0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BS62LV4000STC

BS62LV4000STC

  • 厂商:

    BSI(连邦科技)

  • 封装:

  • 描述:

    BS62LV4000STC - Very Low Power/Voltage CMOS SRAM 512K X 8 bit - Brilliance Semiconductor

  • 数据手册
  • 价格&库存
BS62LV4000STC 数据手册
BSI FEATURES Very Low Power/Voltage CMOS SRAM 512K X 8 bit GENERAL DESCRIPTION BS62LV4000 • Wide Vcc operation voltage : 2.7V ~ 3.6V • Very low power consumption : Vcc = 3.0V C-grade: 20mA (Max.) operating current I -grade: 25mA (Max.) operating current 0.5uA (Typ.) CMOS standby current • High speed access time : -70 70ns (Max) at Vcc = 3.0V -10 100ns (Max) at Vcc = 3.0V • Automatic power down when chip is deselected • Three state outputs and TTL compatible • Fully static operation • Data retention supply voltage as low as 1.5V • Easy expansion with CE and OE options The BS62LV4000 is a high performance, very low power CMOS Static Random Access Memory organized as 524,288 words by 8 bits and operates from a wide range of 2.7V to 3.6V supply voltage. Advanced CMOS technology and circuit techniques provide both high speed and low power features with a typical CMOS standby current of 0.5uA and maximum access time of 70ns in 3V operation. Easy memory expansion is provided by an active LOW chip enable (CE), and active LOW output enable (OE) and three-state output drivers. The BS62LV4000 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The BS62LV4000 is available in the JEDEC standard 32 pin , 8mmx13.4mm STSOP, and 8mmx20mm TSOP. PRODUCT FAMILY SPEED ( ns ) Vcc=3.0V PRODUCT FAMILY BS62LV4000TC BS62LV4000STC BS62LV4000TI BS62LV4000STI OPERATING TEMPERATURE +0 O C to +70O C -40 O C to +85O C Vcc RANGE 2.7V ~ 3.6V 2.7V ~ 3.6V ( I CCSB1 , Max ) Vcc=3.0V POWER DISSIPATION STANDBY Operating ( I CC , Max ) Vcc=3.0V PKG TYPE TSOP-32 STSOP-32 TSOP-32 STSOP-32 70 / 100 70 / 100 8uA 12uA 20mA 25mA PIN CONFIGURATIONS FUNCTIONAL BLOCK DIAGRAM A11 A9 A8 A13 WE A17 A15 VCC A18 A16 A14 A12 A7 A6 A5 A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BS62LV4000TC BS62LV4000STC BS62LV4000TI BS62LV4000STI 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 OE A10 CE DQ7 DQ6 DQ5 DQ4 DQ3 GND DQ2 DQ1 DQ0 A0 A1 A2 A3 A13 A17 A15 A18 A16 A14 A12 A7 A6 A5 A4 Address Input Buffer 22 Row Decoder 2048 Memory Array 2048 X 2048 Brilliance Semiconductor Inc. reserves the right to modify document contents without notice. R0201-BS62LV4000 • 2048 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 8 Data Input Buffer 8 Column I/O Write Driver Sense Amp 256 Column Decoder 16 CE WE OE Vdd Gnd A11 A9 A8 A3 A2 A1 A0 A10 Control Address Input Buffer 8 Data Output Buffer 8 1 Revision 2.2 April. 2001 BSI PIN DESCRIPTIONS BS62LV4000 Function These 19 address inputs select one of the 524,288 x 8-bit words in the RAM CE is active LOW. Chip enable must be active when data read from or write to the device. if chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high impedance state when the device is deselected. Name A0-A18 Address Input CE Chip Enable Input WE Write Enable Input The write enable input is active LOW and controls read and write operations. With the chip selected, when WE is HIGH and OE is LOW, output data will be present on the DQ pins; when WE is LOW, the data present on the DQ pins will be written into the selected memory location. OE Output Enable Input The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when OE is inactive. DQ0-DQ7 Data Input/Output Ports Vcc Gnd These 8 bi-directional ports are used to read data from or write data into the RAM. Power Supply Ground TRUTH TABLE MODE Not selected Output Disabled Read Write WE X H H L CE H L L L OE X H L X I/O OPERATION High Z High Z DOUT DIN Vcc CURRENT ICCSB, ICCSB1 ICC ICC ICC ABSOLUTE MAXIMUM RATINGS(1) SYMBOL V TERM T BIAS T STG PT I OUT PARAMETER Terminal Voltage with Respect to GND Temperature Under Bias Storage Temperature Power Dissipation DC Output Current OPERATING RANGE UNITS V O RATING -0.5 to Vcc+0.5 -40 to +125 -60 to +150 1.0 20 RANGE Commercial Industrial AMBIENT TEMPERATURE 0 C to +70 C -40 C to +85 C O O O O Vcc 2.7V ~ 3.6V 2.7V ~ 3.6V C C O W mA CAPACITANCE (1) (TA = 25oC, f = 1.0 MHz) SYMBOL 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. CIN CDQ PARAMETER Input Capacitance Input/Output Capacitance CONDITIONS MAX. UNIT VIN=0V VI/O=0V 6 8 pF pF 1. This parameter is guaranteed and not tested. R0201-BS62LV4000 2 Revision 2.2 April. 2001 BSI DC ELECTRICAL CHARACTERISTICS ( TA = 0oC to + 70oC ) PARAMETER NAME VIL VIH IIL IOL VOL VOH ICC ICCSB ICCSB1 BS62LV4000 TEST CONDITIONS Vcc=3.0V PARAMETER Guaranteed Input Low (2) Voltage Guaranteed Input High (2) Voltage Input Leakage Current Output Leakage Current Output Low Voltage Output High Voltage Operating Power Supply Current Standby Current-TTL Standby Current-CMOS MIN. TYP. (1) MAX. -0.5 2.0 --Vcc=3.0V UNITS V V uA uA V V mA mA uA --------0.5 0.8 Vcc+0.2 1 1 0.4 -20 1 8 Vcc=3.0V Vcc = Max, VIN = 0V to Vcc Vcc = Max, CE = VIH, or OE = VIH, VI/O = 0V to Vcc Vcc = Max, IOL = 2mA Vcc = Min, IOH = -1mA CE = VIL, IDQ = 0mA, F = Fmax CE = VIH, IDQ = 0mA CE VIN Vcc-0.2V, Vcc - 0.2V or VIN 0.2V (3) -2.4 ---- Vcc=3.0V Vcc=3.0V Vcc=3.0V Vcc=3.0V 1. Typical characteristics are at TA = 25oC. 2. These are absolute values with respect to device ground and all overshoots due to system or tester notice are included. 3. Fmax = 1/tRC . DATA RETENTION CHARACTERISTICS ( TA = 0 to + 70oC ) SYMBOL VDR PARAMETER Vcc for Data Retention CE VIN CE VIN TEST CONDITIONS Vcc - 0.2V Vcc - 0.2V or VIN Vcc - 0.2V Vcc - 0.2V or VIN 0.2V MIN. 1.5 TYP. (1) -- MAX. -- UNITS V ICCDR tCDR tR Data Retention Current Chip Deselect to Data Retention Time Operation Recovery Time 0.2V -0 0.3 --- 6 --- uA ns ns See Retention Waveform TRC (2) 1. Vcc = 1.5V, TA = + 25OC 2. tRC = Read Cycle Time LOW VCC DATA RETENTION WAVEFORM ( CE Controlled ) Data Retention Mode Vcc VIH Vcc VDR ≥ 1.5V Vcc t CDR CE ≥ Vcc - 0.2V tR VIH CE R0201-BS62LV4000 3 Revision 2.2 April. 2001 BSI AC TEST CONDITIONS Input Pulse Levels Input Rise and Fall Times Input and Output Timing Reference Level Vcc/0 5ns 0.5Vcc WAVEFORM INPUTS BS62LV4000 KEY TO SWITCHING WAVEFORMS OUTPUTS MUST BE STEADY WILL BE CHANGE FROM H TO L WILL BE CHANGE FROM L TO H CHANGE : STATE UNKNOWN CENTER LINE IS HIGH IMPEDANCE ”OFF ”STATE MUST BE STEADY MAY CHANGE FROM H TO L 1269 Ω AC TEST LOADS AND WAVEFORMS 3.3V OUTPUT 100PF INCLUDING JIG AND SCOPE 1269 Ω 3.3V OUTPUT MAY CHANGE FROM L TO H DON T CARE: ANY CHANGE PERMITTED DOES NOT APPLY , 5PF 1404 Ω INCLUDING JIG AND SCOPE 1404 Ω FIGURE 1A THEVENIN EQUIVALENT 667 Ω ALL INPUT PULSES FIGURE 1B OUTPUT 1.73V Vcc GND 10% 90% 90% 10% → ← → ← 5ns FIGURE 2 AC ELECTRICAL CHARACTERISTICS ( TA = 0oC to + 70oC , Vcc = 3.0V ) READ CYCLE JEDEC PARAMETER PARAMETER NAME NAME DESCRIPTION Read Cycle Time Address Access Time Chip Select Access Time Output Enable to Output Valid Chip Select to Output Low Z Output Enable to Output in Low Z Chip Deselect to Output in High Z Output Disable to Output in High Z Output Disable to Output Address Change BS62LV4000-70 MIN. TYP. MAX. BS62LV4000-10 MIN. TYP. MAX. UNIT ns ns ns ns ns ns ns ns ns tAVAX tAVQV tELQV tGLQV tELQX tGLQX tEHQZ tGHQZ tAXOX tRC tAA tACS tOE tCLZ tOLZ tCHZ tOHZ tOH 70 ---10 10 0 0 10 ---------- -70 70 50 --30 25 -- 100 ---15 15 0 0 15 ---------- -100 100 60 --35 30 -- R0201-BS62LV4000 4 Revision 2.2 April. 2001 BSI SWITCHING WAVEFORMS (READ CYCLE) READ CYCLE1 (1,2,4) BS62LV4000 t RC ADDRESS t D OUT t OH AA t OH READ CYCLE2 (1,3,4) CE t t D OUT (5) CLZ ACS t CHZ (5) READ CYCLE3 (1,4) t RC ADDRESS t OE AA t CE t OH OE t t ACS t (5) CLZ OLZ t OHZ (5) (1,5) t CHZ D OUT NOTES: 1. WE is high in read Cycle. 2. Device is continuously selected when CE = VIL. 3. Address valid prior to or coincident with CE transition low. 4. OE = VIL . 5. Transition is measured ± 500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested. R0201-BS62LV4000 5 Revision 2.2 April. 2001 BSI AC ELECTRICAL CHARACTERISTICS ( TA = 0oC to + 70oC , Vcc = 3.0V ) WRITE CYCLE JEDEC PARAMETER NAME PARAMETER NAME DESCRIPTION Write Cycle Time Chip Select to End of Write Address Set up Time Address Valid to End of Write Write Pulse Width Write Recovery Time Write to Output in High Z Data to Write Time Overlap Data Hold from Write Time Output Disable to Output in High Z End ot Write to Output Active (CE , WE) BS62LV4000-70 MIN. TYP. MAX. BS62LV4000 BS62LV4000-10 MIN. TYP. MAX. UNIT ns ns ns ns ns ns ns ns ns ns ns tAVAX tE1LWH tAVWL tAVWH tWLWH tWHAX tWLOZ tDVWH tWHDX tGHOZ tWHQX tWC tCW tAS tAW tWP tWR tWHZ tDW tDH tOHZ tOW 70 70 0 70 50 0 0 35 0 0 5 ------------ ------30 --30 -- 100 100 0 100 70 0 0 40 0 0 10 ------------ ------40 --40 -- SWITCHING WAVEFORMS (WRITE CYCLE) WRITE CYCLE1 (1) t WC ADDRESS t WR OE (3) t CW CE (5) (11) t AW WE t AS (4,10) t WP (2) t OHZ D OUT t DH t DW D IN R0201-BS62LV4000 6 Revision 2.2 April. 2001 BSI WRITE CYCLE2 (1,6) BS62LV4000 t WC ADDRESS (11) (5) t t AW CW CE t WP (2) WE t AS (4,10) t DH t WHZ D OUT (7) (8) t DW t DH (8,9) D IN NOTES: 1. WE must be high during address transitions. 2. The internal write time of the memory is defined by the overlap of CE and WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write. 3. TWR is measured from the earlier of CE or WE going high at the end of write cycle. 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. 5. If the CE low transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state. 6. OE is continuously low (OE = VIL ). 7. DOUT is the same phase of write data of this write cycle. 8. DOUT is the read data of next address. 9. If CE is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them. 10. Transition is measured ± 500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested. 11. TCW is measured from the later of CE going low to the end of write. R0201-BS62LV4000 7 Revision 2.2 April. 2001 BSI ORDERING INFORMATION BS62LV4000 BS62LV4000 XX YY SPEED 70: 70ns 10: 100ns GRADE C: +0oC ~ +70oC I: -40oC ~ +85oC PACKAGE T: TSOP ST: Small TSOP PACKAGE DIMENSIONS STSOP - 32 R0201-BS62LV4000 8 Revision 2.2 April. 2001 BSI PACKAGE DIMENSIONS (continued) BS62LV4000 TSOP - 32 R0201-BS62LV4000 9 Revision 2.2 April. 2001 BSI REVISION HISTORY Revision 2.2 BS62LV4000 Description 2001 Data Sheet release Date Apr. 15, 2001 Note R0201-BS62LV4000 10 Revision 2.2 April. 2001
BS62LV4000STC 价格&库存

很抱歉,暂时无法提供与“BS62LV4000STC”相匹配的价格&库存,您可以联系我们找货

免费人工找货