instead of the standard heat sink. The mounting
system should ensure sufficient cooling capacity to guarantee that the maximum case temperature TC max is not exceeded. The
cooling capacity is calculated by:
(100% – h)
P Loss = –––––––––– • Vo • Io
η
Efficiency η see Model Selection.
For the dimensions of the cooling plates, see Mechnical Data. Option B2 is for customer-specific models with elongated case (for
220 mm DIN-rack depth) only.
G RoHS
Models with G as last character of the type designation are RoHS-compliant for all six substances.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 30 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Accessories
A variety of electrical and mechanical accessories are available including:
– Front panels for 19” DIN-rack: Schroff or Intermas,
12 TE / 3U; see fig. 41
– Mating H15 connectors with screw, solder, faston, or press-fit terminals, code key system and coding wedges HZZ00202-G;
see fig. 42.
– Pair of connector retention clips HZZ01209-G; see fig. 43
– Connector retention brackets HZZ01216-G; see fig. 44.
– Cage clamp adapter HZZ00144-G; see fig. 45
– Different cable hoods for H15 connectors (fig. 46):
- HZZ00141-G, screw version
- HZZ00142-G, use with retention brackets HZZ01218-G
- HZZ00143-G, metallic version providing fire protection
– Chassis or wall-mounting plate K02 (HZZ01213-G) for models with option B1. Mating connector (HZZ00107-G) with screw
terminals; see fig. 47
– DIN-rail mounting assembly HZZ0615-G (DMB-K/S); see fig. 48
– Additional external input and output filters
– Different battery sensors S-KSMH... for using the converter as a battery charger. Different cell characteristics can be selected;
see fig. 49, table 24, and Battery Charging / Temperature Sensors.
For additional accessory product information, see the accessory data sheets listed with each product series or
individual model at www.belfuse.com/power-solutions.
Fig. 42
Different mating connectors
Fig. 41
Different front panels
Fig.43
Connector retention clips to fasten the H15 connector to the
rear plate; see fig. 24. HZZ01209-G consists of 2 clips.
20 to 30 Ncm
Fig. 44
Connector retention brackets HZZ01216-G (CRB-HKMS)
Fig. 45
Cage clamp adapter HZZ00144-G
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 31 of 32
K Series with PFC
150 - 280 W AC-DC Converters
Fig. 46
Different cable hoods
Fig. 47
Chassis- or wall-mounting plate HZZ01213-G (Mounting
plate K02)
European
Projection
9.8 (0.4")
26 (1.02")
09125a
L
56 (2.2")
L = 2 m (standard length)
other cable lengths on request
Fig. 48
DIN-rail mounting assembly HZZ00615-G (DMB-K/S)
adhesive tape
Fig. 49
Battery temperature sensor
Table 24: Battery temperature sensors
Battery
voltage
nom. [V]
Sensor type
Cell
voltage
[V]
Cell temp.
coefficient
[mV/K]
Cable
length
[m]
12
S-KSMH12-2.27-30-2
2.27
–3.0
2
12
S-KSMH12-2.27-35-2
2.27
–3.5
2
24
S-KSMH24-2.27-30-2
2.27
–3.0
2
24
S-KSMH24-2.27-35-2
2.27
–3.5
2
24
S-KSMH24-2.31-35-0
2.31
–3.5
4.5
24
S-KSMH24-2.31-35-2
2.31
–3.5
2
24
S-KSMH24-2.35-35-2
2.35
–3.5
2
48
S-KSMH48-2.27-30-2
2.27
–3.0
2
48
S-KSMH48-2-27-35-2
2.27
–3.5
2
Note: Other temperature coefficients and cable lengths are available on request.
NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems,
equipment used in hazardous environments, or nuclear control systems.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the
date manufactured. Specifications are subject to change without notice.
tech.support@psbel.com
belfuse.com/power-solutions
BCD20001-G Rev G, 14-Dec-2021
© 2021 Bel Power Solutions & Protection
Page 32 of 32
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Bel Power Solutions:
LK5540-9ER LK4301-9ERG LKP5660-9ERG LK4601-9ER LKP5740-9ERG LK4501-9ERG